Tamura M, Cueno ME, Abe K, Kamio N, Ochiai K, Imai K. Ions released from a S-PRG filler induces oxidative stress in Candida albicans inhibiting its growth and pathogenicity.
Cell Stress Chaperones 2018;
23:1337-1343. [PMID:
29876727 PMCID:
PMC6237688 DOI:
10.1007/s12192-018-0922-1]
[Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/10/2018] [Accepted: 05/30/2018] [Indexed: 11/26/2022] Open
Abstract
Candida albicans causes opportunistic fungal infections usually hidden among more dominant bacteria and does not exhibit high pathogenicity in vivo. Among the elderly, due to reduced host resistance to pathogens attributable to immunoscenesence, oral candidiasis is more likely to develop often leading to systemic candidiasis. Surface pre-reacted glass ionomer filler (S-PRG filler) is an ion-releasing functional bioactive glass that can release and recharge six ions which in turn strengthens tooth structure, inhibits demineralization arising from dental caries, and suppresses dental plaque accumulation. However, its effects on C. albicans have never been elucidated. Here, we evaluated the effects of ion released from S-PRG filler on C. albicans. Results show that extraction liquids containing released ions (ELIS) decreased the amount of hydrogen peroxide and catalase activity in C. albicans. Moreover, ELIS presence was found to affect C. albicans: (1) suppression of fungal growth and biofilm formation, (2) prevent adherence to denture base resin, (3) inhibit dimorphism conversion, and (4) hinder the capability to produce secreted aspartyl proteinase. Taken together, our findings suggest that ELIS induces oxidative stress in C. albicans and suppresses its growth and pathogenicity. In this regard, we propose that ELIS has the potential to be clinically used to help prevent the onset and inhibition of oral candidiasis among the elderly population.
Collapse