1
|
Guinan JJ. Cochlear amplification in the short-wave region by outer hair cells changing organ-of-Corti area to amplify the fluid traveling wave. Hear Res 2022. [DOI: 10.1016/j.heares.2022.108641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
2
|
Murakami Y, Fuji T. Difference between frequency and suppression tuning curves in a two-dimensional cochlear model. JASA EXPRESS LETTERS 2022; 2:094402. [PMID: 36182343 DOI: 10.1121/10.0013998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Suppression tuning curves (STCs) can be used to evaluate the cochlear frequency selectivity. However, the tip of the STC is located at a higher frequency than that of the frequency tuning curve (FTC) measured in the same preparation. Therefore, this study compares STCs from one-dimensional (1D) and two-dimensional (2D) cochlear models, which ignore and include short waves, respectively. The simulated STC tip is at a higher frequency than that of FTC in the 2D model, unlike the 1D model. The result suggests that short waves in the 2D model are responsible for the upward frequency of STC relative to FTC.
Collapse
Affiliation(s)
- Yasuki Murakami
- Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minamiku, Fukuoka 815-8540, Japan
| | - Takumi Fuji
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsuku, Kitakyushu, Fukuoka 808-0135, Japan ,
| |
Collapse
|
3
|
Altoè A, Charaziak KK, Dewey JB, Moleti A, Sisto R, Oghalai JS, Shera CA. The Elusive Cochlear Filter: Wave Origin of Cochlear Cross-Frequency Masking. J Assoc Res Otolaryngol 2021; 22:623-640. [PMID: 34677710 DOI: 10.1007/s10162-021-00814-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 08/23/2021] [Indexed: 11/28/2022] Open
Abstract
The mammalian cochlea achieves its remarkable sensitivity, frequency selectivity, and dynamic range by spatially segregating the different frequency components of sound via nonlinear processes that remain only partially understood. As a consequence of the wave-based nature of cochlear processing, the different frequency components of complex sounds interact spatially and nonlinearly, mutually suppressing one another as they propagate. Because understanding nonlinear wave interactions and their effects on hearing appears to require mathematically complex or computationally intensive models, theories of hearing that do not deal specifically with cochlear mechanics have often neglected the spatial nature of suppression phenomena. Here we describe a simple framework consisting of a nonlinear traveling-wave model whose spatial response properties can be estimated from basilar-membrane (BM) transfer functions. Without invoking jazzy details of organ-of-Corti mechanics, the model accounts well for the peculiar frequency-dependence of suppression found in two-tone suppression experiments. In particular, our analysis shows that near the peak of the traveling wave, the amplitude of the BM response depends primarily on the nonlinear properties of the traveling wave in more basal (high-frequency) regions. The proposed framework provides perhaps the simplest representation of cochlear signal processing that accounts for the spatially distributed effects of nonlinear wave propagation. Shifting the perspective from local filters to non-local, spatially distributed processes not only elucidates the character of cochlear signal processing, but also has important consequences for interpreting psychophysical experiments.
Collapse
Affiliation(s)
- Alessandro Altoè
- Caruso Department of Otolaryngology Head & Neck Surgery, University of Southern California, CA, Los Angeles, USA.
| | - Karolina K Charaziak
- Caruso Department of Otolaryngology Head & Neck Surgery, University of Southern California, CA, Los Angeles, USA
| | - James B Dewey
- Caruso Department of Otolaryngology Head & Neck Surgery, University of Southern California, CA, Los Angeles, USA
| | - Arturo Moleti
- Department of Physics, University of Roma Tor Vergata, Rome, Italy
| | - Renata Sisto
- DIMEILA, INAIL, Monte Porzio Catone, Rome, Italy
| | - John S Oghalai
- Caruso Department of Otolaryngology Head & Neck Surgery, University of Southern California, CA, Los Angeles, USA
| | - Christopher A Shera
- Caruso Department of Otolaryngology Head & Neck Surgery, University of Southern California, CA, Los Angeles, USA.,Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Mills ML, Shen Y, Withnell RH. Examining the Factors that Contribute to Non-Monotonic Growth of the [Formula: see text] Otoacoustic Emission in Humans. J Assoc Res Otolaryngol 2021; 22:275-288. [PMID: 33844104 PMCID: PMC8110667 DOI: 10.1007/s10162-021-00788-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/28/2021] [Indexed: 10/21/2022] Open
Abstract
Cubic distortion product otoacoustic emission input-output functions in humans show a complex pattern of growth. To further investigate the growth of the [Formula: see text] otoacoustic emission, magnitude and phase input-output functions were obtained from human subjects using a range of stimulus levels, frequencies, and frequency ratios. Three factors related to cochlear nonlinearity may produce non-monotonic input-output functions: a two-component interaction, an operating point shift, and two-tone suppression. To complement data interpretation, a local model of distortion product otoacoustic emission generation was fit to the magnitude spectrum of the averaged ear canal sound pressure recording to quantify operating point shift. Results obtained are consistent with non-monotonic growth occurring primarily as a result of two-tone suppression and/or a two-component interaction. These two mechanisms are expected to operate at different stimulus levels, with different signature magnitude and phase patterns, and are unlikely to overlap in producing non-monotonic growth. An operating point shift was suggested in three cases. These results support multiple factors contributing to the complexity of growth of the [Formula: see text] otoacoustic emission in humans and highlight the importance of looking at phase in addition to magnitude when interpreting distortion product otoacoustic emission growth.
Collapse
Affiliation(s)
- Mackenzie L. Mills
- Department of Speech and Hearing Sciences, Indiana University, IN 47405-7000 Bloomington, USA
| | - Yi Shen
- Department of Speech and Hearing Sciences, Indiana University, IN 47405-7000 Bloomington, USA
- Department of Speech and Hearing Sciences, University of Washington, WA 98195 Seattle, USA
| | - Robert H. Withnell
- Department of Speech and Hearing Sciences, Indiana University, IN 47405-7000 Bloomington, USA
| |
Collapse
|
5
|
Fallah E, Strimbu CE, Olson ES. Nonlinearity of intracochlear motion and local cochlear microphonic: Comparison between guinea pig and gerbil. Hear Res 2021; 405:108234. [PMID: 33930834 DOI: 10.1016/j.heares.2021.108234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/08/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022]
Abstract
Studying the in-vivo mechanical and electrophysiological cochlear responses in several species helps us to have a comprehensive view of the sensitivity and frequency selectivity of the cochlea. Different species might use different mechanisms to achieve the sharp frequency-place map. The outer hair cells (OHC) play an important role in mediating frequency tuning. In the present work, we measured the OHC-generated local cochlear microphonic (LCM) and the motion of different layers in the organ of Corti using optical coherence tomography (OCT) in the first turn of the cochlea in guinea pig. In the best frequency (BF) band, our observations were similar to our previous measurements in gerbil: a nonlinear peak in LCM responses and in the basilar membrane (BM) and OHC-region displacements, and higher motion in the OHC region than the BM. Sub-BF the responses in the two species were different. In both species the sub-BF displacement of the BM was linear and LCM was nonlinear. Sub-BF in the OHC-region, nonlinearity was only observed in a subset of healthy guinea pig cochleae while in gerbil, robust nonlinearity was observed in all healthy cochleae. The differences suggest that gerbils and guinea pigs employ different mechanisms for filtering sub-BF OHC activity from BM responses. However, it cannot be ruled out that the differences are due to technical measurement differences across the species.
Collapse
Affiliation(s)
- Elika Fallah
- Department of Biomedical Engineering, Columbia University, New York City, NY, United States
| | - C Elliott Strimbu
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York City, NY, United States
| | - Elizabeth S Olson
- Department of Biomedical Engineering, Columbia University, New York City, NY, United States; Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York City, NY, United States.
| |
Collapse
|
6
|
Charaziak KK, Dong W, Altoè A, Shera CA. Asymmetry and Microstructure of Temporal-Suppression Patterns in Basilar-Membrane Responses to Clicks: Relation to Tonal Suppression and Traveling-Wave Dispersion. J Assoc Res Otolaryngol 2020; 21:151-170. [PMID: 32166602 DOI: 10.1007/s10162-020-00747-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 02/13/2020] [Indexed: 10/24/2022] Open
Abstract
The cochlea's wave-based signal processing allows it to efficiently decompose a complex acoustic waveform into frequency components. Because cochlear responses are nonlinear, the waves arising from one frequency component of a complex sound can be altered by the presence of others that overlap with it in time and space (e.g., two-tone suppression). Here, we investigate the suppression of basilar-membrane (BM) velocity responses to a transient signal (a test click) by another click or tone. We show that the BM response to the click can be reduced when the stimulus is shortly preceded or followed by another (suppressor) click. More surprisingly, the data reveal two curious dependencies on the interclick interval, Δt. First, the temporal suppression curve (amount of suppression vs. Δt) manifests a pronounced and nearly periodic microstructure. Second, temporal suppression is generally strongest not when the two clicks are presented simultaneously (Δt = 0), but when the suppressor click precedes the test click by a time interval corresponding to one to two periods of the best frequency (BF) at the measurement location. By systematically varying the phase of the suppressor click, we demonstrate that the suppression microstructure arises from alternating constructive and destructive interference between the BM responses to the two clicks. And by comparing temporal and tonal suppression in the same animals, we test the hypothesis that the asymmetry of the temporal-suppression curve around Δt = 0 stems from cochlear dispersion and the well-known asymmetry of tonal suppression around the BF. Just as for two-tone suppression, BM responses to clicks are most suppressed by tones at frequencies just above the BF of the measurement location. On average, the frequency place of maximal suppressibility of the click response predicted from temporal-suppression data agrees with the frequency at which tonal suppression peaks, consistent with our hypothesis.
Collapse
Affiliation(s)
- Karolina K Charaziak
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, USA.
| | - Wei Dong
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA, USA.,Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Health, Loma Linda, USA
| | - Alessandro Altoè
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, USA
| | - Christopher A Shera
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, USA.,Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Goodman SS, Lee C, Guinan JJ, Lichtenhan JT. The Spatial Origins of Cochlear Amplification Assessed by Stimulus-Frequency Otoacoustic Emissions. Biophys J 2020; 118:1183-1195. [PMID: 31968228 DOI: 10.1016/j.bpj.2019.12.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/04/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022] Open
Abstract
Cochlear amplification of basilar membrane traveling waves is thought to occur between a tone's characteristic frequency (CF) place and within one octave basal of the CF. Evidence for this view comes only from the cochlear base. Stimulus-frequency otoacoustic emissions (SFOAEs) provide a noninvasive alternative to direct measurements of cochlear motion that can be measured across a wide range of CF regions. Coherent reflection theory indicates that SFOAEs arise mostly from the peak region of the traveling wave, but several studies using far-basal suppressor tones claimed that SFOAE components originate many octaves basal of CF. We measured SFOAEs while perfusing guinea pig cochleas from apex to base with salicylate or KCl solutions that reduced outer-hair-cell function and SFOAE amplification. Solution effects on inner hair cells reduced auditory nerve compound action potentials (CAPs) and provided reference times for when solutions reached the SFOAE-frequency CF region. As solution flowed from apex to base, SFOAE reductions generally occurred later than CAP reductions and showed that the effects of cochlear amplification usually peaked ∼1/2 octave basal of the CF region. For tones ≥2 kHz, cochlear amplification typically extended ∼1.5 octaves basal of CF, and the data are consistent with coherent reflection theory. SFOAE amplification did not extend to the basal end of the cochlea, even though reticular lamina motion is amplified in this region, which indicates that reticular lamina motion is not directly coupled to basilar membrane traveling waves. Previous reports of SFOAE-frequency residuals produced by suppressor frequencies far above the SFOAE frequency are most likely due to additional sources created by the suppressor. For some tones <2 kHz, SFOAE amplification extended two octaves apical of CF, which highlights that different vibratory motions produce SFOAEs and CAPs, and that the amplification region depends on the cochlear mode of motion considered. The concept that there is a single "cochlear amplification region" needs to be revised.
Collapse
Affiliation(s)
- Shawn S Goodman
- Communication Sciences and Disorders, University of Iowa, Iowa City, Iowa
| | - Choongheon Lee
- Department of Otolaryngology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - John J Guinan
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Jeffery T Lichtenhan
- Department of Otolaryngology, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
| |
Collapse
|
8
|
Engler S, Köppl C, Manley GA, de Kleine E, van Dijk P. Suppression tuning of spontaneous otoacoustic emissions in the barn owl (Tyto alba). Hear Res 2019; 385:107835. [PMID: 31710933 DOI: 10.1016/j.heares.2019.107835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/30/2019] [Accepted: 10/27/2019] [Indexed: 11/20/2022]
Abstract
Spontaneous otoacoustic emissions (SOAEs) have been observed in a variety of different vertebrates, including humans and barn owls (Tyto alba). The underlying mechanisms producing the SOAEs and the meaning of their characteristics regarding the frequency selectivity of an individual and species are, however, still under debate. In the present study, we measured SOAE spectra in lightly anesthetized barn owls and suppressed their amplitudes by presenting pure tones at different frequencies and sound levels. Suppression effects were quantified by deriving suppression tuning curves (STCs) with a criterion of 2 dB suppression. SOAEs were found in 100% of ears (n = 14), with an average of 12.7 SOAEs per ear. Across the whole SOAE frequency range of 3.4-10.2 kHz, the distances between neighboring SOAEs were relatively uniform, with a median distance of 430 Hz. The majority (87.6%) of SOAEs were recorded at frequencies that fall within the barn owl's auditory fovea (5-10 kHz). The STCs were V-shaped and sharply tuned, similar to STCs from humans and other species. Between 5 and 10 kHz, the median Q10dB value of STC was 4.87 and was thus lower than that of owl single-unit neural data. There was no evidence for secondary STC side lobes, as seen in humans. The best thresholds of the STCs varied from 7.0 to 57.5 dB SPL and correlated with SOAE level, such that smaller SOAEs tended to require a higher sound level to be suppressed. While similar, the frequency-threshold curves of auditory-nerve fibers and STCs of SOAEs differ in some respects in their tuning characteristics indicating that SOAE suppression tuning in the barn owl may not directly reflect neural tuning in primary auditory nerve fibers.
Collapse
Affiliation(s)
- Sina Engler
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, The Netherlands; Graduate School of Medical Sciences, Research School of Behavioural and Cognitive Neurosciences, University of Groningen, The Netherlands.
| | - Christine Köppl
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Geoffrey A Manley
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Emile de Kleine
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, The Netherlands; Graduate School of Medical Sciences, Research School of Behavioural and Cognitive Neurosciences, University of Groningen, The Netherlands
| | - Pim van Dijk
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, The Netherlands; Graduate School of Medical Sciences, Research School of Behavioural and Cognitive Neurosciences, University of Groningen, The Netherlands
| |
Collapse
|
9
|
Amplification and Suppression of Traveling Waves along the Mouse Organ of Corti: Evidence for Spatial Variation in the Longitudinal Coupling of Outer Hair Cell-Generated Forces. J Neurosci 2019; 39:1805-1816. [PMID: 30651330 DOI: 10.1523/jneurosci.2608-18.2019] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/06/2019] [Accepted: 01/09/2019] [Indexed: 11/21/2022] Open
Abstract
Mammalian hearing sensitivity and frequency selectivity depend on a mechanical amplification process mediated by outer hair cells (OHCs). OHCs are situated within the organ of Corti atop the basilar membrane (BM), which supports sound-evoked traveling waves. It is well established that OHCs generate force to selectively amplify BM traveling waves where they peak, and that amplification accumulates from one location to the next over this narrow cochlear region. However, recent measurements demonstrate that traveling waves along the apical surface of the organ of Corti, the reticular lamina (RL), are amplified over a much broader region. Whether OHC forces accumulate along the length of the RL traveling wave to provide a form of "global" cochlear amplification is unclear. Here we examined the spatial accumulation of RL amplification. In mice of either sex, we used tones to suppress amplification from different cochlear regions and examined the effect on RL vibrations near and far from the traveling-wave peak. We found that although OHC forces amplify the entire RL traveling wave, amplification only accumulates near the peak, over the same region where BM motion is amplified. This contradicts the notion that RL motion is involved in a global amplification mechanism and reveals that the mechanical properties of the BM and organ of Corti tune how OHC forces accumulate spatially. Restricting the spatial buildup of amplification enhances frequency selectivity by sharpening the peaks of cochlear traveling waves and constrains the number of OHCs responsible for mechanical sensitivity at each location.SIGNIFICANCE STATEMENT Outer hair cells generate force to amplify traveling waves within the mammalian cochlea. This force generation is critical to the ability to detect and discriminate sounds. Nevertheless, how these forces couple to the motions of the surrounding structures and integrate along the cochlear length remains poorly understood. Here we demonstrate that outer hair cell-generated forces amplify traveling-wave motion on the organ of Corti throughout the wave's extent, but that these forces only accumulate longitudinally over a region near the wave's peak. The longitudinal coupling of outer hair cell-generated forces is therefore spatially tuned, likely by the mechanical properties of the basilar membrane and organ of Corti. Our findings provide new insight into the mechanical processes that underlie sensitive hearing.
Collapse
|
10
|
Charaziak KK, Siegel JH, Shera CA. Spectral Ripples in Round-Window Cochlear Microphonics: Evidence for Multiple Generation Mechanisms. J Assoc Res Otolaryngol 2018; 19:401-419. [PMID: 30014309 DOI: 10.1007/s10162-018-0668-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/08/2018] [Indexed: 11/30/2022] Open
Abstract
The cochlear microphonic (CM) results from the vector sum of outer hair cell transduction currents excited by a stimulus. The classical theory of CM generation-that the response measured at the round window is dominated by cellular sources located within the tail region of the basilar membrane (BM) excitation pattern-predicts that CM amplitude and phase vary little with stimulus frequency. Contrary to expectations, CM amplitude and phase-gradient delay measured in response to low-level tones in chinchillas demonstrate a striking, quasiperiodic pattern of spectral ripples, even at frequencies > 5 kHz, where interference with neurophonic potentials is unlikely. The spectral ripples were reduced in the presence of a moderate-level saturating tone at a nearby frequency. When converted to the time domain, only the delayed CM energy was diminished in the presence of the saturator. We hypothesize that the ripples represent an interference pattern produced by CM components with different phase gradients: an early-latency component originating within the tail region of the BM excitation and two delayed components that depend on active cochlear processing near the peak region of the traveling wave. Using time windowing, we show that the early, middle, and late components have delays corresponding to estimated middle-ear transmission, cochlear forward delays, and cochlear round-trip delays, respectively. By extending the classical model of CM generation to include mechanical and electrical irregularities, we propose that middle components are generated through a mechanism of "coherent summation" analogous to the production of reflection-source otoacoustic emissions (OAEs), while the late components arise through a process of internal cochlear reflection related to the generation of stimulus-frequency OAEs. Although early-latency components from the passive tail region typically dominate the round-window CM, at low stimulus levels, substantial contributions from components shaped by active cochlear processing provide a new avenue for improving CM measurements as assays of cochlear health.
Collapse
Affiliation(s)
- Karolina K Charaziak
- Auditory Research Center, Caruso Department of Otolarygnology, University of Southern California, Los Angeles, CA, USA.
| | - Jonathan H Siegel
- Hugh Knowles Center, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Christopher A Shera
- Auditory Research Center, Caruso Department of Otolarygnology, University of Southern California, Los Angeles, CA, USA.,Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Dong W, Olson ES. Two-Tone Suppression of Simultaneous Electrical and Mechanical Responses in the Cochlea. Biophys J 2017; 111:1805-1815. [PMID: 27760366 DOI: 10.1016/j.bpj.2016.08.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/27/2016] [Accepted: 08/15/2016] [Indexed: 11/18/2022] Open
Abstract
Cochlear frequency tuning is based on a mildly tuned traveling-wave response that is enhanced in amplitude and sharpness by outer hair cell (OHC)-based forces. The nonlinear and active character of this enhancement is the fundamental manifestation of cochlear amplification. Recently, mechanical (pressure) and electrical (extracellular OHC-generated voltage) responses were simultaneously measured close to the sensory tissue's basilar membrane. Both pressure and voltage were tuned and showed traveling-wave phase accumulation, evidence that they were locally generated responses. Approximately at the frequency where nonlinearity commenced, the phase of extracellular voltage shifted up, to lead pressure by >1/4 cycle. Based on established and fundamental relationships among voltage, force, pressure, displacement, and power, the observed phase shift was identified as the activation of cochlear amplification. In this study, the operation of the cochlear amplifier was further explored, via changes in pressure and voltage responses upon delivery of a second, suppressor tone. Two different suppression paradigms were used, one with a low-frequency suppressor and a swept-frequency probe, the other with two swept-frequency tones, either of which can be considered as probe or suppressor. In the presence of a high-level low-frequency suppressor, extracellular voltage responses at probe-tone frequencies were greatly reduced, and the pressure responses were reduced nearly to their linear, passive level. On the other hand, the amplifier-activating phase shift between pressure and voltage responses was still present in probe-tone responses. These findings are consistent with low-frequency suppression being caused by the saturation of OHC electrical responses and not by a change in the power-enabling phasing of the underlying mechanics. In the two-tone swept-frequency suppression paradigm, mild suppression was apparent in the pressure responses, while deep notches could develop in the voltage responses. A simple analysis, based on a two-wave differencing scheme, was used to explore the observations.
Collapse
Affiliation(s)
- Wei Dong
- VA Loma Linda Health Care System and Otolaryngology/Head & Neck Surgery, Loma Linda University, Loma Linda, California
| | - Elizabeth S Olson
- Otalaryngology/Head & Neck Surgery and Biomedical Engineering, Columbia University, New York, New York.
| |
Collapse
|
12
|
Charaziak KK, Shera CA, Siegel JH. Using Cochlear Microphonic Potentials to Localize Peripheral Hearing Loss. Front Neurosci 2017; 11:169. [PMID: 28420953 PMCID: PMC5378797 DOI: 10.3389/fnins.2017.00169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/14/2017] [Indexed: 11/13/2022] Open
Abstract
The cochlear microphonic (CM) is created primarily by the receptor currents of outer hair cells (OHCs) and may therefore be useful for identifying cochlear regions with impaired OHCs. However, the CM measured across the frequency range with round-window or ear-canal electrodes lacks place-specificity as it is dominated by cellular sources located most proximal to the recording site (e.g., at the cochlear base). To overcome this limitation, we extract the "residual" CM (rCM), defined as the complex difference between the CM measured with and without an additional tone (saturating tone, ST). If the ST saturates receptor currents near the peak of its excitation pattern, then the rCM should reflect the activity of OHCs in that region. To test this idea, we measured round-window CMs in chinchillas in response to low-level probe tones presented alone or with an ST ranging from 1 to 2.6 times the probe frequency. CMs were measured both before and after inducing a local impairment in cochlear function (a 4-kHz notch-type acoustic trauma). Following the acoustic trauma, little change was observed in the probe-alone CM. In contrast, rCMs were reduced in a frequency-specific manner. When shifts in rCM levels were plotted vs. the ST frequency, they matched well the frequency range of shifts in neural thresholds. These results suggest that rCMs originate near the cochlear place tuned to the ST frequency and thus can be used to assess OHC function in that region. Our interpretation of the data is supported by predictions of a simple phenomenological model of CM generation and two-tone interactions. The model indicates that the sensitivity of rCM to acoustic trauma is governed by changes in cochlear response at the ST tonotopic place rather than at the probe place. The model also suggests that a combination of CM and rCM measurements could be used to assess both the site and etiology of sensory hearing loss in clinical applications.
Collapse
Affiliation(s)
- Karolina K Charaziak
- Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA, USA.,Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Hugh Knowles Center, Northwestern UniversityEvanston, IL, USA
| | - Christopher A Shera
- Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA, USA
| | - Jonathan H Siegel
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Hugh Knowles Center, Northwestern UniversityEvanston, IL, USA
| |
Collapse
|
13
|
Nam H, Guinan JJ. Low-frequency bias tone suppression of auditory-nerve responses to low-level clicks and tones. Hear Res 2016; 341:66-78. [PMID: 27550413 DOI: 10.1016/j.heares.2016.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 11/29/2022]
Abstract
We used low-frequency "bias" tones (BT's) to explore whether click and tone responses are affected in the same way by cochlear active processes. In nonlinear systems the responses to clicks are not always simply related to the responses to tones. Cochlear amplifier gain depends on the incremental slope of the outer-hair-cell (OHC) stereocilia mechano-electric transduction (MET) function. BTs transiently change the operating-point of OHC MET channels and can suppress cochlear-amplifier gain by pushing OHC METs into low-slope saturation regions. BT effects on single auditory-nerve (AN) fibers have been studied on tone responses but not on click responses. We recorded from AN fibers in anesthetized cats and compared tone and click responses using 50 Hz BTs at 70-120 dB SPL to manipulate OHC stereocilia position. BTs can also excite and thereby obscure the BT suppression. We measured AN-fiber response synchrony to BTs alone so that we could exclude suppression measurements when the BT synchrony might obscure the suppression. BT suppression of low-level tone and click responses followed the traditional pattern of twice-a-BT-cycle suppression with more suppression at one phase than the other. The major suppression phases of most fibers were tightly grouped with little difference between click and tone suppressions, which is consistent with low-level click and tone responses being amplified in the same way. The data are also consistent with the operating point of the OHC MET function varying smoothly from symmetric in the base to offset in the apex, and, in contrast, with the IHC MET function being offset throughout the cochlea. As previously reported, bias-tones presented alone excited AN fibers at one or more phases, a phenomena termed "peak splitting" with most BT excitation phases ∼¼ cycle before or after the major suppression phase. We explain peak splitting as being due to distortion in multiple fluid drives to inner-hair-cell stereocilia.
Collapse
Affiliation(s)
- Hui Nam
- Eaton-Peabody Lab, Mass Eye and Ear Infirmary, 243 Charles St., Boston MA 02114, USA; Harvard-MIT HST Speech and Hearing Bioscience and Technology Program, Cambridge MA, USA.
| | - John J Guinan
- Eaton-Peabody Lab, Mass Eye and Ear Infirmary, 243 Charles St., Boston MA 02114, USA; Harvard-MIT HST Speech and Hearing Bioscience and Technology Program, Cambridge MA, USA; Harvard Medical School, Boston MA, USA.
| |
Collapse
|
14
|
Teal PD, Ni G. Finite element modelling of cochlear electrical coupling. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:2769. [PMID: 27794298 DOI: 10.1121/1.4964897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The operation of each hair cell within the cochlea generates a change in electrical potential at the frequency of the vibrating basilar membrane beneath the hair cell. This electrical potential influences the operation of the cochlea at nearby locations and can also be detected as the cochlear microphonic signal. The effect of such potentials has been proposed as a mechanism for the non-local operation of the cochlear amplifier, and the interaction of such potentials has been thought to be the cause of the broadness of cochlea microphonic tuning curves. The spatial extent of influence of these potentials is an important parameter for determining the significance of their effects. Calculations of this extent have typically been based on calculating the longitudinal resistance of each of the scalae from the scala cross sectional area, and the conductivity of the lymph. In this paper, the range of influence of the electrical potential is examined using an electrical finite element model. It is found that the range of influence of the hair cell potential is much shorter than the conventional calculation, but is consistent with recent measurements.
Collapse
Affiliation(s)
- Paul D Teal
- School of Engineering and Computer Science, Victoria University of Wellington, Kelburn Parade, Wellington 6140, New Zealand
| | - Guangjian Ni
- Institute of Sound and Vibration Research, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
15
|
Wang Y, Gong Q, Zhang T. The influence of probe level on the tuning of stimulus frequency otoacoustic emissions and behavioral test in human. Biomed Eng Online 2016; 15:51. [PMID: 27160830 PMCID: PMC4862048 DOI: 10.1186/s12938-016-0167-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/28/2016] [Indexed: 12/03/2022] Open
Abstract
Background Frequency selectivity (FS) of the auditory system is established at the level of the cochlea and it is important for the perception of complex sounds. Although direct measurements of cochlear FS require surgical preparation, it can also be estimated with the measurements of otoacoustic emissions or behavioral tests, including stimulus frequency otoacoustic emission suppression tuning curves (SFOAE STCs) or psychophysical tuning curves (PTCs). These two methods result in similar estimates of FS at low probe levels. As the compressive nonlinearity of cochlea is strongly dependent on the stimulus intensity, the sharpness of tuning curves which is relevant to the cochlear nonlinearity will change as a function of probe level. The present study aims to investigate the influence of different probe levels on the relationship between SFOAE STCs and PTCs. Methods The study included 15 young subjects with normal hearing. SFOAE STCs and PTCs were recorded at low and moderate probe levels for frequencies centred at 1, 2, and 4 kHz. The ratio or the difference of the characteristic parameters between the two methods was calculated at each probe level. The effect of probe level on the ratio or the difference between the parameters of SFOAE STCs and PTCs was then statistically analysed. Results The tuning of SFOAE STCs was significantly positively correlated with the tuning of the PTCs at both low and moderate probe levels; yet, at the moderate probe level, the SFOAE STCs were consistently broader than the PTCs. The mean ratio of sharpness of tuning at low probe levels was constantly around 1 while around 1.5 at moderate probe levels. Conclusions Probe level had a significant effect on the sharpness of tuning between the two methods of estimating FS. SFOAE STC seems a good alternative measurement of PTC for FS assessment at low probe levels. At moderate probe levels, SFOAE STC and PTC were not equivalent measures of the FS in terms of their bandwidths. Because SFOAE STCs are not biased by higher levels auditory processing, they may represent cochlear FS better than PTCs.
Collapse
Affiliation(s)
- Yao Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qin Gong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Research Center of Biomedical Engineering, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
| | - Tao Zhang
- Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
Suppression Measured from Chinchilla Auditory-Nerve-Fiber Responses Following Noise-Induced Hearing Loss: Adaptive-Tracking and Systems-Identification Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 894:285-295. [PMID: 27080669 PMCID: PMC5069700 DOI: 10.1007/978-3-319-25474-6_30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The compressive nonlinearity of cochlear signal transduction, reflecting outer-hair-cell function, manifests as suppressive spectral interactions; e.g., two-tone suppression. Moreover, for broadband sounds, there are multiple interactions between frequency components. These frequency-dependent nonlinearities are important for neural coding of complex sounds, such as speech. Acoustic-trauma-induced outer-hair-cell damage is associated with loss of nonlinearity, which auditory prostheses attempt to restore with, e.g., "multi-channel dynamic compression" algorithms.Neurophysiological data on suppression in hearing-impaired (HI) mammals are limited. We present data on firing-rate suppression measured in auditory-nerve-fiber responses in a chinchilla model of noise-induced hearing loss, and in normal-hearing (NH) controls at equal sensation level. Hearing-impaired (HI) animals had elevated single-fiber excitatory thresholds (by ~ 20-40 dB), broadened frequency tuning, and reduced-magnitude distortion-product otoacoustic emissions; consistent with mixed inner- and outer-hair-cell pathology. We characterized suppression using two approaches: adaptive tracking of two-tone-suppression threshold (62 NH, and 35 HI fibers), and Wiener-kernel analyses of responses to broadband noise (91 NH, and 148 HI fibers). Suppression-threshold tuning curves showed sensitive low-side suppression for NH and HI animals. High-side suppression thresholds were elevated in HI animals, to the same extent as excitatory thresholds. We factored second-order Wiener-kernels into excitatory and suppressive sub-kernels to quantify the relative strength of suppression. We found a small decrease in suppression in HI fibers, which correlated with broadened tuning. These data will help guide novel amplification strategies, particularly for complex listening situations (e.g., speech in noise), in which current hearing aids struggle to restore intelligibility.
Collapse
|
17
|
Berezina-Greene MA, Guinan JJ. Stimulus Frequency Otoacoustic Emission Delays and Generating Mechanisms in Guinea Pigs, Chinchillas, and Simulations. J Assoc Res Otolaryngol 2015; 16:679-94. [PMID: 26373935 DOI: 10.1007/s10162-015-0543-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/30/2015] [Indexed: 11/30/2022] Open
Abstract
According to coherent reflection theory (CRT), stimulus frequency otoacoustic emissions (SFOAEs) arise from cochlear irregularities coherently reflecting energy from basilar membrane motion within the traveling-wave peak. This reflected energy arrives in the ear canal predominantly with a single delay at each frequency. However, data from humans and animals indicate that (1) SFOAEs can have multiple delay components, (2) low-frequency SFOAE delays are too short to be accounted for by CRT, and (3) "SFOAEs" obtained with a 2nd ("suppressor") tone ≥2 octaves above the probe tone have been interpreted as arising from the area basal to the region of cochlear amplification. To explore these issues, we collected SFOAEs by the suppression method in guinea pigs and time-frequency analyzed these data, simulated SFOAEs, and published chinchilla SFOAEs. Time-frequency analysis revealed that most frequencies showed only one SFOAE delay component while other frequencies had multiple components including some with short delays. We found no systematic patterns in the occurrence of multiple delay components. Using a cochlear model that had significant basilar membrane motion only in the peak region of the traveling wave, simulated SFOAEs had single and multiple delay components similar to the animal SFOAEs. This result indicates that multiple components (including ones with short delays) can originate from cochlear mechanical irregularities in the SFOAE peak region and are not necessarily indicative of SFOAE sources in regions ≥2 octaves basal of the SFOAE peak region. We conclude that SFOAEs obtained with suppressors close to the probe frequency provide information primarily about the mechanical response in the region that receives amplification, and we attribute the too-short SFOAE delays at low frequencies to distortion-source SFOAEs and coherent reflection from multiple cochlear motions. Our findings suggest that CRT needs revision to include reflections from multiple motions in the cochlear apex.
Collapse
Affiliation(s)
- Maria A Berezina-Greene
- Eaton-Peabody Lab, Mass. Eye and Ear Infirmary, 243 Charles St, Boston, MA, 02114, USA. .,Harvard-MIT HST Speech and Hearing Bioscience and Technology Program, Cambridge, MA, USA.
| | - John J Guinan
- Eaton-Peabody Lab, Mass. Eye and Ear Infirmary, 243 Charles St, Boston, MA, 02114, USA. .,Harvard-MIT HST Speech and Hearing Bioscience and Technology Program, Cambridge, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Lai J, Bartlett EL. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra. Hear Res 2015; 327:186-98. [PMID: 26232530 DOI: 10.1016/j.heares.2015.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/06/2023]
Abstract
Amplitude modulation (AM) is an important temporal cue for precise speech and complex sound recognition. However, functional decline of the auditory periphery as well as degradation of central auditory processing due to aging can reduce the salience and resolution of temporal cues. Age-related deficits in central temporal processing have previously been observed at more rapid AM frequencies and various AM depths. These centrally observed changes result from cochlear changes compounded with changes along the ascending auditory pathway. In fact, a decrease in ability to detect temporally modulated sounds accurately could originate from changes in cochlear filtering properties and in cochlear mechanics due to aging. Nonetheless, few studies have examined cochlear mechanisms in AM detection. To assess integrity of the mechanical properties of the auditory periphery, distortion product otoacoustic emissions (DPOAEs) are a tool commonly used in clinics and in research. In this study, we measured DPOAEs to reveal age-related changes in peak f2/f1 ratio and degradation in AM detection by basilar membrane vibration. Two tones (f1 and f2, f2 > f1) at various f2/f1 ratios and simultaneous presentation of one AM and one pure tone were used as stimuli to evoke DPOAEs. In addition of observing reduced DPOAE amplitudes and steeper slopes in the input-output DPOAE functions, higher peak f2/f1 ratios and broader f2/f1 tuning were also observed in aged animals. Aged animals generally had lower distortion product (DP) and first sideband (SB 1) responses evoked by an f1 pure tone and an f2 AM tone, regardless of whether the AM frequency was 45 Hz or 128 Hz. SB 1 thresholds, which corresponds to the smallest stimulus AM depth that can induce cochlear vibrations at the DP generator locus, were higher in aged animals as well. The results suggest that age-related changes in peak f2/f1 ratio and AM detection by basilar membrane vibration are consistent with a reduction in endocochlear potential and reduced prestin activity but with preserved hair cell bundle function. SB 1 responses evoked by f2 AM/f1 pure tone with various AM depths could serve as an estimate for cochlear AM detection. The sidebands of DP could also serve as additional physiological cues for detection of AM in the presence of other tone(s), even at typical conversational levels in speech.
Collapse
Affiliation(s)
- Jesyin Lai
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Edward L Bartlett
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
19
|
Charaziak KK, Siegel JH. Tuning of SFOAEs Evoked by Low-Frequency Tones Is Not Compatible with Localized Emission Generation. J Assoc Res Otolaryngol 2015; 16:317-29. [PMID: 25813430 PMCID: PMC4417092 DOI: 10.1007/s10162-015-0513-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/17/2015] [Indexed: 12/20/2022] Open
Abstract
Stimulus-frequency otoacoustic emissions (SFOAEs) appear to be well suited for assessing frequency selectivity because, at least on theoretical grounds, they originate over a restricted region of the cochlea near the characteristic place of the evoking tone. In support of this view, we previously found good agreement between SFOAE suppression tuning curves (SF-STCs) and a control measure of frequency selectivity (compound action potential suppression tuning curves (CAP-STC)) for frequencies above 3 kHz in chinchillas. For lower frequencies, however, SF-STCs and were over five times broader than the CAP-STCs and demonstrated more high-pass rather than narrow band-pass filter characteristics. Here, we test the hypothesis that the broad tuning of low-frequency SF-STCs is because emissions originate over a broad region of the cochlea extending basal to the characteristic place of the evoking tone. We removed contributions of the hypothesized basally located SFOAE sources by either pre-suppressing them with a high-frequency interference tone (IT; 4.2, 6.2, or 9.2 kHz at 75 dB sound pressure level (SPL)) or by inducing acoustic trauma at high frequencies (exposures to 8, 5, and lastly 3-kHz tones at 110-115 dB SPL). The 1-kHz SF-STCs and CAP-STCs were measured for baseline, IT present and following the acoustic trauma conditions in anesthetized chinchillas. The IT and acoustic trauma affected SF-STCs in an almost indistinguishable way. The SF-STCs changed progressively from a broad high-pass to narrow band-pass shape as the frequency of the IT was lowered and for subsequent exposures to lower-frequency tones. Both results were in agreement with the "basal sources" hypothesis. In contrast, CAP-STCs were not changed by either manipulation, indicating that neither the IT nor acoustic trauma affected the 1-kHz characteristic place. Thus, unlike CAPs, SFOAEs cannot be considered as a place-specific measure of cochlear function at low frequencies, at least in chinchillas.
Collapse
Affiliation(s)
- Karolina K Charaziak
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA,
| | | |
Collapse
|
20
|
Effect of the attachment of the tectorial membrane on cochlear micromechanics and two-tone suppression. Biophys J 2014; 106:1398-405. [PMID: 24655515 DOI: 10.1016/j.bpj.2014.01.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/16/2014] [Accepted: 01/23/2014] [Indexed: 11/21/2022] Open
Abstract
The mechanical stimulation of the outer hair cell hair bundle (HB) is a key step in nonlinear cochlear amplification. We show how two-tone suppression (TTS), a hallmark of cochlear nonlinearity, can be used as an indirect measure of HB stimulation. Using two different nonlinear computational models of the cochlea, we investigate the effect of altering the mechanical load applied by the tectorial membrane (TM) on the outer hair cell HB. In the first model (TM-A model), the TM is attached to the spiral limbus (as in wild-type animals); in the second model (TM-D model), the TM is detached from the spiral limbus (mimicking the cochlea of Otoa(EGFP/EGFP) mutant mice). As in recent experiments, model simulations demonstrate that the absence of the TM attachment does not preclude cochlear amplification. However, detaching the TM alters the mechanical load applied by the TM on the HB at low frequencies and therefore affects TTS by low-frequency suppressors. For low-frequency suppressors, the suppression threshold obtained with the TM-A model corresponds to a constant suppressor displacement on the basilar membrane (as in experiments with wild-type animals), whereas it corresponds to a constant suppressor velocity with the TM-D model. The predictions with the TM-D model could be tested by measuring TTS on the basilar membrane of the Otoa(EGFP/EGFP) mice to improve our understanding of the fundamental workings of the cochlea.
Collapse
|
21
|
Lewis JD, Goodman SS. Basal contributions to short-latency transient-evoked otoacoustic emission components. J Assoc Res Otolaryngol 2014; 16:29-45. [PMID: 25303881 DOI: 10.1007/s10162-014-0493-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022] Open
Abstract
The presence of short-latency (SL), less compressive-growing components in bandpass-filtered transient-evoked otoacoustic emission (TEOAE) waveforms may implicate contributions from cochlear regions basal to the tonotopic place. Recent empirical work suggests a region of SL generation between ∼1/5 and 1/10-octave basal to the TEOAE frequency's tonotopic place. However, this estimate may be biased to regions closer to the tonotopic place as the TEOAE extraction technique precluded measurement of components with latencies shorter than ∼5 ms. Using a variant of the non-linear, double-evoked extraction paradigm that permitted extraction of components with latencies as early as 1 ms, the current study empirically estimated the spatial-extent of the cochlear region contributing to 2 kHz SL TEOAE components. TEOAEs were evoked during simultaneous presentation of a suppressor stimulus, in order to suppress contributions to the TEOAE from different places along the cochlear partition. Three or four different-latency components of similar frequency content (∼2 kHz) were identified for most subjects. Component latencies ranged from 1.4 to 9.6 ms; latency was predictive of the component's growth rate and the suppressor frequency to which the component's magnitude was most sensitive to change. As component latency decreased, growth became less compressive and suppressor-frequency sensitivity shifted to higher frequencies. The shortest-latency components were most sensitive to suppressors approximately 3/5-octave higher than their nominal frequency of 2 kHz. These results are consistent with a distributed region of generation extending to approximately 3/5-octave basal to the TEOAE frequency's tonotopic place. The empirical estimates of TEOAE generation are similar to model-based estimates where generation of the different-latency components occurs through linear reflection from impedance discontinuities distributed across the cochlear partition.
Collapse
Affiliation(s)
- James D Lewis
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, NE, 68131, USA,
| | | |
Collapse
|
22
|
Brown MC. Single-unit labeling of medial olivocochlear neurons: the cochlear frequency map for efferent axons. J Neurophysiol 2014; 111:2177-86. [PMID: 24598524 DOI: 10.1152/jn.00045.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Medial olivocochlear (MOC) neurons are efferent neurons that project axons from the brain to the cochlea. Their action on outer hair cells reduces the gain of the "cochlear amplifier," which shifts the dynamic range of hearing and reduces the effects of noise masking. The MOC effects in one ear can be elicited by sound in that ipsilateral ear or by sound in the contralateral ear. To study how MOC neurons project onto the cochlea to mediate these effects, single-unit labeling in guinea pigs was used to study the mapping of MOC neurons for neurons responsive to ipsilateral sound vs. those responsive to contralateral sound. MOC neurons were sharply tuned to sound frequency with a well-defined characteristic frequency (CF). However, their labeled termination spans in the organ of Corti ranged from narrow to broad, innervating between 14 and 69 outer hair cells per axon in a "patchy" pattern. For units responsive to ipsilateral sound, the midpoint of innervation was mapped according to CF in a relationship generally similar to, but with more variability than, that of auditory-nerve fibers. Thus, based on CF mappings, most of the MOC terminations miss outer hair cells involved in the cochlear amplifier for their CF, which are located more basally. Compared with ipsilaterally responsive neurons, contralaterally responsive neurons had an apical offset in termination and a larger span of innervation (an average of 10.41% cochlear distance), suggesting that when contralateral sound activates the MOC reflex, the actions are different than those for ipsilateral sound.
Collapse
Affiliation(s)
- M Christian Brown
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, and Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
23
|
Abstract
To enhance weak sounds while compressing the dynamic intensity range, auditory sensory cells amplify sound-induced vibrations in a nonlinear, intensity-dependent manner. In the course of this process, instantaneous waveform distortion is produced, with two conspicuous kinds of interwoven consequences, the introduction of new sound frequencies absent from the original stimuli, which are audible and detectable in the ear canal as otoacoustic emissions, and the possibility for an interfering sound to suppress the response to a probe tone, thereby enhancing contrast among frequency components. We review how the diverse manifestations of auditory nonlinearity originate in the gating principle of their mechanoelectrical transduction channels; how they depend on the coordinated opening of these ion channels ensured by connecting elements; and their links to the dynamic behavior of auditory sensory cells. This paper also reviews how the complex properties of waves traveling through the cochlea shape the manifestations of auditory nonlinearity. Examination methods based on the detection of distortions open noninvasive windows on the modes of activity of mechanosensitive structures in auditory sensory cells and on the distribution of sites of nonlinearity along the cochlear tonotopic axis, helpful for deciphering cochlear molecular physiology in hearing-impaired animal models. Otoacoustic emissions enable fast tests of peripheral sound processing in patients. The study of auditory distortions also contributes to the understanding of the perception of complex sounds.
Collapse
Affiliation(s)
- Paul Avan
- Laboratory of Neurosensory Biophysics, University of Auvergne, School of Medicine, Clermont-Ferrand, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1107, Clermont-Ferrand, France; Centre Jean Perrin, Clermont-Ferrand, France; Department of Otolaryngology, County Hospital, Krems an der Donau, Austria; Laboratory of Genetics and Physiology of Hearing, Department of Neuroscience, Institut Pasteur, Paris, France; Collège de France, Genetics and Cell Physiology, Paris, France
| | - Béla Büki
- Laboratory of Neurosensory Biophysics, University of Auvergne, School of Medicine, Clermont-Ferrand, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1107, Clermont-Ferrand, France; Centre Jean Perrin, Clermont-Ferrand, France; Department of Otolaryngology, County Hospital, Krems an der Donau, Austria; Laboratory of Genetics and Physiology of Hearing, Department of Neuroscience, Institut Pasteur, Paris, France; Collège de France, Genetics and Cell Physiology, Paris, France
| | - Christine Petit
- Laboratory of Neurosensory Biophysics, University of Auvergne, School of Medicine, Clermont-Ferrand, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1107, Clermont-Ferrand, France; Centre Jean Perrin, Clermont-Ferrand, France; Department of Otolaryngology, County Hospital, Krems an der Donau, Austria; Laboratory of Genetics and Physiology of Hearing, Department of Neuroscience, Institut Pasteur, Paris, France; Collège de France, Genetics and Cell Physiology, Paris, France
| |
Collapse
|
24
|
Versteegh CPC, van der Heijden M. The spatial buildup of compression and suppression in the mammalian cochlea. J Assoc Res Otolaryngol 2013; 14:523-45. [PMID: 23690278 PMCID: PMC3705085 DOI: 10.1007/s10162-013-0393-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/23/2013] [Indexed: 11/25/2022] Open
Abstract
We recorded responses of the gerbil basilar membrane (BM) to wideband tone complexes. The intensity of one component was varied and the effects on the amplitude and phase of the others were assessed. This suppression paradigm enabled us to vary probe frequency and suppressor frequency independently, allowing the use of simple scaling arguments to analyze the spatial buildup of the nonlinear interaction between traveling waves. Most suppressors had the same effects on probe amplitude and phase as did wideband intensity increments. The main exception were suppressors above the characteristic frequency (CF) of the recording location, for which the frequency range of most affected probes was not constant, but shifted upward with suppressor frequency. BM displacement reliably predicted the effectiveness of low-side suppressors, but not high-side suppressors. We found “anti-suppression” of probes well below CF, i.e., suppressor-induced enhancement of probe response amplitude. Large (>1 cycle) phase effects occurred for above-CF probes. Phase shifts varied nonmonotonically, but systematically, with suppressor level, probe frequency, and suppressor frequency, reconciling apparent discrepancies in the literature. The analysis of spatial buildup revealed an accumulation of local effects on the propagation of the traveling wave, with larger BM displacement reducing the local forward gain. The propagation speed of the wave was also affected. With larger BM displacement, the basal portion of the wave slowed down, while the apical part sped up. This framework of spatial buildup of local effects unifies the widely different effects of overall intensity, low-side suppressors, and high-side suppressors on BM responses.
Collapse
|
25
|
Gollisch T, Herz AVM. The iso-response method: measuring neuronal stimulus integration with closed-loop experiments. Front Neural Circuits 2012; 6:104. [PMID: 23267315 PMCID: PMC3525953 DOI: 10.3389/fncir.2012.00104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/29/2012] [Indexed: 11/29/2022] Open
Abstract
Throughout the nervous system, neurons integrate high-dimensional input streams and transform them into an output of their own. This integration of incoming signals involves filtering processes and complex non-linear operations. The shapes of these filters and non-linearities determine the computational features of single neurons and their functional roles within larger networks. A detailed characterization of signal integration is thus a central ingredient to understanding information processing in neural circuits. Conventional methods for measuring single-neuron response properties, such as reverse correlation, however, are often limited by the implicit assumption that stimulus integration occurs in a linear fashion. Here, we review a conceptual and experimental alternative that is based on exploring the space of those sensory stimuli that result in the same neural output. As demonstrated by recent results in the auditory and visual system, such iso-response stimuli can be used to identify the non-linearities relevant for stimulus integration, disentangle consecutive neural processing steps, and determine their characteristics with unprecedented precision. Automated closed-loop experiments are crucial for this advance, allowing rapid search strategies for identifying iso-response stimuli during experiments. Prime targets for the method are feed-forward neural signaling chains in sensory systems, but the method has also been successfully applied to feedback systems. Depending on the specific question, “iso-response” may refer to a predefined firing rate, single-spike probability, first-spike latency, or other output measures. Examples from different studies show that substantial progress in understanding neural dynamics and coding can be achieved once rapid online data analysis and stimulus generation, adaptive sampling, and computational modeling are tightly integrated into experiments.
Collapse
Affiliation(s)
- Tim Gollisch
- Department of Ophthalmology and Bernstein Center for Computational Neuroscience Göttingen, University Medical Center Göttingen Göttingen, Germany
| | | |
Collapse
|
26
|
Lichtenhan JT. Effects of low-frequency biasing on otoacoustic and neural measures suggest that stimulus-frequency otoacoustic emissions originate near the peak region of the traveling wave. J Assoc Res Otolaryngol 2011; 13:17-28. [PMID: 22002610 DOI: 10.1007/s10162-011-0296-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 09/29/2011] [Indexed: 11/26/2022] Open
Abstract
Stimulus-frequency otoacoustic emissions (SFOAEs) have been used to study a variety of topics in cochlear mechanics, although a current topic of debate is where in the cochlea these emissions are generated. One hypothesis is that SFOAE generation is predominately near the peak region of the traveling wave. An opposing hypothesis is that SFOAE generation near the peak region is deemphasized compared to generation in the tail region of the traveling wave. A comparison was made between the effect of low-frequency biasing on both SFOAEs and a physiologic measure that arises from the peak region of the traveling wave--the compound action potential (CAP). SFOAE biasing was measured as the amplitude of spectral sidebands from varying bias tone levels. CAP biasing was measured as the suppression of CAP amplitude from varying bias tone levels. Measures of biasing effects were made throughout the cochlea. Results from cats show that the level of bias tone needed for maximum SFOAE sidebands and for 50% CAP reduction increased as probe frequency increased. Results from guinea pigs show an irregular bias effect as a function of probe frequency. In both species, there was a strong and positive relationship between the bias level needed for maximum SFOAE sidebands and for 50% CAP suppression. This relationship is consistent with the hypothesis that the majority of SFOAE is generated near the peak region of the traveling wave.
Collapse
Affiliation(s)
- Jeffery T Lichtenhan
- Massachusetts Eye & Ear Infirmary, Eaton-Peabody Laboratory of Auditory Physiology, Boston, MA 02114, USA.
| |
Collapse
|
27
|
Zheng J, Ramamoorthy S, Ren T, He W, Zha D, Chen F, Magnusson A, Nuttall AL, Fridberger A. Persistence of past stimulations: storing sounds within the inner ear. Biophys J 2011; 100:1627-34. [PMID: 21463575 DOI: 10.1016/j.bpj.2011.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/01/2011] [Accepted: 02/15/2011] [Indexed: 12/01/2022] Open
Abstract
Tones cause vibrations within the hearing organ. Conventionally, these vibrations are thought to reflect the input and therefore end with the stimulus. However, previous recordings of otoacoustic emissions and cochlear microphonic potentials suggest that the organ of Corti does continue to move after the end of a tone. These after-vibrations are characterized here through recordings of basilar membrane motion and hair cell extracellular receptor potentials in living anesthetized guinea pigs. We show that after-vibrations depend on the level and frequency of the stimulus, as well as on the sensitivity of the ear. Even a minor loss of hearing sensitivity caused a sharp reduction in after-vibration amplitude and duration. Mathematical models suggest that after-vibrations are driven by energy added into organ of Corti motion after the end of an acoustic stimulus. The possible importance of after-vibrations for psychophysical phenomena such as forward masking and gap detection are discussed.
Collapse
Affiliation(s)
- Jiefu Zheng
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pienkowski M, Munguia R, Eggermont JJ. Passive exposure of adult cats to bandlimited tone pip ensembles or noise leads to long-term response suppression in auditory cortex. Hear Res 2011; 277:117-26. [DOI: 10.1016/j.heares.2011.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
|
29
|
Rodriguez J, Neely ST. Temporal aspects of suppression in distortion-product otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:3082-3089. [PMID: 21568411 PMCID: PMC3108389 DOI: 10.1121/1.3575553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/11/2011] [Accepted: 03/15/2011] [Indexed: 05/30/2023]
Abstract
This study examined the time course of cochlear suppression using a tone-burst suppressor to measure decrement of distortion-product otoacoustic emissions (DPOAEs). Seven normal-hearing subjects with ages ranging from 19 to 28 yr participated in the study. Each subject had audiometric thresholds ≤ 15 dB HL [re ANSI (2004) Specifications for Audiometers] for standard octave and inter-octave frequencies from 0.25 to 8 kHz. DPOAEs were elicited by primary tones with f(2) = 4.0 kHz and f(1) = 3.333 kHz (f(2)/f(1) = 1.2). For the f(2), L(2) combination, suppression was measured for three suppressor frequencies: One suppressor below f(2) (3.834 kHz) and two above f(2) (4.166 and 4.282 kHz) at three levels (55, 60, and 65 dB SPL). DPOAE decrement as a function of L(3) for the tone-burst suppressor was similar to decrements obtained with longer duration suppressors. Onset- and setoff- latencies were ≤ 4 ms, in agreement with previous physiological findings in auditory-nerve fiber studies that suggest suppression results from a nearly instantaneous compression of the waveform. Persistence of suppression was absent for the below-frequency suppressor (f(3) = 3.834 kHz) and was ≤ 3 ms for the two above-frequency suppressors (f(3) = 4.166 and 4.282 kHz).
Collapse
Affiliation(s)
- Joyce Rodriguez
- Starkey Hearing Research Center, 2150 Shattuck Avenue, Suite 408, Berkeley, California 94704, USA.
| | | |
Collapse
|
30
|
Bian L, Chen S. Behaviors of cubic distortion product otoacoustic emissions evoked by amplitude modulated tones. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:828-839. [PMID: 21361441 DOI: 10.1121/1.3531813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Distortion product otoacoustic emissions (DPOAEs) were measured using sinusoidal amplitude modulation (AM) tones. When one of the primary stimuli (f(1) or f(2), f(1) < f(2)) was amplitude modulated, a series of changes in the cubic difference tone (CDT) were observed. In the frequency domain, multiple sidebands were present around the CDT and their sizes grew with the modulation depth of the AM stimulus. In the time domain, the CDT showed different modulation patterns between two major signal conditions: the AM tone was used as the f(1) or the f(2). The CDT amplitude followed the AM tone when the f(1) was amplitude modulated. However, when the AM tone acted as the f(2), the CDT showed a more complex modulation pattern with a notch present at the AM tone peak. The relatively linear dependence of CDT on f(1) and the nonlinear relation with f(2) can be explained with a variable gain-control model representing hair cell functions at the DPOAE generation site. It is likely that processing of AM signals at a particular cochlear location depends on whether the hair cells are tuned to the frequency of the carrier. Nonlinear modulation is related to on-frequency carriers and off-frequency carriers are processed relatively linearly.
Collapse
Affiliation(s)
- Lin Bian
- Auditory Physiology Laboratory, Department of Speech and Hearing Science, Arizona State University, 3430 Coor Hall, Tempe, Arizona 85287-0102, USA.
| | | |
Collapse
|
31
|
Guinan JJ. Physiology of the Medial and Lateral Olivocochlear Systems. AUDITORY AND VESTIBULAR EFFERENTS 2011. [DOI: 10.1007/978-1-4419-7070-1_3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Auditory intensity discrimination as a function of level-rove and tone duration in normal-hearing and impaired subjects: The “mid-level hump” revisited. Hear Res 2009; 253:107-15. [PMID: 19345257 DOI: 10.1016/j.heares.2009.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 11/23/2022]
|
33
|
Song L, McGee J, Walsh EJ. The influence of thyroid hormone deficiency on the development of cochlear nonlinearities. J Assoc Res Otolaryngol 2008; 9:464-76. [PMID: 18855071 DOI: 10.1007/s10162-008-0140-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 09/11/2008] [Indexed: 11/24/2022] Open
Abstract
It is well known that failure to treat severe congenital hypothyroidism leads to profound auditory disability, and it has been suggested that an intracochlear defect, or defects, associated with the condition diminishes the efficacy of an active, physiologically vulnerable nonlinear transduction process commonly referred to as cochlear amplification. We address this question directly by tracking the development of threshold-frequency (tuning) curves and two-tone suppression in hypothyroid, Tshr mutant mice born to hypothyroid dams and comparing those findings with findings observed in euthyroid mice. Like sharp tuning, two-tone suppression is a product of transduction nonlinearity and is a useful indicator of the functional status of cochlear amplification. In contrast to euthyroid mice that acquire sharp tuning, normal two-tone suppression, and adultlike sensitivity by the end of the third postnatal week, as shown in earlier studies, hypothyroid mice remained grossly insensitive to sound throughout life. In addition, tuning was generally broad in hypothyroid mice, tuning curve "tips" were frequently missing, and two-tone suppression was rarely observed. However, unlike tip thresholds, tuning curve "tail" thresholds, a feature that reflects the functional status of passive elements of transduction, acquired normal values over a roughly 2-month postnatal time period. These observations collectively suggest that active transduction micromechanics, at least in the frequency region studied here, are profoundly affected by thyroid hormone and support speculation that abnormal outer hair cell function may be the cause of the primary, enduring peripheral auditory defect associated with profound, congenital hypothyroidism in the Tshr mutant mouse.
Collapse
Affiliation(s)
- Lei Song
- Developmental Auditory Physiology Laboratory, Boys Town National Research Hospital, 555 North 30th Street, Omaha, NE 68131, USA
| | | | | |
Collapse
|
34
|
Iwasa KH, Sul B. Effect of the cochlear microphonic on the limiting frequency of the mammalian ear. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:1607-1612. [PMID: 19045652 PMCID: PMC2593735 DOI: 10.1121/1.2953317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/04/2008] [Accepted: 06/08/2008] [Indexed: 05/27/2023]
Abstract
Electromotility is a basis for cochlear amplifier, which controls the sensitivity of the mammalian ear and contributes to its frequency selectivity. Because it is driven by the receptor potential, its frequency characteristics are determined by the low-pass RC filter intrinsic to the cell, which has a corner frequency about 1/10th of the operating frequency. This filter significantly decreases the efficiency of electromotility as an amplifier. The present paper examines a proposal that the cochlear microphonic, the voltage drop across the extracellular medium by the receptor current, contributes to overcome this problem. It is found that this effect can improve frequency dependence. However, this effect alone is too small to enhance the effectiveness of electromotility beyond 10 kHz in the mammalian ear.
Collapse
Affiliation(s)
- Kuni H Iwasa
- Section on Biophysics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 5 Research Ct Rm 1B03, Rockville, Maryland 20850-3211, USA.
| | | |
Collapse
|
35
|
Keefe DH, Ellison JC, Fitzpatrick DF, Gorga MP. Two-tone suppression of stimulus frequency otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 123:1479-94. [PMID: 18345837 PMCID: PMC2517244 DOI: 10.1121/1.2828209] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Stimulus frequency otoacoustic emissions (SFOAEs) measured using a suppressor tone in human ears are analogous to two-tone suppression responses measured mechanically and neurally in mammalian cochleae. SFOAE suppression was measured in 24 normal-hearing adults at octave frequencies (f(p)=0.5-8.0 kHz) over a 40 dB range of probe levels (L(p)). Suppressor frequencies (f(s)) ranged from -2.0 to 0.7 octaves re: f(p), and suppressor levels ranged from just detectable suppression to full suppression. The lowest suppression thresholds occurred for "best" f(s) slightly higher than f(p). SFOAE growth of suppression (GOS) had slopes close to one at frequencies much lower than best f(s), and shallow slopes near best f(s), which indicated compressive growth close to 0.3 dBdB. Suppression tuning curves constructed from GOS functions were well defined at 1, 2, and 4 kHz, but less so at 0.5 and 8.0 kHz. Tuning was sharper at lower L(p) with an equivalent rectangular bandwidth similar to that reported behaviorally for simultaneous masking. The tip-to-tail difference assessed cochlear gain, increasing with decreasing L(p) and increasing f(p) at the lowest L(p) from 32 to 45 dB for f(p) from 1 to 4 kHz. SFOAE suppression provides a noninvasive measure of the saturating nonlinearities associated with cochlear amplification on the basilar membrane.
Collapse
Affiliation(s)
- Douglas H Keefe
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA.
| | | | | | | |
Collapse
|
36
|
Cheatham MA. Comment on "Mutual suppression in the 6 kHz region of sensitive chinchilla cochleae" [J. Acoust. Soc. Am. 121, 2805-2818 (2007)]. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 123:602-605. [PMID: 18247865 DOI: 10.1121/1.2821414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Rhode [J. Acoust. Soc. Am. 121, 2805-2818 (2007)] acknowledges that two-tone neural rate responses for low-side suppression differ from those measured in basilar membrane mechanics, making one question whether this aspect of suppression has a mechanical correlate. It is suggested here that signal coding between mechanical and neural processing stages may be responsible for the fact that the total rate response (but not the basilar membrane response) for low-frequency suppressors is smaller than that for the probe-alone condition. For example, the velocity dependence of inner hair cell (IHC) transduction, membrane/synaptic filtering and the sensitivity difference between ac and dc components of the IHC receptor potential all serve to reduce excitability for low-side suppressors at the single-unit level. Hence, basilar membrane mechanics may well be the source of low-side suppression measured in the auditory nerve.
Collapse
Affiliation(s)
- M A Cheatham
- Communication Sciences and Disorders, 2-240 Frances Searle Building, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
37
|
Bian L, Scherrer NM. Low-frequency modulation of distortion product otoacoustic emissions in humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 122:1681. [PMID: 17927428 PMCID: PMC2612004 DOI: 10.1121/1.2764467] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Low-frequency modulation of distortion product otoacoustic emissions (DPOAEs) was measured from the human ears. In the frequency domain, increasing the bias tone level resulted in a suppression of the cubic difference tone (CDT) and an increase in the magnitudes of the modulation sidebands. Higher-frequency bias tones were more efficient in producing the suppression and modulation. Quasi-static modulation patterns were derived from measuring the CDT amplitude at the peaks and troughs of bias tones with various amplitudes. The asymmetric bell-shaped pattern resembled the absolute value of the third derivative of a nonlinear cochlear transducer function. Temporal modulation patterns were obtained from inverse FFT of the spectral contents around the DPOAE. The period modulation pattern, averaged over multiple bias tone cycles, showed two CDT peaks each correlated with the zero-crossings of the bias tone. The typical period modulation pattern varied and the two CDT peaks emerged with the reduction in bias tone level. The present study replicated the previous experimental results in gerbils. This noninvasive technique is capable of revealing the static position and dynamic motion of the cochlear partition. Moreover, the results of the present study suggest that this technique could potentially be applied in the differential diagnosis of cochlear pathologies.
Collapse
Affiliation(s)
- Lin Bian
- Auditory Physiology Laboratory, 3430 Coor Hall, Department of Speech and Hearing Science, Arizona State University, Tempe, Arizona 85287-0102, USA.
| | | |
Collapse
|
38
|
Benda J, Gollisch T, Machens CK, Herz AV. From response to stimulus: adaptive sampling in sensory physiology. Curr Opin Neurobiol 2007; 17:430-6. [PMID: 17689952 DOI: 10.1016/j.conb.2007.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 07/12/2007] [Indexed: 11/21/2022]
Abstract
Sensory systems extract behaviorally relevant information from a continuous stream of complex high-dimensional input signals. Understanding the detailed dynamics and precise neural code, even of a single neuron, is therefore a non-trivial task. Automated closed-loop approaches that integrate data analysis in the experimental design ease the investigation of sensory systems in three directions: First, adaptive sampling speeds up the data acquisition and thus increases the yield of an experiment. Second, model-driven stimulus exploration improves the quality of experimental data needed to discriminate between alternative hypotheses. Third, information-theoretic data analyses open up novel ways to search for those stimuli that are most efficient in driving a given neuron in terms of its firing rate or coding quality. Examples from different sensory systems show that, in all three directions, substantial progress can be achieved once rapid online data analysis, adaptive sampling, and computational modeling are tightly integrated into experiments.
Collapse
Affiliation(s)
- Jan Benda
- Department of Biology and Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | | | | | | |
Collapse
|
39
|
Rhode WS. Mutual suppression in the 6 kHz region of sensitive chinchilla cochleae. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 121:2805-18. [PMID: 17550179 DOI: 10.1121/1.2718398] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Basilar membrane (BM) vibration was measured using a displacement measuring interferometer for single-tone and two-tone suppression (2TS) paradigms in the 6-9 kHz region of sensitive chinchilla cochleae that had gains near or better than 60 dB. Based on prior studies of basilar membrane vibration, three significant differences remain between BM and auditory nerve (AN) 2TS responses: (1) suppression thresholds in the tail of tuning curves were much higher in BM than the auditory nerve (AN); (2) rates of suppression were significantly higher in AN than BM; and (3) the amplitude of vibration with low-frequency suppressors was always greater than the single-tone displacement rendering it impossible to explain 2TS rate suppression in the AN. The first two differences are eliminated by the results of the present study while the third remains. Suppression amplitudes greater than 40 dB and rates of suppression larger than 2.5 dB/dB were found for low-frequency suppressors. A correlation between both the gain and nonlinearity of the cochlea and 2TS properties indicates that when sensitive cochleae are studied. The third difference between BM and AN behavior could be strictly a function of the high-pass filter characteristic of the inner hair cells.
Collapse
Affiliation(s)
- William S Rhode
- Department of Physiology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| |
Collapse
|
40
|
Yasin I, Plack CJ. The role of suppression in the upward spread of masking. J Assoc Res Otolaryngol 2006; 6:368-77. [PMID: 16261268 PMCID: PMC2504625 DOI: 10.1007/s10162-005-0014-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 08/11/2005] [Indexed: 11/29/2022] Open
Abstract
The upward spread of masking refers to the higher growth rate of masking for maskers lower in frequency than the signal, compared to maskers at the signal frequency (Wegel RL, Lane CE. The auditory masking of one pure tone by another and its possible relation to the dynamics of the inner ear. Physics Rev. 23:266-285, 1924; Egan JP, Hake HW. On the masking pattern of a simple auditory stimulus. J. Acoust. Soc. Am. 22:622-630, 1950; Delgutte B. Physiological mechanisms of psychophysical masking: Observations from auditory-nerve fibres. J. Acoust. Soc. Am. 87:791-809, 1990a, Delgutte B. Two-tone rate suppression in auditory-nerve fibres: Dependence on suppressor frequency and level. Hear Res. 49:225-246, 1990b). The upward spread of simultaneous masking may arise from a combination of excitatory and suppressive effects. In this study, growth of masking functions were obtained for a 4-kHz signal masked by an on-frequency (4 kHz) or off-frequency (2.4 kHz), simultaneous or forward masker, in the presence of a notched noise with a center frequency of 4 kHz presented to restrict off-frequency listening. Compression was estimated from the slopes of the off-frequency growth of masking functions. Suppression was estimated by comparing the off-frequency simultaneous- and forward-masked growth of masking functions. Results showed that, for midlevel signals (35-60 dB SPL), the compression exponent estimated from simultaneous and forward masking averaged 0.31 and 0.26, respectively. The maximum amount of suppression (defined as the decrease in the basilar-membrane response to the signal) was variable, ranging from about 6 to 17 dB across subjects. Despite the substantial reduction in the response to the signal, the results suggest that suppression has a minimal effect on the slope of the masking function at mid levels. Rather, upward spread of masking seems to be mainly determined by the compressive basilar-membrane response to the signal in relation to the linear response to the lower-frequency masker.
Collapse
Affiliation(s)
- Ifat Yasin
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, UK.
| | | |
Collapse
|
41
|
Fridberger A, de Monvel JB, Zheng J, Hu N, Zou Y, Ren T, Nuttall A. Organ of Corti potentials and the motion of the basilar membrane. J Neurosci 2005; 24:10057-63. [PMID: 15537874 PMCID: PMC6730184 DOI: 10.1523/jneurosci.2711-04.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During sound stimulation, receptor potentials are generated within the sensory hair cells of the cochlea. Prevailing theory states that outer hair cells use the potential-sensitive motor protein prestin to convert receptor potentials into fast alterations of cellular length or stiffness that boost hearing sensitivity almost 1000-fold. However, receptor potentials are attenuated by the filter formed by the capacitance and resistance of the membrane of the cell. This attenuation would limit cellular motility at high stimulus frequencies, rendering the above scheme ineffective. Therefore, Dallos and Evans (1995a) proposed that extracellular potential changes within the organ of Corti could drive cellular motor proteins. These extracellular potentials are not filtered by the membrane. To test this theory, both electric potentials inside the organ of Corti and basilar membrane vibration were measured in response to acoustic stimulation. Vibrations were measured at sites very close to those interrogated by the recording electrode using laser interferometry. Close comparison of the measured electrical and mechanical tuning curves and time waveforms and their phase relationships revealed that those extracellular potentials indeed could drive outer hair cell motors. However, to achieve the sharp frequency tuning that characterizes the basilar membrane, additional mechanical processing must occur inside the organ of Corti.
Collapse
Affiliation(s)
- Anders Fridberger
- Center for Hearing and Communication Research, Department of Clinical Neuroscience, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The nonlinear cochlear phenomenon of two-tone suppression is known to be very fast, but precisely how fast is unknown. We studied the timing of low-side suppression in the auditory nerve of the cat using multitone complexes as auditory stimuli. An evalution of the group delays of the responses to these complexes allowed us to measure the timing of the responses with sub-millisecond accuracy for a large number of fibers with characteristic frequencies (CFs) between 2 and 40 kHz. In particular, we measured the delays with which the same below-CF tone complexes affected the response either as an excitor (when presented alone) or as a suppressor (when combined with a CF probe). For CFs <10 kHz, we found that the delay of suppression was larger than the delay of excitation by several hundred microseconds. The difference between the delay of suppression and that of excitation decreased with increasing CF, becoming negligible for CFs >15 kHz. The results are analyzed in terms of traveling-wave delays and a purported cochlear gain control. The data suggest that suppression originates from a gain-control mechanism with an integration time in the order of two cycles of CF.
Collapse
Affiliation(s)
- Marcel van der Heijden
- Laboratory of Auditory, Neurophysiology, O. and N. Campus Gasthuisberg, Herestraat 49 - bus 801, B-3000 Leuven, Belgium.
| | | |
Collapse
|
43
|
Choi CH, Chertoff ME, Bian L, Lerner D. Constructing a cochlear transducer function from the summating potential using a low-frequency bias tone. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2004; 116:2996-3007. [PMID: 15603145 DOI: 10.1121/1.1791722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A new method is developed to construct a cochlear transducer function using modulation of the summating potential (SP), a dc component of the electrical response of the cochlea to a sinusoid. It is mathematically shown that the magnitude of the SP is determined by the even-order terms of the power series representing a nonlinear function. The relationship between the SP magnitudes and the second derivative of the transducer function was determined by using a low-frequency bias tone to position a high-frequency probe tone at different places along the cochlear transducer function. Two probe tones (6 kHz and 12 kHz) ranging from 70 to 90 dB SPL and a 25-Hz bias tone at 130 dB SPL were simultaneously presented. Electric responses from the cochlea were recorded by an electrode placed at the round window to obtain the SP magnitudes. The experimental results from eight animals demonstrated that the SP magnitudes as a function of bias levels are essentially proportional to the second derivative of a sigmoidal Boltzmann function. This suggests that the low-frequency modulated SP amplitude can be used to construct a cochlear transducer function.
Collapse
Affiliation(s)
- Chul-Hee Choi
- Bobby R Alford Department of Otorhinolaryngology and Communicative Sciences, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
44
|
Schairer KS, Fitzpatrick D, Keefe DH. Input-output functions for stimulus-frequency otoacoustic emissions in normal-hearing adult ears. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2003; 114:944-66. [PMID: 12942975 DOI: 10.1121/1.1592799] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Input-output (I/O) functions for stimulus-frequency (SFOAE) and distortion-product (DPOAE) otoacoustic emissions were recorded in 30 normal-hearing adult ears using a nonlinear residual method. SFOAEs were recorded at half octaves from 500-8000 Hz in an L1=L2 paradigm with L2=0 to 85 dB SPL, and in a paradigm with L1 fixed and L2 varied. DPOAEs were elicited with primary levels of Kummer et al. [J. Acoust. Soc. Am. 103, 3431-3444 (1998)] at f2 frequencies of 2000 and 4000 Hz. Interpretable SFOAE responses were obtained from 1000-6000 Hz in the equal-level paradigm. SFOAE levels were larger than DPOAEs levels, signal-to-noise ratios were smaller, and I/O functions were less compressive. A two-slope model of SFOAE I/O functions predicted the low-level round-trip attenuation, the breakpoint between linearity and compression, and compressive slope. In ear but not coupler recordings, the noise at the SFOAE frequency increased with increasing level (above 60 dB SPL), whereas noise at adjacent frequencies did not. This suggests the existence of a source of signal-dependent noise producing cochlear variability, which is predicted to influence basilar-membrane motion and neural responses. A repeatable pattern of notched SFOAE I/O functions was present in some ears, and explained using a two-source mechanism of SFOAE generation.
Collapse
Affiliation(s)
- Kim S Schairer
- Center for Hearing Research, Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA.
| | | | | |
Collapse
|
45
|
Yasin I, Plack CJ. The effects of a high-frequency suppressor on tuning curves and derived basilar-membrane response functions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2003; 114:322-332. [PMID: 12880044 DOI: 10.1121/1.1579003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Forward-masked psychophysical tuning curves were obtained using a fixed, low-level signal at a frequency of 4 kHz, and masker frequencies of 2.0, 2.5, 3.0, 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0, and 5.5 kHz, at masker-signal gaps of 20, 30, 40, 60, 80, and 100 ms. An adaptive two-interval, two alternative forced-choice (21-2AFC) procedure was used to obtain the masker level at threshold. This procedure was repeated with the addition of a 4.75-kHz suppressor at 50 or 60 dB SPL, gated with the masker. Tuning curves were broader, and estimates of compression and gain from derived input/output functions were decreased in the presence of a suppressor as compared to the no-suppressor condition. The results are consistent with physiological results, which show that suppression leads to a broadening of tuning curves and a partial linearization of the midlevel portion of the basilar-membrane input/output function.
Collapse
Affiliation(s)
- Ifat Yasin
- Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England.
| | | |
Collapse
|
46
|
Rhode WS, Recio A. Multicomponent stimulus interactions observed in basilar-membrane vibration in the basal region of the chinchilla cochlea. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2001; 110:3140-3154. [PMID: 11785815 DOI: 10.1121/1.1416198] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Multicomponent stimuli consisting of two to seven tones were used to study suppression of basilar-membrane vibration at the 3-4-mm region of the chinchilla cochlea with a characteristic frequency between 6.5 and 8.5 kHz. Three-component stimuli were amplitude-modulated sinusoids (AM) with modulation depth varied between 0.25 and 2 and modulation frequency varied between 100 and 2000 Hz. For five-component stimuli of equal amplitude, frequency separation between adjacent components was the same as that used for AM stimuli. An additional manipulation was to position either the first, third, or fifth component at the characteristic frequency (CF). This allowed the study of the basilar-membrane response to off-CF stimuli. CF suppression was as high as 35 dB for two-tone combinations, while for equal-amplitude stimulus components CF suppression never exceeded 20 dB. This latter case occurred for both two-tone stimuli where the suppressor was below CF and for multitone stimuli with the third component=CF. Suppression was least for the AM stimuli, including when the three AM components were equal. Maximum suppression was both level- and frequency dependent, and occurred for component frequency separations of 500 to 600 Hz. Suppression decreased for multicomponent stimuli with component frequency spacing greater than 600 Hz. Mutual suppression occurred whenever stimulus components were within the compressive region of the basilar membrane.
Collapse
Affiliation(s)
- W S Rhode
- Department of Physiology, University of Wisconsin, Madison 53706, USA.
| | | |
Collapse
|
47
|
Nelson DA, Schroder AC, Wojtczak M. A new procedure for measuring peripheral compression in normal-hearing and hearing-impaired listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2001; 110:2045-2064. [PMID: 11681384 DOI: 10.1121/1.1404439] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Forward-masking growth functions for on-frequency (6-kHz) and off-frequency (3-kHz) sinusoidal maskers were measured in quiet and in a high-pass noise just above the 6-kHz probe frequency. The data show that estimates of response-growth rates obtained from those functions in quiet, which have been used to infer cochlear compression, are strongly dependent on the spread of probe excitation toward higher frequency regions. Therefore, an alternative procedure for measuring response-growth rates was proposed, one that employs a fixed low-level probe and avoids level-dependent spread of probe excitation. Fixed-probe-level temporal masking curves (TMCs) were obtained from normal-hearing listeners at a test frequency of 1 kHz, where the short 1-kHz probe was fixed in level at about 10 dB SL. The level of the preceding forward masker was adjusted to obtain masked threshold as a function of the time delay between masker and probe. The TMCs were obtained for an on-frequency masker (1 kHz) and for other maskers with frequencies both below and above the probe frequency. From these measurements, input/output response-growth curves were derived for individual ears. Response-growth slopes varied from >1.0 at low masker levels to <0.2 at mid masker levels. In three subjects, response growth increased again at high masker levels (>80 dB SPL). For the fixed-level probe, the TMC slopes changed very little in the presence of a high-pass noise masking upward spread of probe excitation. A greater effect on the TMCs was observed when a high-frequency cueing tone was used with the masking tone. In both cases, however, the net effects on the estimated rate of response growth were minimal.
Collapse
Affiliation(s)
- D A Nelson
- Department of Otolaryngology, University of Minnesota, Minneapolis 55455, USA.
| | | | | |
Collapse
|
48
|
Abstract
In mammals, environmental sounds stimulate the auditory receptor, the cochlea, via vibrations of the stapes, the innermost of the middle ear ossicles. These vibrations produce displacement waves that travel on the elongated and spirally wound basilar membrane (BM). As they travel, waves grow in amplitude, reaching a maximum and then dying out. The location of maximum BM motion is a function of stimulus frequency, with high-frequency waves being localized to the "base" of the cochlea (near the stapes) and low-frequency waves approaching the "apex" of the cochlea. Thus each cochlear site has a characteristic frequency (CF), to which it responds maximally. BM vibrations produce motion of hair cell stereocilia, which gates stereociliar transduction channels leading to the generation of hair cell receptor potentials and the excitation of afferent auditory nerve fibers. At the base of the cochlea, BM motion exhibits a CF-specific and level-dependent compressive nonlinearity such that responses to low-level, near-CF stimuli are sensitive and sharply frequency-tuned and responses to intense stimuli are insensitive and poorly tuned. The high sensitivity and sharp-frequency tuning, as well as compression and other nonlinearities (two-tone suppression and intermodulation distortion), are highly labile, indicating the presence in normal cochleae of a positive feedback from the organ of Corti, the "cochlear amplifier." This mechanism involves forces generated by the outer hair cells and controlled, directly or indirectly, by their transduction currents. At the apex of the cochlea, nonlinearities appear to be less prominent than at the base, perhaps implying that the cochlear amplifier plays a lesser role in determining apical mechanical responses to sound. Whether at the base or the apex, the properties of BM vibration adequately account for most frequency-specific properties of the responses to sound of auditory nerve fibers.
Collapse
Affiliation(s)
- L Robles
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Programa Disciplinario de Fisiología y Biofísica, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
49
|
Yoshikawa H, Smurzynski J, Probst R. Suppression of tone burst evoked otoacoustic emissions in relation to frequency separation. Hear Res 2000; 148:95-106. [PMID: 10978828 DOI: 10.1016/s0378-5955(00)00144-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tone burst evoked otoacoustic emissions (TBEOAEs) were measured for two tone bursts presented separately and as a two-tone burst complex to examine the linearity of TBEOAE generators for different frequency separations of the stimuli. The stimuli were: (a) tone bursts of 5-ms duration and center frequencies of 1, 1.5, 2 and 3 kHz; (b) complex stimuli with the 1-kHz tone burst combined digitally with each of the other specified tone bursts. Signals were delivered at 70 dB SPL using a non-linear processing method and at 60 dB SPL using a linear method to 21 ears of normally hearing adults. Spectra of TBEOAEs obtained with single-tone bursts were superimposed (composite) and compared to those of the two-tone burst complex. A close correspondence between the composite and complex spectra was present in all ears. However, the components on the higher-frequency slope of the 1-kHz spectral peak were reduced in the complex spectra obtained with a frequency separation of 0.5 kHz when compared to the corresponding composite spectra. The reduction was greater at a stimulus level of 70 dB SPL than with 60 dB SPL. The effect was smaller for a frequency separation of 1 kHz, and almost absent for the tone burst separation of 2 kHz. Thus, suppression leads to weak non-linear frequency superposition for higher-level, closely spaced stimuli.
Collapse
Affiliation(s)
- H Yoshikawa
- Department of Otorhinolaryngology, Juntendo University School of Medicine, Hongo, Tokyo, Japan
| | | | | |
Collapse
|
50
|
Yates GK, Manley GA, Köppl C. Rate-intensity functions in the emu auditory nerve. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2000; 107:2143-2154. [PMID: 10790040 DOI: 10.1121/1.428496] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rate-versus-intensity functions recorded from mammalian auditory-nerve fibers have been shown to form a continuum of shapes, ranging from saturating to straight and correlating well with spontaneous rate and sensitivity. These variations are believed to be a consequence of the interaction between the sensitivity of the hair-cell afferent synapse and the nonlinear, compressive growth of the cochlear amplifier that enhances mechanical vibrations on the basilar membrane. Little is known, however, about the cochlear amplifier in other vertebrate species. Rate-intensity functions were recorded from auditory-nerve fibers in chicks of the emu, a member of the Ratites, a primitive group of flightless birds that have poorly differentiated short and tall hair cells. Recorded data were found to be well fitted by analytical functions which have previously been shown to represent well the shapes of rate-intensity functions in guinea pigs. At the fibers' most sensitive frequencies, rate-intensity functions were almost exclusively of the sloping (80.9%) or straight (18.6%) type. Flat-saturating functions, the most common type in the mammal, represented only about 0.5% of the total in the emu. Below the best frequency of each fiber, the rate-intensity functions tended more towards the flat-saturating type, as is the case in mammals; a similar but weaker trend was seen above best frequency in most fibers, with only a small proportion (18%) showing the reverse trend. The emu rate-intensity functions were accepted as supporting previous evidence for the existence of a cochlear amplifier in birds, the conclusion was drawn further that the nonlinearity observed is probably due to saturation of the hair-cell transduction mechanism.
Collapse
Affiliation(s)
- G K Yates
- Department of Physiology, The University of Western Australia, Nedlands. Australia.
| | | | | |
Collapse
|