1
|
Abd-Ellah HS, Mudududdla R, Carter GP, Baell JB. Novel Perspectives on the Design and Development of a Long-Acting Subcutaneous Raltegravir Injection for Treatment of HIV-In Vitro and In Vivo Evaluation. Pharmaceutics 2023; 15:pharmaceutics15051530. [PMID: 37242770 DOI: 10.3390/pharmaceutics15051530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Antiretrovirals (ARVs) are a highly effective therapy for treatment and prevention of HIV infection, when administered as prescribed. However, adherence to lifelong ARV regimens poses a considerable challenge and places HIV patients at risk. Long-acting ARV injections may improve patient adherence as well as maintaining long-term continuous drug exposure, resulting in improved pharmacodynamics. In the present work, we explored the aminoalkoxycarbonyloxymethyl (amino-AOCOM) ether prodrug concept as a potential approach to long-acting ARV injections. As a proof of concept, we synthesised model compounds containing the 4-carboxy-2-methyl Tokyo Green (CTG) fluorophore and assessed their stability under pH and temperature conditions that mimic those found in the subcutaneous (SC) tissue. Among them, probe 21 displayed very slow fluorophore release under SC-like conditions (98% of the fluorophore released over 15 d). Compound 25, a prodrug of the ARV agent raltegravir (RAL), was subsequently prepared and evaluated using the same conditions. This compound showed an excellent in vitro release profile, with a half-life (t½) of 19.3 d and 82% of RAL released over 45 d. In mice, 25 extended the half-life of unmodified RAL by 4.2-fold (t½ = 3.18 h), providing initial proof of concept of the ability of amino-AOCOM prodrugs to extend drug lifetimes in vivo. Although this effect was not as pronounced as seen in vitro-presumably due to enzymatic degradation and rapid clearance of the prodrug in vivo-the present results nevertheless pave the way for development of more metabolically stable prodrugs, to facilitate long-acting delivery of ARVs.
Collapse
Affiliation(s)
- Heba S Abd-Ellah
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Ramesh Mudududdla
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Glen P Carter
- Microbiology and Immunology Department, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3001, Australia
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
2
|
Design, Development, and Optimisation of Smart Linker Chemistry for Targeted Colonic Delivery-In Vitro Evaluation. Pharmaceutics 2023; 15:pharmaceutics15010303. [PMID: 36678931 PMCID: PMC9860859 DOI: 10.3390/pharmaceutics15010303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Drug targeting is necessary to deliver drugs to a specific site of action at a rate dictated by therapeutic requirements. The pharmacological action of a drug can thereby be optimised while minimising adverse effects. Numerous colonic drug delivery systems have been developed to avoid such undesirable side effects; however, these systems lack site specificity, leaving room for further improvement. The objective of the present study was to explore the potential of amino-alkoxycarbonyloxymethyl (amino-AOCOM) ether prodrugs as a general approach for future colonic delivery. To circumvent inter- and intra-subject variabilities in enzyme activities, these prodrugs do not rely on enzymes but rather are activated via a pH-triggered intramolecular cyclisation−elimination reaction. As proof of concept, model compounds were synthesised and evaluated under various pH conditions, simulating various regions of the gastrointestinal tract (GIT). Probe 15 demonstrated excellent stability under simulated stomach- and duodenum-like conditions and protected 60% of the payload in a small intestine-like environment. Moreover, 15 displayed sustained release at colonic pH, delivering >90% of the payload over 38 h. Mesalamine (Msl) prodrugs 21 and 22 were also synthesised and showed better stability than probe 15 in the simulated upper GIT but relatively slower release at colonic pH (61−68% of Msl over 48 h). For both prodrugs, the extent of release was comparable to that of the commercial product Asacol. This study provides initial proof of concept regarding the use of a cyclisation-activated prodrug for colon delivery and suggests that release characteristics still vary on a case-by-case basis.
Collapse
|
3
|
Adarsh Krishna TP, Edachery B, Athalathil S. Bakuchiol - a natural meroterpenoid: structure, isolation, synthesis and functionalization approaches. RSC Adv 2022; 12:8815-8832. [PMID: 35424800 PMCID: PMC8985110 DOI: 10.1039/d1ra08771a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/06/2022] [Indexed: 12/12/2022] Open
Abstract
Bakuchiol is an emblematic meroterpene class of natural product extracted from Psoralea corylifolia. It has been reported to possess a broad range of biological and pharmacological properties and is considered as a leading biomolecule. It is highly desirable to devise an efficient approach to access bakuchiol and its chemical biology applications. In this review we provided structural features, isolation methods, various chemical routes and late-stage functionalization (LSF) approaches for bakuchiol and its derivatives. Moreover, this review encompasses the structure-activity relationships (SAR), value-added contributions and future perspectives of bakuchiol.
Collapse
Affiliation(s)
- T P Adarsh Krishna
- R & D Division, Sreedhareeyam Farmherbs India Pvt. Ltd Ernakulam (Dist.) Kerala India-686 662
| | - Baldev Edachery
- R & D Division, Sreedhareeyam Farmherbs India Pvt. Ltd Ernakulam (Dist.) Kerala India-686 662
| | - Sunil Athalathil
- R & D Division, Sreedhareeyam Farmherbs India Pvt. Ltd Ernakulam (Dist.) Kerala India-686 662
| |
Collapse
|
4
|
Li H, Liu J, Liu CF, Li H, Luo J, Fang S, Chen Y, Zhong R, Liu S, Lin S. Design, Synthesis, and Biological Evaluation of Membrane-Active Bakuchiol Derivatives as Effective Broad-Spectrum Antibacterial Agents. J Med Chem 2021; 64:5603-5619. [PMID: 33909443 DOI: 10.1021/acs.jmedchem.0c02059] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Infections caused by drug-resistant bacteria seriously endanger human health and global public health. Therefore, it is urgent to discover and develop novel antimicrobial agents to combat multidrug-resistant bacteria. In this study, we designed and synthesized a series of new membrane-active bakuchiol derivatives by biomimicking the structure and function of cationic antibacterial peptides. The most promising compound 28 displayed potent antibacterial activity against both Gram-positive bacteria (minimum inhibitory concentration, MIC = 1.56-3.125 μg/mL) and Gram-negative bacteria (MIC = 3.125 μg/mL), very weak hemolytic activity, and low cytotoxicity. Compound 28 had rapid bactericidal properties and avoided bacterial resistance. More importantly, compound 28 showed strong in vivo antibacterial efficacy against Staphylococcus aureus and Pseudomonas aeruginosa in murine corneal infection models. This design strategy is expected to provide an effective solution to the antibiotic crisis.
Collapse
Affiliation(s)
- Hongxia Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Jiayong Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Haizhou Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Jiachun Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Shanfang Fang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Yongzhi Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Rongcui Zhong
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Shouping Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Shuimu Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| |
Collapse
|
5
|
Vacondio F, Silva C, Mor M, Testa B. Qualitative structure-metabolism relationships in the hydrolysis of carbamates. Drug Metab Rev 2011; 42:551-89. [PMID: 20441444 DOI: 10.3109/03602531003745960] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aims of this review were 1) to compile a large number of reliable literature data on the metabolic hydrolysis of medicinal carbamates and 2) to extract from such data a qualitative relation between molecular structure and lability to metabolic hydrolysis. The compounds were classified according to the nature of their substituents (R³OCONR¹R²), and a metabolic lability score was calculated for each class. A trend emerged, such that the metabolic lability of carbamates decreased (i.e., their metabolic stability increased), in the following series: Aryl-OCO-NHAlkyl >> Alkyl-OCO-NHAlkyl ~ Alkyl-OCO-N(Alkyl)₂ ≥ Alkyl-OCO-N(endocyclic) ≥ Aryl-OCO-N(Alkyl)₂ ~ Aryl-OCO-N(endocyclic) ≥ Alkyl-OCO-NHAryl ~ Alkyl-OCO-NHAcyl >> Alkyl-OCO-NH₂ > Cyclic carbamates. This trend should prove useful in the design of carbamates as drugs or prodrugs.
Collapse
Affiliation(s)
- Federica Vacondio
- Dipartimento Farmaceutico, Università degli Studi di Parma, Parma, Italy.
| | | | | | | |
Collapse
|
6
|
Gomes P, Vale N, Moreira R. Cyclization-activated prodrugs. Molecules 2007; 12:2484-506. [PMID: 18065953 PMCID: PMC6149143 DOI: 10.3390/12112484] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 11/08/2007] [Accepted: 11/09/2007] [Indexed: 11/16/2022] Open
Abstract
Many drugs suffer from an extensive first-pass metabolism leading to drug inactivation and/or production of toxic metabolites, which makes them attractive targets for prodrug design. The classical prodrug approach, which involves enzyme-sensitive covalent linkage between the parent drug and a carrier moiety, is a well established strategy to overcome bioavailability/toxicity issues. However, the development of prodrugs that can regenerate the parent drug through non-enzymatic pathways has emerged as an alternative approach in which prodrug activation is not influenced by inter- and intraindividual variability that affects enzymatic activity. Cyclization-activated prodrugs have been capturing the attention of medicinal chemists since the middle-1980s, and reached maturity in prodrug design in the late 1990 s. Many different strategies have been exploited in recent years concerning the development of intramoleculary-activated prodrugs spanning from analgesics to anti-HIV therapeutic agents. Intramolecular pathways have also a key role in two-step prodrug activation, where an initial enzymatic cleavage step is followed by a cyclization-elimination reaction that releases the active drug. This work is a brief overview of research on cyclization-activated prodrugs from the last two decades.
Collapse
Affiliation(s)
- Paula Gomes
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
| | | | | |
Collapse
|
7
|
Østergaard J, Larsen C. Bioreversible derivatives of phenol. 2. Reactivity of carbonate esters with fatty acid-like structures towards hydrolysis in aqueous solutions. Molecules 2007; 12:2396-412. [PMID: 17978765 DOI: 10.3390/12102396] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 10/29/2007] [Accepted: 10/29/2007] [Indexed: 01/26/2023] Open
Abstract
A series of model phenol carbonate ester prodrugs encompassing derivatives with fatty acid-like structures were synthesized and their stability as a function of pH (range 0.4 - 12.5) at 37 degrees C in aqueous buffer solutions investigated. The hydrolysis rates in aqueous solutions differed widely, depending on the selected pro-moieties (alkyl and aryl substituents). The observed reactivity differences could be rationalized by the inductive and steric properties of the substituent groups when taking into account that the mechanism of hydrolysis may change when the type of pro-moiety is altered, e.g. n-alkyl vs. t-butyl. Hydrolysis of the phenolic carbonate ester 2-(phenoxycarbonyloxy)-acetic acid was increased due to intramolecular catalysis, as compared to the derivatives synthesized from omega-hydroxy carboxylic acids with longer alkyl chains. The carbonate esters appear to be less reactive towards specific acid and base catalyzed hydrolysis than phenyl acetate. The results underline that it is unrealistic to expect that phenolic carbonate ester prodrugs can be utilized in ready to use aqueous formulations. The stability of the carbonate ester derivatives with fatty acid-like structures, expected to interact with the plasma protein human serum albumin, proved sufficient for further in vitro and in vivo evaluation of the potential of utilizing HSA binding in combination with the prodrug approach for optimization of drug pharmacokinetics.
Collapse
Affiliation(s)
- Jesper Østergaard
- Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen O, Denmark.
| | | |
Collapse
|
8
|
Østergaard J, Larsen C. Bioreversible derivatives of phenol. 1. The role of human serum albumin as related to the stability and binding properties of carbonate esters with fatty acid-like structures in aqueous solution and biological media. Molecules 2007; 12:2380-95. [PMID: 17978764 PMCID: PMC6149159 DOI: 10.3390/12102380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 10/29/2007] [Accepted: 10/29/2007] [Indexed: 11/17/2022] Open
Abstract
With the overall objective of assessing the potential of utilizing plasma protein binding interactions in combination with the prodrug approach for improving the pharmacokinetics of drug substances, a series of model carbonate ester prodrugs of phenol, encompassing derivatives with fatty acid-like structures, were characterized in vitro. Stability of the derivatives was studied in aqueous solution, human serum albumin solution, human plasma, and rat liver homogenate at 37 degrees C. Stability of the derivatives in aqueous solution varied widely, with half-lives ranging from 31 to 1.7 x 10(4) min at pH 7.4 and 37 degrees C. The carbonate esters were subject to catalysis by plasma esterases except for the t-butyl and acetic acid derivatives, which were stabilized in both human plasma and human serum albumin solutions relative to buffer. In most cases, however, hydrolysis was accelerated in the presence of human serum albumin indicating that the derivatives interacted with the protein, a finding which was confirmed using the p-nitrophenyl acetate kinetic assay. Different human serum albumin binding properties of the phenol model prodrugs with fatty acid-like structure and neutral carbonate esters were observed. In the context of utilizing plasma protein binding in combination with the prodrug approach for optimizing drug pharmacokinetics, the esterase-like properties of human serum albumin towards the carbonate esters potentially allowing the protein to act as a catalyst of parent compound regenerations is interesting.
Collapse
Affiliation(s)
- Jesper Østergaard
- Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen O, Denmark; E-mail:
| | - Claus Larsen
- Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen O, Denmark; E-mail:
| |
Collapse
|
9
|
Hanusek J, Sedlák M, Jansa P, Štěrba V. Study of ring closure reaction of substituted phenylN-(2-thiocarbamoylphenyl)carbamates catalysed by methoxide ion. J PHYS ORG CHEM 2006. [DOI: 10.1002/poc.999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Santos C, Mateus ML, dos Santos AP, Moreira R, de Oliveira E, Gomes P. Cyclization-activated prodrugs. Synthesis, reactivity and toxicity of dipeptide esters of paracetamol. Bioorg Med Chem Lett 2005; 15:1595-8. [PMID: 15745804 DOI: 10.1016/j.bmcl.2005.01.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 01/21/2005] [Accepted: 01/27/2005] [Indexed: 10/25/2022]
Abstract
Dipeptide esters of paracetamol were prepared in high yields. These compounds are quantitatively hydrolyzed to paracetamol and corresponding 2,5-diketopiperazines at pH 7.4 and 37 degrees C. The reactivity is increased in sarcosine and proline peptides and decreased by bulky side chains at both the N- and C-terminal residues of the dipeptide carrier. Moreover, dipeptide esters of paracetamol did not affect the levels of hepatic glutathione. Thus, dipeptides seem promising candidates as carriers for cyclization-activated prodrugs.
Collapse
Affiliation(s)
- Cledir Santos
- CIQUP, Departamento de Química, Faculdade de Ciências do Porto, P-4169-007 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
11
|
Vandenabeele-Trambouze O, Mion L, Garrelly L, Commeyras A. Reactivity of 3 isopropenyl-α,α-dimethyl-benzylisocyanate with amines, phenols, thiols and oximes in diluted aqueous–organic media: the water-promoted effect. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1093-0191(00)00070-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Vandenabeele-Trambouze O, Garrelly L, Mion L, Boiteau L, Commeyras A. Key parameters for carbamate stability in dilute aqueous–organic solution. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1093-0191(00)00071-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Affiliation(s)
- B Testa
- School of Pharmacy, University of Lausanne, Switzerland.
| | | |
Collapse
|
14
|
Kloek J, Akkermans W, Henegouwen GMJB. Derivatives of 5-Aminolevulinic Acid for Photodynamic Therapy: Enzymatic Conversion into Protoporphyrin. Photochem Photobiol 1998. [DOI: 10.1111/j.1751-1097.1998.tb05178.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Evaluation of phenyl carbamates of ethyl diamines as cyclization-activated prodrug forms for protecting phenols against first-bass metabolism. Int J Pharm 1994. [DOI: 10.1016/0378-5173(94)90424-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|