1
|
TODOROKI K, YOSHIZATO K, YOSHIDA H, YAMAGUCHI M, NOHTA H. Sensing of Acetylcholine-Related Compounds Using Cation-Selective Electrodes. BUNSEKI KAGAKU 2021. [DOI: 10.2116/bunsekikagaku.70.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | | | | | - Masatoshi YAMAGUCHI
- Department of Pharmaceutical Sciences, International University of Health and Welfare
| | - Hitoshi NOHTA
- Faculty of Pharmaceutical Sciences, Fukuoka University
| |
Collapse
|
2
|
A New Trend on Biosensor for Neurotransmitter Choline/Acetylcholine—an Overview. Appl Biochem Biotechnol 2013; 169:1927-39. [DOI: 10.1007/s12010-013-0099-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 01/10/2013] [Indexed: 11/27/2022]
|
3
|
Liu Y, Li Y, Liu J, Deng C, Zhang X. High throughput enzyme inhibitor screening by functionalized magnetic carbonaceous microspheres and graphene oxide-based MALDI-TOF-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:2188-2198. [PMID: 21952774 DOI: 10.1007/s13361-011-0231-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 05/31/2023]
Abstract
In this work, a high throughput methodology for screening enzyme inhibitors has been demonstrated by combining enzyme immobilized magnetic carbonaceous microspheres and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with grapheme oxide as matrix. First, model enzyme acetylcholinesterase (AChE) was immobilized onto the 3-glycidoxypropyltrimethoxysilane (GLYMO)-modified magnetic carbonaceous (MC) microspheres, displaying a high enzyme activity and stability, and also facilitating the separation of enzyme from substrate and product. The efficiency of immobilized AChE was monitored by biochemical assay, which was carried out by mixing enzyme-immobilized MC microspheres with model substrate acetylcholine (ACh), and subsequent quantitative determination of substrate ACh and product choline using graphene oxide-based MALDI-TOF-MS with no background inference. The limit of detection (LOD) for ACh was 0.25 fmol/μL, and excellent linearity (R(2)=0.9998) was maintained over the range of 0.5 and 250 fmol/μL. Choline was quantified over the range of 0.05 and 15 pmol/μL, also with excellent linearity (R(2)=0.9994) and low LOD (0.15 fmol/μL). Good accuracy and precision were obtained for all concentrations within the range of the standard curves. All together, eight compounds (four known AChE inhibitors and four control chemical compounds with no AChE inhibit effect) were tested with our promoted methodology, and the obtained results demonstrated that our high throughput screening methodology could be a great help to the routine enzyme inhibitor screening.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
4
|
Li J, von Pföstl V, Zaldivar D, Zhang X, Logothetis N, Rauch A. Measuring multiple neurochemicals and related metabolites in blood and brain of the rhesus monkey by using dual microdialysis sampling and capillary hydrophilic interaction chromatography-mass spectrometry. Anal Bioanal Chem 2011; 402:2545-54. [PMID: 21956265 DOI: 10.1007/s00216-011-5427-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/25/2011] [Accepted: 09/17/2011] [Indexed: 01/15/2023]
Abstract
In vivo measurement of multiple functionally related neurochemicals and metabolites (NMs) is highly interesting but remains challenging in the field of basic neuroscience and clinical research. We present here an analytical method for determining five functionally and metabolically related polar substances, including acetylcholine (quaternary ammonium), lactate and pyruvate (organic acids), as well as glutamine and glutamate (amino acids). These NMs are acquired from samples of the brain and the blood of non-human primates in parallel by dual microdialysis, and subsequently analyzed by a direct capillary hydrophilic interaction chromatography (HILIC)-mass spectrometry (MS) based method. To obtain high sensitivity in electrospray ionization (ESI)-MS, lactate and pyruvate were detected in negative ionization mode whereas the other NMs were detected in positive ionization mode during each HILIC-MS run. The method was validated for linearity, the limits of detection and quantification, precision, accuracy, stability and matrix effect. The detection limit of acetylcholine, lactate, pyruvate, glutamine, and glutamate was 150 pM, 3 μM, 2 μM, 5 nM, and 50 nM, respectively. This allowed us to quantitatively and simultaneously measure the concentrations of all the substances from the acquired dialysates. The concentration ratios of both lactate/pyruvate and glutamine/glutamate were found to be higher in the brain compared to blood (p < 0.05). The reliable and simultaneous quantification of these five NMs from brain and blood samples allows us to investigate their relative distribution in the brain and blood, and most importantly paves the way for future non-invasive studies of the functional and metabolic relation of these substances to each other.
Collapse
Affiliation(s)
- Juan Li
- Max Planck Institute for Biological Cybernetics, Spemannstrasse 38, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Persike M, Zimmermann M, Klein J, Karas M. Quantitative Determination of Acetylcholine and Choline in Microdialysis Samples by MALDI-TOF MS. Anal Chem 2010; 82:922-9. [DOI: 10.1021/ac902130h] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Markus Persike
- Cluster of Excellence “Macromolecular Complexes”, Institute of Pharmaceutical Chemistry, and Institute of Pharmacology, Goethe University, Frankfurt, Germany
| | - Martina Zimmermann
- Cluster of Excellence “Macromolecular Complexes”, Institute of Pharmaceutical Chemistry, and Institute of Pharmacology, Goethe University, Frankfurt, Germany
| | - Jochen Klein
- Cluster of Excellence “Macromolecular Complexes”, Institute of Pharmaceutical Chemistry, and Institute of Pharmacology, Goethe University, Frankfurt, Germany
| | - Michael Karas
- Cluster of Excellence “Macromolecular Complexes”, Institute of Pharmaceutical Chemistry, and Institute of Pharmacology, Goethe University, Frankfurt, Germany
| |
Collapse
|
6
|
Electrochemical detection of acetylcholine and choline: application to the quantitative nonradiochemical evaluation of choline transport. Anal Bioanal Chem 2008; 392:651-62. [DOI: 10.1007/s00216-008-2307-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 07/17/2008] [Indexed: 01/31/2023]
|
7
|
Critical Evaluation of Acetylcholine Determination in Rat Brain Microdialysates using Ion-Pair Liquid Chromatography with Amperometric Detection. SENSORS 2008; 8:5171-5185. [PMID: 27873808 PMCID: PMC3705495 DOI: 10.3390/s8085171] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/24/2008] [Accepted: 08/25/2008] [Indexed: 01/16/2023]
Abstract
Liquid chromatography with amperometric detection remains the most widely used method for acetylcholine quantification in microdialysis samples. Separation of acetylcholine from choline and other matrix components on a microbore chromatographic column (1 mm internal diameter), conversion of acetylcholine in an immobilized enzyme reactor and detection of the produced hydrogen peroxide on a horseradish peroxidase redox polymer coated glassy carbon electrode, achieves sufficient sensitivity for acetylcholine quantification in rat brain microdialysates. However, a thourough validation within the concentration range required for this application has not been carried out before. Furthermore, a rapid degradation of the chromatographic columns and enzyme systems have been reported. In the present study an ion-pair liquid chromatography assay with amperometric detection was validated and its long-term stability evaluated. Working at pH 6.5 dramatically increased chromatographic stability without a loss in sensitivity compared to higher pH values. The lower limit of quantification of the method was 0.3 nM. At this concentration the repeatability was 15.7%, the inter-day precision 8.7% and the accuracy 103.6%. The chromatographic column was stable over 4 months, the immobilized enzyme reactor up to 2-3 months and the enzyme coating of the amperometric detector up to 1-2 months. The concentration of acetylcholine in 30 μl microdialysates obtained under basal conditions from the hippocampus of freely moving rats was 0.40 ± 0.12 nM (mean ± SD, n = 30). The present method is therefore suitable for acetylcholine determination in rat brain microdialysates.
Collapse
|
8
|
Wang Y, Wang T, Shi X, Wan D, Zhang P, He X, Gao P, Yang S, Gu J, Xu G. Analysis of acetylcholine, choline and butyrobetaine in human liver tissues by hydrophilic interaction liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2008; 47:870-5. [DOI: 10.1016/j.jpba.2008.02.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 02/20/2008] [Accepted: 02/22/2008] [Indexed: 11/30/2022]
|
9
|
Huang YT, Cheng CJ, Lai TF, Tsai TR, Tsai TH, Chuo WH, Cham TM. An investigation of acetylcholine released in skeletal muscle and protein unbound drug released in blood based on the pyridostigmine bromide (pretreatment drug) sustained-release pellets by microdialysis technique in the rabbit model. Neurosci Lett 2007; 416:302-6. [PMID: 17336457 DOI: 10.1016/j.neulet.2007.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 01/22/2007] [Accepted: 02/07/2007] [Indexed: 11/23/2022]
Abstract
Pyridostigmine bromide (PB) is a reversible acetylcholinesterase inhibitor that has been used as a pretreatment drug for "Soman" nerve gas poisoning in combat to increase survival. The once-daily PB-sustained-release (SR) pellets were developed by extrusion-spheronization and fluid-bed methods in our laboratory, which was followed by zero-order release mechanism. The results showed that the released concentration of acetylcholine (ACh) in skeletal muscle and the released concentration of protein unbound drug in blood were determined by microdialysis technique to have significant differences (P<0.05) among the three dosage forms (IV injection, commercial IR tablets and the PB-SR pellet). The released concentrations of ACh and protein unbound drug for PB-SR pellets were slower than IV injection and commercial IR tablets; this phenomenon indicating that the retention period of drug efficacy in vivo for PB-SR pellet was longer than the others, that is to say, the PB-SR pellets provided with SR effect in vivo as well. We believe that once-daily administered PB-SR pellets would improve limitations of post-exposure antidotes, decrease the frequency of administration and enhance the retention period of drug efficacy in vivo for personnel exposed to contamination situations in wars or terrorist attacks in the future.
Collapse
Affiliation(s)
- Yuh-Tyng Huang
- Graduate Institute of Pharmaceutical Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhang MY, Hughes ZA, Kerns EH, Lin Q, Beyer CE. Development of a liquid chromatography/tandem mass spectrometry method for the quantitation of acetylcholine and related neurotransmitters in brain microdialysis samples. J Pharm Biomed Anal 2007; 44:586-93. [PMID: 17383138 DOI: 10.1016/j.jpba.2007.02.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 02/14/2007] [Accepted: 02/15/2007] [Indexed: 11/17/2022]
Abstract
Monitoring concentrations of acetylcholine (ACh) in specific brain regions is important in understanding disease pathology, as well as in designing and evaluating novel disease-modifying treatments where cholinergic dysfunction is a hallmark feature. We have developed a sensitive and quantitative liquid chromatography/tandem mass spectrometry method to analyze the extracellular concentrations of ACh, choline (Ch) and (3-carboxylpropyl)-trimethylammonium (iso-ACh) in brain microdialysis samples of freely moving animals. One immediate advantage of this new method is the ability to monitor ACh in its free form without having to use a cholinesterase inhibitor in the perfusate. The separation of ACh, Ch, iso-ACh and related endogenous compounds was carried out based on cation exchange chromatography with a volatile elution buffer consisting of ammonium formate, ammonium acetate and acetonitrile. An unknown interference of ACh, which was observed in brain microdialysates from many studies, was well separated from ACh to ensure the accuracy of the measurement. Optimization of electrospray ionization conditions for these quaternary ammonium compounds achieved the limits of detection (S/N=3) of 0.2 fmol for ACh, 2 fmol for Ch and 0.6 fmol for iso-ACh using a benchtop tandem quadrupole mass spectrometer with moderate sensitivity. The limit of quantitation (S/N=10) was 1 fmol for ACh, 3 fmol for iso-ACh and 10 fmol for Ch. This method was selective, precise (<10% R.S.D.), and sensitive over a range of 0.05-10nM for ACh, 0.25-50 nM for iso-ACh and 15-3000 nM for Ch. To demonstrate that the developed method can be applied to monitoring changes in ACh concentrations in vivo, reference agents that have previously been shown to influence ACh levels were studied in rat dorsal hippocampus. This includes the 5-HT6 receptor antagonist, SB-271046, and the cholinesterase inhibitor, donepezil. Moreover, levels of ACh were demonstrated to be sensitive to infusion of tetrodotoxin (TTX) suggesting that the ACh being measured in vivo was of neuronal origin. Collectively, these biological data provided in vivo validation of this analytical method.
Collapse
Affiliation(s)
- Mei-Yi Zhang
- Chemical and Screening Sciences, Princeton, Wyeth Research, NJ 08543, USA.
| | | | | | | | | |
Collapse
|
11
|
Tsai TH, Matthews K, Dalley JW. Determination of Glutamate in Rat Brain Microdialysates by Microbore Liquid Chromatography with Electrochemical Detection. J LIQ CHROMATOGR R T 2006. [DOI: 10.1080/10826079708006579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- T. H. Tsai
- a National Research Institute of Chinese Medicine and Institute of Traditional Medicine National Yang-Ming University , Taipei, 112, Taiwan
| | - K. Matthews
- b Department of Experimental Psychology , University of Cambridge , U.K. , CB2 3EB
| | - J. W. Dalley
- b Department of Experimental Psychology , University of Cambridge , U.K. , CB2 3EB
| |
Collapse
|
12
|
Zhang MY, Beyer CE. Measurement of neurotransmitters from extracellular fluid in brain by in vivo microdialysis and chromatography–mass spectrometry. J Pharm Biomed Anal 2006; 40:492-9. [PMID: 16125893 DOI: 10.1016/j.jpba.2005.07.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 07/06/2005] [Accepted: 07/13/2005] [Indexed: 11/22/2022]
Abstract
During the last three decades, a great deal of information has been discovered about chemical neurotransmission. However, the most important processes, namely the complex nature of neuronal circuitry, the "cross talk" between multiple neurotransmitter systems, and the varying effects neurochemicals have at different receptors, are still being explored. Techniques such as microdialysis are routinely employed to measure neurotransmitter levels in living tissue systems. Moreover, microdialysis studies have proven to be valuable in the investigation of neurodegenerative and psychiatric disease pathology, as well as in identifying novel drugs to treat such disorders. One particular challenge in performing these experiments is the requirement to couple microdialysis to sophisticated analytical equipment. Recently, considerable attention has been focused on the development of chromatographic-mass spectrometric techniques to provide more sensitive and accurate measurements of neurochemicals collected from in vivo microdialysis experiments. This review will provide a brief overview of the microdialysis technique, as well as how microdialysis and chromatography-mass spectrometry are being used to measure extracellular levels of neurotransmitters. The primary emphasis of this review will be on how these applications are used to measure levels of acetylcholine (ACh), dopamine, norepinephrine and gamma-aminobutyric acid (GABA).
Collapse
Affiliation(s)
- Mei-Yi Zhang
- Chemical and Screening Sciences, Wyeth Research, Princeton, NJ 08543, USA.
| | | |
Collapse
|
13
|
Chapter 3.1 Liquid chromatographic methods used for microdialysis: an overview. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1569-7339(06)16013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
Girelli AM, Mattei E. Application of immobilized enzyme reactor in on-line high performance liquid chromatography: A review. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 819:3-16. [PMID: 15797515 DOI: 10.1016/j.jchromb.2005.01.031] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Accepted: 01/31/2005] [Indexed: 11/17/2022]
Abstract
This review summarizes all the research efforts in the last decade (1994-2003) that have been spent to the various application of immobilized enzyme reactor (IMER) in on-line high performance liquid chromatography (HPLC). All immobilization procedures including supports, kind of assembly into chromatographic system and methods are described. The effect of immobilization on enzymatic properties and stability of biocatalysts is considered. A brief survey of the main applications of IMER both as pre-column, post-column or column in the chemical, pharmaceutical, clinical and commodities fields is also reported.
Collapse
Affiliation(s)
- Anna Maria Girelli
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Roma, Italy.
| | | |
Collapse
|
15
|
|
16
|
Al-Badr AA, El-Obeid HA. Acetylcholine chloride: analytical profile. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2005; 31:21-115. [PMID: 22469038 DOI: 10.1016/s0099-5428(04)31002-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Abdullah A Al-Badr
- Department of Pharmaceutical Chemistry College of Pharmacy, King Saud University P.O. Box 2457, Riyadh-11451 Kingdom of Saudi Arabia
| | | |
Collapse
|
17
|
Yamamoto K, Sato K, Chikuma T, Kato T. A highly sensitive and stable detection of acetylcholine by HPLC-osmium-horseradish peroxidase redox polymer electrode coated on a gold radial flow ring disk. Anal Chim Acta 2004. [DOI: 10.1016/j.aca.2004.06.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Dong Y, Wang L, Shangguan D, Zhao R, Liu G. Improved method for the routine determination of acetylcholine and choline in brain microdialysate using a horseradish peroxidase column as the immobilized enzyme reactor. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 788:193-8. [PMID: 12668085 DOI: 10.1016/s1570-0232(02)01008-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A modified microbore high-performance liquid chromatography-immobilized enzyme reactor-electrochemical detection system for acetylcholine (ACh) and choline (Ch) was developed. The system used the horseradish peroxidase and a solution mediator ferrocene to convert the analyte into an oxidized ferrocene species which was detected electrochemically by reduction at 0 mV. There was an excellent linear relationship between the concentration of ACh/Ch and the peak height over the range of 1-5000 nmol/l. The limit of detection for ACh was 2 fmol/5 microl (S/N=3:1). Compared with the common method recommended by Bioanalytical System Inc. (BAS), this method exhibits a 200-fold improvement in the detection limit. The ACh and Ch levels in rat brain microdialysate were examined.
Collapse
Affiliation(s)
- Yu Dong
- Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100080, China
| | | | | | | | | |
Collapse
|
19
|
Kiba N, Ito S, Tachibana M, Tani K, Koizumi H. Simultaneous Determination of Choline and Acetylcholine Based on a Trienzyme Chemiluminometric Biosensor in a Single Line Flow Injection System. ANAL SCI 2003; 19:1647-51. [PMID: 14696930 DOI: 10.2116/analsci.19.1647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A detector for the simultaneous determination of choline (Ch) and acetylcholine (ACh) based on a sensitive trienzyme chemiluminometric biosensor in a single line flow injection (FI) system is described. Immobilized choline oxidase (ChOx), immobilized peroxidase (POx), immobilized acetylcholinesterase, and coimmobilized ChOx/POx were packed, in turn, in a transparent ETFE tube (1 mm i.d., 75 cm) and the tube was placed in front of a photomultipier tube as a flow cell. Two-peak response was obtained by one injection of the sample solution. The first and second peaks were dependent on the concentrations of Ch and ACh, respectively. The influence of some experimental parameters such as flow rate, amounts of immobilized enzymes on the behavior of the sensor was studied in order to optimize the sensitivity, sample throughput and resolution. Calibration curves were linear at 1 - 1000 nM for Ch and 3 - 3000 nM for ACh. The sample throughput was 25/h without carryover. The FI system was applied to the simultaneous determination of Ch and ACh in rabbit brain tissue homogenates.
Collapse
Affiliation(s)
- Nobutoshi Kiba
- Department of Applied Chemistry and Biotechnology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu 400-8511, Japan.
| | | | | | | | | |
Collapse
|
20
|
Day JC, Kornecook TJ, Quirion R. Application of in vivo microdialysis to the study of cholinergic systems. Methods 2001; 23:21-39. [PMID: 11162147 DOI: 10.1006/meth.2000.1103] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The application of in vivo microdialysis to the study of acetylcholine (ACh) release has contributed greatly to our understanding of cholinergic brain systems. This article reviews standard experimental procedures for dialysis probe selection and implantation, perfusion parameters, neurochemical detection, and data analysis as they relate to microdialysis assessments of cholinergic function. Particular attention is focused on the unique methodological considerations that arise when in vivo microdialysis is dedicated expressly to the recovery and measurement of ACh as opposed to other neurotransmitters. Limitations of the microdialysis technique are discussed, as well as methodological adaptations that may prove useful in overcoming these limitations. This is followed by an overview of recent studies in which the application of in vivo microdialysis has been used to characterize the basic pharmacology and physiology of cholinergic neurons. Finally, the usefulness of the microdialysis approach for testing hypotheses regarding the cholinergic systems' involvement in cognitive processes is examined. It can be concluded that, in addition to being a versatile and practical method for studying the neurochemistry of cholinergic brain systems, in vivo microdialysis represents a valuable tool in our efforts to better comprehend ACh's underlying role in a variety of behavioral processes.
Collapse
Affiliation(s)
- J C Day
- Douglas Hospital Research Centre & Department of Psychiatry, McGill University, Verdun, Quebec, H4H 1R3, Canada
| | | | | |
Collapse
|
21
|
Yamato S, Kawakami N, Shimada K, Ono M, Idei N, Itoh Y. On-line automated high-performance liquid chromatographic determination of total riboflavin phosphates using immobilized acid phosphatase as a pre-column reactor. J Chromatogr A 2000; 896:171-81. [PMID: 11093652 DOI: 10.1016/s0021-9673(00)00474-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An automated chromatographic detection system for the determination of total riboflavin phosphates using immobilized sweet potato acid phosphatase as a pre-column reactor is reported on. An immobilized enzyme reactor, incorporated in the on-line analytical system, hydrolysed riboflavin phosphates to riboflavin, and then lipophilic riboflavin was concentrated at the top of an ODS trap column. Enzymatically hydrolysed riboflavin was back-eluted from the trap column using a mobile phase containing methanol, and then subsequently chromatographed on an ODS analytical column. The effluents were monitored by UV absorption at 280 nm. The calibration graph for total riboflavin phosphates, determined by this method, was linear over the range 0.5-500 nmol/ml, with a correlation coefficient of 0.9999. The detection limit at a signal-to-noise ratio of 3 was 25 pmol/ml. The average conversion rate of riboflavin phosphates to riboflavin was estimated at 97%. The relative standard deviations of the intra- and inter-assay precision were 1.2 and 2.6%, respectively.
Collapse
Affiliation(s)
- S Yamato
- Department of Analytical Chemistry, Niigata College of Pharmacy, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Tsai TH. Separation methods used in the determination of choline and acetylcholine. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 747:111-22. [PMID: 11103902 DOI: 10.1016/s0378-4347(00)00268-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cholinergic neurotransmission has been the subject of intensive investigations in recent years due to increasing recognition of the importance of its roles in physiology, pathology and pharmacology. The fact that the disposition of a neurotransmitter may reflect its functional status has made the measurement of acetylcholine and/or its precursors and metabolites in biological fluids an integral part of cholinergic research. With evolving complexity in experimental approaches and designs, and correspondingly increasing demand on sensitivity, specificity and accuracy matching advancements in sophistication in analytical methods have been made. The present review attempts to survey the array of analytical techniques that have been adopted for the measurement of acetylcholine or its main precursor/metabolite choline ranging from simple bioassays, radioenzymatic assays, gas chromatography (GC) with flame ionization detection, GC with mass spectrometry (GC-MS) detection, high-performance liquid chromatography (HPLC) with electrochemical detection (ED), HPLC with MS (HPLC-MS) to the sophisticated combination of micro-immobilized enzymatic reactor, microbore HPLC and modified electrode technology for the detection of ultra-low levels with particular emphasis on the state of the art techniques.
Collapse
Affiliation(s)
- T H Tsai
- Department of Pharmacology, National Research Institute of Chinese Medicine, Taipei, Taiwan.
| |
Collapse
|
23
|
Cheng FC, Yang LL, Yan DY, Tsai TH, Lee CW, Chen SH. Monitoring of extracellular pyruvate, lactate, and ascorbic acid during cerebral ischemia: a microdialysis study in awake gerbils. J Chromatogr A 2000; 870:389-94. [PMID: 10722094 DOI: 10.1016/s0021-9673(99)00905-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vivo microdialysis coupled with liquid chromatography was developed for the continuous monitoring of brain neurochemicals during cerebral ischemia in awake, free moving gerbils. The dead volume of the microdialysis system was estimated to be less than 30 microl. The detection limits of the present assay were 0.2 to 2.0 microM for analytes at a signal to noise ratio of five. To validate this assay, a focal cerebral ischemia was produced by occlusion of one common carotid artery for 60 min and then reperfusion for additional 3 h in awake gerbils. A microdialysis probe was inserted into the striatum of the gerbil. Dialysates were autoinjected and analyzed extracellular pyruvate, lactate, and ascorbic acid by liquid chromatography with a UV detector during cerebral ischemia. Significant changes of pyruvate and the lactate/pyruvate ratio were observed. Biphasic and dynamic changes in ascorbic acid and lactate were proposed to correlate a secondary damage. This assay can be used as a tool to study dynamic changes of brain neurochemicals in awake animals.
Collapse
Affiliation(s)
- F C Cheng
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
24
|
Cheng FC, Yang DY, Wu TF, Chen SH. Rapid on-line microdialysis hyphenated technique for the dynamic monitoring of extracellular pyruvate, lactic acid and ascorbic acid during cerebral ischemia. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1999; 723:31-8. [PMID: 10080630 DOI: 10.1016/s0378-4347(98)00532-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rapid on-line microdialysis coupled with liquid chromatography was developed for the continuous monitoring of brain neurochemicals during cerebral ischemia. Isocratic separation of these analytes was achieved within 3 min, hence, over 80 analyses could be performed in a 4-h experiment. The dead volume of the microdialysis system was estimated to be less than 10 microl. The detection limits of the present assay, at a signal-to-noise ratio of five, were 2.0, 0.2 and 0.5 microM, for lactic acid, pyruvate and ascorbic acid, respectively. To validate this assay, a transient ischemia was produced by occlusion of two common carotid arteries for 10 min in an anesthetized gerbil. A microdialysis probe was inserted into the striatum of the gerbil to simultaneously monitor pyruvate, lactic acid and ascorbic acid during cerebral ischemia. Significant and dynamic changes in these analytes could be resolved in 3-min intervals. This rapid assay can be used as a tool to study dynamic changes in neurochemicals of the brain, such as during cerebral ischemia.
Collapse
Affiliation(s)
- F C Cheng
- Department of Medical Research, Taichung Veterans General Hospital, Taiwan, Republic of China
| | | | | | | |
Collapse
|
25
|
Sánchez-Roa PM, Wagner HN, Villemagne VL, London ED, Lever JR. Effects of extracellular acetylcholine on muscarinic receptor binding assessed by [125I]dexetimide and a simple probe. Eur J Pharmacol 1998; 358:207-11. [PMID: 9822886 DOI: 10.1016/s0014-2999(98)00633-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New pharmacologic approaches to enhance brain cholinergic function focus on increasing intrasynaptic acetylcholine. We examined the usefulness of a simple probe and [125I]dexetimide to evaluate in vivo the effects of extracellular acetylcholine on muscarinic receptor binding in the mouse brain. After radiotracer injection continuous time/activity curves were generated over 330 min. [125I]Dexetimide reached a plateau at 90 min post-injection. To increase extracellular acetylcholine, the anticholinesterase physostigmine was administered at 120 min, producing a reversible decrease in [125I]dexetimide specific binding (23%) for 30 min. These findings demonstrate that dynamic changes in extracellular acetylcholine can be evaluated by displacement of [125I]dexetimide binding in vivo using a simple probe system.
Collapse
Affiliation(s)
- P M Sánchez-Roa
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD 21205-2179, USA
| | | | | | | | | |
Collapse
|
26
|
Huang CT, Chen KC, Chen CF, Tsai TH. Simultaneous measurement of blood and brain microdialysates of granisetron in rat by high-performance liquid chromatography with fluorescence detection. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1998; 716:251-5. [PMID: 9824238 DOI: 10.1016/s0378-4347(98)00274-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Simultaneous microdialysis probes in the blood and brain and sensitive high-performance liquid chromatography with fluorescence detection were used to examine the granisetron concentration in the jugular vein and frontal cortex of rats after drug administration. Two microdialysis probes were inserted into the right jugular vein and frontal cortex of male Sprague-Dawley rats to which granisetron (6 mg/kg, i.v.) had been administered. Dialysates were automatically collected using a microfraction collector. Samples were eluted with a mobile phase containing 25 mM acetate buffer (pH 4.8)-acetonitrile (72:28, v/v). Excitation and emission wavelengths were set at 305 and 360 nm, respectively, on a scanning fluorescence detector. The limit of quantification for granisetron was 0.5 ng/ml. The in vitro recovery of granisetron was 29.7+/-1.2% (n=6) for the jugular vein microdialysis probe and 6.1+/-0.5% (n=6) for the frontal cortex microdialysis probe. The increasing brain/blood concentration ratio of granisetron suggests that granisetron penetrates the blood-brain barrier.
Collapse
Affiliation(s)
- C T Huang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | |
Collapse
|
27
|
Fishman HA, Greenwald DR, Zare RN. Biosensors in chemical separations. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1998; 27:165-98. [PMID: 9646866 DOI: 10.1146/annurev.biophys.27.1.165] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identification of biomolecules in complex biological mixtures represents a major challenge in biomedical, environmental, and chemical research today. Chemical separations with traditional detection schemes such as absorption, fluorescence, refractive index, conductivity, and electrochemistry have been the standards for definitive identifications of many compounds. In many instances, however, the complexity of the biomixture exceeds the resolution capability of chemical separations. Biosensors based on molecular recognition can dramatically improve the selectivity of and provide biologically relevant information about the components. This review describes how coupling chemical separations with online biosensors solves challenging problems in sample analysis by identifying components that would not normally be detectable by either technique alone. This review also presents examples and principles of combining chemical separations with biosensor detection that uses living systems, whole cells, membrane receptors, enzymes, and immunosensors.
Collapse
Affiliation(s)
- H A Fishman
- Department of Chemistry, Stanford University, California 94305, USA.
| | | | | |
Collapse
|