1
|
Li Y, Liu X, Li L, Zhang T, Gao Y, Zeng K, Wang Q. Characterization of the metabolism of eupalinolide A and B by carboxylesterase and cytochrome P450 in human liver microsomes. Front Pharmacol 2023; 14:1093696. [PMID: 36762117 PMCID: PMC9905117 DOI: 10.3389/fphar.2023.1093696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Eupalinolide A (EA; Z-configuration) and eupalinolide B (EB; E-configuration) are bioactive cis-trans isomers isolated from Eupatorii Lindleyani Herba that exert anti-inflammatory and antitumor effects. Although one pharmacokinetic study found that the metabolic parameters of the isomers were different in rats, metabolic processes relevant to EA and EB remain largely unknown. Our preliminary findings revealed that EA and EB are rapidly hydrolyzed by carboxylesterase. Here, we investigated the metabolic stability and enzyme kinetics of carboxylesterase-mediated hydrolysis and cytochrome P450 (CYP)-mediated oxidation of EA and EB in human liver microsomes (HLMs). We also explored differences in the hydrolytic stability of EA and EB in human liver microsomes and rat liver microsomes (RLMs). Moreover, cytochrome P450 reaction phenotyping of the isomers was performed via in silico methods (i.e., using a quantitative structure-activity relationship model and molecular docking) and confirmed using human recombinant enzymes. The total normalized rate approach was considered to assess the relative contributions of five major cytochrome P450s to EA and EB metabolism. We found that EA and EB were eliminated rapidly, mainly by carboxylesterase-mediated hydrolysis, as compared with cytochrome P450-mediated oxidation. An inter-species difference was observed as well, with faster rates of EA and EB hydrolysis in rat liver microsomes. Furthermore, our findings confirmed EA and EB were metabolized by multiple cytochrome P450s, among which CYP3A4 played a particularly important role.
Collapse
Affiliation(s)
- Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Xiaoyan Liu
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Tao Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Yadong Gao
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China,*Correspondence: Kewu Zeng, ; Qi Wang,
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, China,Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing, China,Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, China,*Correspondence: Kewu Zeng, ; Qi Wang,
| |
Collapse
|
2
|
Rawal RM, Joshi MN, Bhargava P, Shaikh I, Pandit AS, Patel RP, Patel S, Kothari K, Shah M, Saxena A, Bagatharia SB. Tobacco habituated and non-habituated subjects exhibit different mutational spectrums in head and neck squamous cell carcinoma. 3 Biotech 2015; 5:685-696. [PMID: 28324520 PMCID: PMC4569615 DOI: 10.1007/s13205-014-0267-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/15/2014] [Indexed: 12/28/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common non-skin cancer in the world. Tobacco chewing is implicated with most of the cases of HNSCC but this type of cancer is increasing in non-tobacco chewers as well. This study was instigated to provide comprehensive variant and gene-level data in HNSCC subjects of the Indian population and fill the gap in the literature on comparative assessment of gene mutations in cancer subjects with a habit of tobacco and those without any habit using targeted amplicon sequencing. We performed targeted Amplicon sequencing of 409 tumor suppressor genes and oncogenes, frequently mutated across many cancer types, including head and neck. DNA from primary tumor tissues and matched blood was analyzed for HNSCC patients with a habit of tobacco and those without any habit. PDE4DIP, SYNE1, and NOTCH1 emerged as the highly mutated genes in HNSCC. A total of 39 candidate causal variants in 22 unique cancer driver genes were identified in non-habitual (WoH) and habitual (WH) subjects. Comparison of genes from both the subjects, showed seven unique cancer driver genes (KIT, ATM, RNF213, GATA2, DST, RET, CYP2C19) in WoH, while WH showed five (IL7R, PKHD1, MLL3, PTPRD, MAPK8) and 10 genes (SETD2, ATR, CDKN2A, NCOA4, TP53, SYNE1, KAT6B, THBS1, PTPRT, and FGFR3) were common to both subjects. In addition to this NOTCH1, NOTCH2, and NOTCH4 gene were found to be mutated only in habitual subjects. These findings strongly support a causal role for tobacco, acting via PI3K and MAPK pathway inhibition and stimulation of various genes leading to oncogenic transformations in case of tobacco chewers. In case of non-tobacco chewers it appears that mutations in the pathway affecting the squamous epithelial lineage and DNA repair genes lead to HNSCC. Somatic mutation in CYP2C19 gene in the non-habitual subjects suggests that this gene may have a tobacco independent role in development and progression of HNSCC. In addition to sharing high mutation rate, NOTCH gene family was found to be mutated only in habitual sample. Further, presence of mutated genes not earlier reported to be involved in HNSCC, suggest that the Indian sub-continent may have different sets of genes, as compared to other parts of the world, involved in the development and progression of HNSCC.
Collapse
Affiliation(s)
- Rakesh M Rawal
- Gujarat Cancer and Research Institute, Gujarat Cancer Society, Civil Hospital Campus, Asarwa, Ahmedabad, 380 016, Gujarat, India
| | - Madhvi N Joshi
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, 11th Block, 9th Floor, Udyog Bhavan, Gandhinagar, 382 011, Gujarat, India
| | - Poonam Bhargava
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, 11th Block, 9th Floor, Udyog Bhavan, Gandhinagar, 382 011, Gujarat, India
| | - Inayat Shaikh
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, 11th Block, 9th Floor, Udyog Bhavan, Gandhinagar, 382 011, Gujarat, India
| | - Aanal S Pandit
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, 11th Block, 9th Floor, Udyog Bhavan, Gandhinagar, 382 011, Gujarat, India
| | - Riddhi P Patel
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, 11th Block, 9th Floor, Udyog Bhavan, Gandhinagar, 382 011, Gujarat, India
| | - Shanaya Patel
- Gujarat Cancer and Research Institute, Gujarat Cancer Society, Civil Hospital Campus, Asarwa, Ahmedabad, 380 016, Gujarat, India
| | - Kiran Kothari
- Gujarat Cancer and Research Institute, Gujarat Cancer Society, Civil Hospital Campus, Asarwa, Ahmedabad, 380 016, Gujarat, India
| | - Manoj Shah
- Gujarat Cancer and Research Institute, Gujarat Cancer Society, Civil Hospital Campus, Asarwa, Ahmedabad, 380 016, Gujarat, India
| | - Akshay Saxena
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, 11th Block, 9th Floor, Udyog Bhavan, Gandhinagar, 382 011, Gujarat, India
| | - Snehal B Bagatharia
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, 11th Block, 9th Floor, Udyog Bhavan, Gandhinagar, 382 011, Gujarat, India.
| |
Collapse
|
3
|
Cui D, Mi L, Xu X, Lu J, Qian J, Liu S. Nanocomposites of graphene and cytochrome P450 2D6 isozyme for electrochemical-driven tramadol metabolism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11833-11840. [PMID: 25222611 DOI: 10.1021/la502699m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cytochrome P450 enzymes (cyt P450s) with an active center of iron protoheme are involved in most clinical drugs metabolism process. Herein, an electrochemical platform for the investigation of drug metabolism in vitro was constructed by immobilizing cytochrome P450 2D6 (CYP2D6) with cyt P450 reductase (CPR) on graphene modified glass carbon electrode. Direct and reversible electron transfer of the immobilized CYP2D6 with the direct electron transfer constant of 0.47 s(-1) and midpoint potential of -0.483 V was obtained. In the presence of substrate tramadol, the electrochemical-driven CYP2D6 mediated catalytic behavior toward the conversion of tramadol to o-demethyl-tramadol was confirmed. The Michaelis-Menten constant (Km(app)) and heterogeneous reaction rate constant during the metabolism of tramadol were calculated to be 23.85 μM and 1.96 cm s(-1), respectively. The inhibition effect of quinidine on CYP2D6 catalyze-cycle was also investigated. Furthermore, this system was applied to studying the metabolism of other drugs.
Collapse
Affiliation(s)
- Dongmei Cui
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University , Jiangning District 211189, Nanjing, Jiangsu Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
4
|
Gu D, Yang Y, Chen Q, Habasi M, Zhao J, Aisa HA. Identification of metabolites of rupestonic acid in rat urine by liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Biomed Chromatogr 2014; 29:595-603. [DOI: 10.1002/bmc.3319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Dongyu Gu
- Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011 China
- School of Marine Science and Environment Engineering; Dalian Ocean University; Dalian 116023 China
| | - Yi Yang
- Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011 China
| | - Qibin Chen
- Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011 China
| | - Madina Habasi
- Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011 China
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011 China
| | - Jiangyu Zhao
- Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011 China
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011 China
| | - Haji Akber Aisa
- Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011 China
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011 China
| |
Collapse
|
5
|
|
6
|
Dodgen TM, Cromarty AD, Pepper MS. Quantitative plasma analysis using automated online solid-phase extraction with column switching LC-MS/MS for characterising cytochrome P450 2D6 and 2C19 metabolism. J Sep Sci 2011; 34:1102-10. [DOI: 10.1002/jssc.201000920] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/12/2011] [Accepted: 02/17/2011] [Indexed: 12/18/2022]
|
7
|
Kasprzyk-Hordern B. Pharmacologically active compounds in the environment and their chirality. Chem Soc Rev 2010; 39:4466-503. [PMID: 20852776 DOI: 10.1039/c000408c] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pharmacologically active compounds including both legally used pharmaceuticals and illicit drugs are potent environmental contaminants. Extensive research has been undertaken over the recent years to understand their environmental fate and toxicity. The one very important phenomenon that has been overlooked by environmental researchers studying the fate of pharmacologically active compounds in the environment is their chirality. Chiral drugs can exist in the form of enantiomers, which have similar physicochemical properties but differ in their biological properties such as distribution, metabolism and excretion, as these processes (due to stereospecific interactions of enantiomers with biological systems) usually favour one enantiomer over the other. Additionally, due to different pharmacological activity, enantiomers of chiral drugs can differ in toxicity. Furthermore, degradation of chiral drugs during wastewater treatment and in the environment can be stereoselective and can lead to chiral products of varied toxicity. The distribution of different enantiomers of the same chiral drug in the aquatic environment and biota can also be stereoselective. Biological processes can lead to stereoselective enrichment or depletion of the enantiomeric composition of chiral drugs. As a result the very same drug might reveal different activity and toxicity and this will depend on its origin and exposure to several factors governing its fate in the environment. In this critical review a discussion of the importance of chirality of pharmacologically active compounds in the environmental context is undertaken and suggestions for directions in further research are made. Several groups of chiral drugs of major environmental relevance are discussed and their pharmacological action and disposition in the body is also outlined as it is a key factor in developing a full understanding of their environmental occurrence, fate and toxicity. This review will be of interest to environmental scientists, especially those interested in issues associated with environmental contamination with pharmacologically active compounds and chiral pollutants. As the review will outline current state of knowledge on chiral drugs, it will be of value to anyone interested in the phenomenon of chirality, chiral drugs, their stereoselective disposition in the body and environmental fate (212 references).
Collapse
Affiliation(s)
- Barbara Kasprzyk-Hordern
- University of Huddersfield, Department of Chemical and Biological Sciences, School of Applied Sciences, Queensgate, Huddersfield HD1 3DH, UK.
| |
Collapse
|
8
|
Abstract
Many chiral drugs are used as their racemic mixtures in clinical practice. Two enantiomers of a chiral drug generally differ in pharmacodynamic and/or pharmacokinetic properties as a consequence of the stereoselective interaction with optically active biological macromolecules. Thus, a stereospecific assay to discriminate between enantiomers is required in order to relate plasma concentrations to pharmacological effect of a chiral drug. Stereoselective metabolism of drugs is most commonly the major contributing factor to stereoselectivity in pharmacokinetics. Metabolizing enzymes often display a preference for one enantiomer of a chiral drug over the other, resulting in enantioselectivity. The structural characteristics of enzymes dictate the enantiomeric discrimination associated with the metabolism of chiral drugs. The stereoselectivity can, therefore, be viewed as the physical property characteristic that phenotypes the enzyme. This review provides a comprehensive appraisal of stereochemical aspects of drug metabolism (i.e., enantioselective metabolism and first-pass effect, enzyme-selective inhibition or induction and drug interaction, species differences and polymorphic metabolism).
Collapse
Affiliation(s)
- Hong Lu
- GlaxoSmithKline, Worldwide Drug Metabolism and Pharmacokinetics, 5 Moore Drive, Research Triangle Park, NC 27709-3398, USA.
| |
Collapse
|
9
|
Srinivas NR. Drug disposition of chiral and achiral drug substrates metabolized by cytochrome P450 2D6 isozyme: case studies, analytical perspectives and developmental implications. Biomed Chromatogr 2006; 20:466-91. [PMID: 16779774 DOI: 10.1002/bmc.680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The concepts of drug development have evolved over the last few decades. Although number of novel chemical entitities belonging to varied classes have made it to the market, the process of drug development is challenging, intertwined as it is with complexities and uncertainities. The intention of this article is to provide a comprehensive review of novel chemical entities (NCEs) that are substrates to cytochrome P450 (CYP) 2D6 isozyme. Topics covered in this review aim: (1) to provide a framework of the importance of CYP2D6 isozyme in the biotransformation of NCEs as stand-alones and/or in conjunction with other CYP isozymes; (2) to provide several case studies of drug disposition of important drug substrates, (3) to cover key analytical perspectives and key assay considerations to assess the role and involvement of CYP2D6, and (4) to elaborate some important considerations from the development point of view. Additionally, wherever applicable, special emphasis is provided on chiral drug substrates in the various subsections of the review.
Collapse
Affiliation(s)
- Nuggehally R Srinivas
- Drug Development, Discovery Research, Dr Reddy's Laboratories, Miyapur, Hyderabad, India.
| |
Collapse
|
10
|
Baumann P, Ulrich S, Eckermann G, Gerlach M, Kuss HJ, Laux G, Müller-Oerlinghausen B, Rao ML, Riederer P, Zernig G, Hiemke C. The AGNP-TDM Expert Group Consensus Guidelines: focus on therapeutic monitoring of antidepressants. DIALOGUES IN CLINICAL NEUROSCIENCE 2005. [PMID: 16156382 PMCID: PMC3181735 DOI: 10.31887/dcns.2005.7.3/pbaumann] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Therapeutic drug monitoring (TDM) of psychotropic drugs such as antidepressants has been widely introduced for optimization of pharmacotherapy in psychiatric patients. The interdisciplinary TDM group of the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) has worked out consensus guidelines with the aim of providing psychiatrists and TDM laboratories with a tool to optimize the use of TDM. Five research-based levels of recommendation were defined with regard to routine monitoring of drug plasma concentrations: (i) strongly recommended; (ii) recommended; (iii) useful; (iv) probably useful; and (v) not recommended. In addition, a list of indications that justify the use of TDM is presented, eg, control of compliance, lack of clinical response or adverse effects at recommended doses, drug interactions, pharmacovigilance programs, presence of a genetic particularity concerning drug metabolism, and children, adolescents, and elderly patients. For some drugs, studies on therapeutic ranges are lacking, but target ranges for clinically relevant plasma concentrations are presented for most drugs, based on pharmacokinetic studies reported in the literature. For many antidepressants, a thorough analysis of the literature on studies dealing with the plasma concentration-clinical effectiveness relationship allowed inclusion of therapeutic ranges of plasma concentrations. In addition, recommendations are made with regard to the combination of pharmacogenetic (phenotyping or genotyping) tests with TDM. Finally, practical instructions are given for the laboratory practitioners and the treating physicians how to use TDM: preparation of TDM, drug analysis, reporting and interpretation of results, and adequate use of information for patient treatment TDM is a complex process that needs optimal interdisciplinary coordination of a procedure implicating patients, treating physicians, clinical pharmacologists, and clinical laboratory specialists. These consensus guidelines should be helpful for optimizing TDM of antidepressants.
Collapse
Affiliation(s)
- Pierre Baumann
- Department of Psychiatry, University of Lausanne, Prilly Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Marzo A, Heftmann E. Enantioselective analytical methods in pharmacokinetics with specific reference to genetic polymorphic metabolism. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2002; 54:57-70. [PMID: 12543491 DOI: 10.1016/s0165-022x(02)00128-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The new trend towards developing enantiospecific drugs has increased the interest in enantiospecific pharmacokinetics of chiral drugs, mainly in the case where only one of the two enantiomers is responsible for the pharmacological activity. Enantiospecific bioassays are also useful in investigating the pharmacokinetic behaviour of the two enantiomers when a given drug is marketed as racemate. The stability of the stereogenic centre in vitro and in vivo, as far as unidirectional and bidirectional inversions are concerned, is another reason for requiring stereospecific assay and bioassay. These assays are often complicated in order to achieve quantification, mainly for in vivo measurements, which are often in the low pg/ml range. This paper considers the enantiospecific bioassays, the methods and approaches used, the need for chemical derivatization, and the difficulties involved. It includes a specific discussion for the genetic polymorphic metabolism involving stereogenic centres.
Collapse
Affiliation(s)
- Antonio Marzo
- IPAS SA, Via Mastri 36, 6853 Ligornetto, Switzerland
| | | |
Collapse
|
12
|
Dorne JLCM, Walton K, Slob W, Renwick AG. Human variability in polymorphic CYP2D6 metabolism: is the kinetic default uncertainty factor adequate? Food Chem Toxicol 2002; 40:1633-56. [PMID: 12176090 DOI: 10.1016/s0278-6915(02)00117-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human variability in the kinetics of CYP2D6 substrates has been quantified using a database of compounds metabolised extensively (>60%) by this polymorphic enzyme. Published pharmacokinetic studies (after oral and intravenous dosing) in non-phenotyped healthy adults, and phenotyped extensive (EMs), intermediate or slow-extensive (SEMs) and poor metabolisers (PMs) have been analysed using data for parameters that relate primarily to chronic exposure (metabolic and total clearances, area under the plasma concentration time-curve) and primarily to acute exposure (peak concentration). Similar analyses were performed with the available data for subgroups of the population (age, ethnicity and disease). Interindividual differences in kinetics for markers of oral exposure were large for non-phenotyped individuals and for EMs (coefficients of variation were 67-71% for clearances and 54-63% for C(max)), whereas the intravenous data indicated a lower variability (34-38%). Comparisons between EMs, SEMs and PMs revealed an increase in oral internal dose for SEMs and PMs (ratio compared to EMs=3 and 9-12, respectively) associated with lower variability than that for non-phenotyped individuals (coefficients of variation were 32-38% and 30% for SEMs and PMs, respectively). In relation to the uncertainty factors used for risk assessment, most subgroups would not be covered by the kinetic default of 3.16. CYP2D6-related factors necessary to cover 95-99% of each subpopulation ranged from 2.7 to 4.1 in non-phenotyped healthy adults and EMs to 15-18 in PMs and 22-45 in children. An exponential relationship (R(2)=0.8) was found between the extent of CYP2D6 metabolism and the uncertainty factors. The extent of CYP2D6 involvement in the metabolism of a substrate is critical in the estimation of the CYP2D6-related factor. The 3.16 kinetic default factor would cover PMs for substrates for which CYP2D6 was responsible for up to 25% of the metabolism in EMs.
Collapse
Affiliation(s)
- J L C M Dorne
- Clinical Pharmacology Group, University of Southampton, Biomedical Sciences Building, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | | | |
Collapse
|
13
|
Cerqueira PM, Mateus FH, Cesarino EJ, Bonato PS, Lanchote VL. Enantioselectivity of debrisoquine 4-hydroxylation in Brazilian Caucasian hypertensive patients phenotyped as extensive metabolizers. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 749:153-61. [PMID: 11145052 DOI: 10.1016/s0378-4347(00)00402-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Debrisoquine (D), an antihypertensive drug metabolized to 4-hydroxydebrisoquine (4-OHD) by CYP2D6, is commonly used as an in vivo probe of CYP2D6 activity and can be used to phenotype individuals as either extensive (EMs) or poor metabolizers (PMs) of such drugs as beta-adrenergic blockers, tricyclic antidepressants, and class 1C antiarrhythmics. This report describes reversed-phase HPLC systems by which D and 4-OHD or S-(+) and R-(-)-4-OHD in urine are more selectively quantified without the need for derivatization techniques. We also studied the urinary excretion of R-(-)- and S-(+)-4-hydroxydebrisoquine in EM hypertensive patients in order to determine weather 4-OHD formation exhibits enantioselectivity. Twelve patients with mild to severe essential hypertension were admitted to the study. They received a single tablet of Declinax containing 10 mg debrisoquine sulfate. All the urine excreted during the following 8 h was collected. The debrisoquine metabolic ratio (DMR) was calculated as % of dose excreted as D/% of dose excreted as 4-OHD and the debrisoquine recovery ratio (DRR) was calculated as % of dose excreted as 4-OHD/% of dose excreted as D+4-OHD. Debrisoquine and its metabolite were determined in urine by HPLC using a reversed-phase Select B LiChrospher column, a mobile phase of 0.25 N acetate buffer, pH 5-acetonitrile (9:1, v/v) and a fluorescence detector. The limit of quantitation was determined to be 25.0 ng/ml for D and 18.75 ng/ml for 4-OHD. Intra- and inter-day relative standard deviations (RSDs) were less than 10%. All hypertensive patients studied showed a DMR of less than 12.6 or a DRR higher than 0.12 and were classified as EMs. Direct enantioselective separation on chiral stationary phase involved resolution of S-(+)-4-OHD and R-(-)-4-OHD on a Chiralcel OD-R column with a mobile phase of 0.125 N sodium perchlorate, pH 5-acetonitrile-methanol (85:12:3, v/v/v). The quantitation limit of each enantiomer was 3.75 ng/ml of urine. Intra- and inter-day RSDs were less than 10% for each enantiomer. A high degree of enantioselectivity in the 4-hydroxylation of D favouring the S-(+) enantiomer was observed, resulting in R-(-)-4-OHD not detected in the urine of the EM hypertensive patients studied.
Collapse
Affiliation(s)
- P M Cerqueira
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Brazil
| | | | | | | | | |
Collapse
|
14
|
Abstract
This paper focuses on some specific situations where bioequivalence requires careful attention and tailored protocols in order to overcome intrinsic difficulties either marginally covered or fully neglected by operating guidelines. Some problems congregate with serious difficulties, namely high variability, very poorly absorbed drugs and endogenous substances with their own baseline. With endogenous substances, the dilemma faced is whether to subtract baseline from post-dose values in assessing bioequivalence. Either approach has intrinsic problems and is somewhat puzzling. In an attempt to resolve other existing problems, the most appropriate approach should be selected on a case-by-case basis, ensuring that the adopted procedure does not conflict with operating guidelines and scientific literature on the matter. Problematic cases include the management of trials with a predominant active metabolite, the absence of a reliable analytical bioassay, the availability of various strengths of the same drug on the market, a wide acceptability titre range, the management of studies on topical drugs that are devoid of systemic activity, the management of drugs that cannot be given for ethical reasons to healthy subjects or that may cause adverse events, especially when a steady state design is required. The parallel group study design appears to be more appropriate than the cross-over or the individual bioequivalence design in assessing drugs with a long half-life. Some pharmacokinetic and statistical analysis-related issues are also discussed such as the sequence/period interaction sometimes encountered in these trials, which, in the absence of the carry-over effect, does not bias the bioequivalence results and the need to process data with non-compartmental pharmacokinetic analysis.
Collapse
Affiliation(s)
- A Marzo
- I.P.A.S. S.A., Via Mastri, Ligornetto, 6853, Switzerland
| |
Collapse
|
15
|
Marzo A, Curti S. L-Carnitine moiety assay: an up-to-date reappraisal covering the commonest methods for various applications. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1997; 702:1-20. [PMID: 9449551 DOI: 10.1016/s0378-4347(97)00376-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
L-Carnitine and its esters are typical endogenous substances. Their homeostatic equilibria are effectively controlled by various mechanisms which include rate-limiting enteral absorption, a multicomponent endogenous pool which is regulated according to a mammillary metabolism, an asymmetric body distribution and a saturable tubular reabsorption process leading to renal thresholds. In formal pharmacokinetic and metabolic investigations, the whole L-carnitine pool should be investigated, owing to the rapid interchange process between the various components of the pool. Free L-carnitine, as well as its acyl esters, must therefore be considered from an analytical viewpoint. L-Carnitine, acetyl-L-carnitine and total L-carnitine (the latter as an expression of the whole pool) can easily be assayed by enzyme or radioenzyme methods. Propionyl-L-carnitine and other esters containing fatty acids with more than three carbon atoms can be assayed using various HPLC approaches. Tandem mass spectrometry is another excellent approach to the assay of carnitine and its short-chain, medium-chain and long-chain esters. As L-carnitine contains a chiral carbon atom, the enantioselectivity of the assays is also considered in this review. Metabolites produced by enteral bacteria, namely tri-, di- and mono-methylamine, gamma-butyrobetaine, along with other systemic metabolites, namely trimethylamine N-oxide and N-nitroso dimethylamine, are very important in quantitative and toxicokinetic terms and require specific assay methods. This review covers the commonest methods of assaying carnitine and its esters, their impurities and pre-systemic and systemic metabolites and gives analytical details and information on their applications in pharmaceutics, biochemistry, pharmacokinetics and toxicokinetics.
Collapse
Affiliation(s)
- A Marzo
- I.P.A.S. S.A., Clinical Pharmacology Department, Ligornetto, Switzerland
| | | |
Collapse
|