1
|
Lee C, Sinha AK, Henry K, Walbaum AW, Crooks PA, Holt JC. Characterizing the Access of Cholinergic Antagonists to Efferent Synapses in the Inner Ear. Front Neurosci 2022; 15:754585. [PMID: 34970112 PMCID: PMC8712681 DOI: 10.3389/fnins.2021.754585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Stimulation of cholinergic efferent neurons innervating the inner ear has profound, well-characterized effects on vestibular and auditory physiology, after activating distinct ACh receptors (AChRs) on afferents and hair cells in peripheral endorgans. Efferent-mediated fast and slow excitation of vestibular afferents are mediated by α4β2*-containing nicotinic AChRs (nAChRs) and muscarinic AChRs (mAChRs), respectively. On the auditory side, efferent-mediated suppression of distortion product otoacoustic emissions (DPOAEs) is mediated by α9α10nAChRs. Previous characterization of these synaptic mechanisms utilized cholinergic drugs, that when systemically administered, also reach the CNS, which may limit their utility in probing efferent function without also considering central effects. Use of peripherally-acting cholinergic drugs with local application strategies may be useful, but this approach has remained relatively unexplored. Using multiple administration routes, we performed a combination of vestibular afferent and DPOAE recordings during efferent stimulation in mouse and turtle to determine whether charged mAChR or α9α10nAChR antagonists, with little CNS entry, can still engage efferent synaptic targets in the inner ear. The charged mAChR antagonists glycopyrrolate and methscopolamine blocked efferent-mediated slow excitation of mouse vestibular afferents following intraperitoneal, middle ear, or direct perilymphatic administration. Both mAChR antagonists were effective when delivered to the middle ear, contralateral to the side of afferent recordings, suggesting they gain vascular access after first entering the perilymphatic compartment. In contrast, charged α9α10nAChR antagonists blocked efferent-mediated suppression of DPOAEs only upon direct perilymphatic application, but failed to reach efferent synapses when systemically administered. These data show that efferent mechanisms are viable targets for further characterizing drug access in the inner ear.
Collapse
Affiliation(s)
- Choongheon Lee
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
| | - Anjali K Sinha
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Kenneth Henry
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States.,Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Anqi W Walbaum
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Joseph C Holt
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States.,Department of Neuroscience, University of Rochester, Rochester, NY, United States.,Department of Pharmacology & Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
2
|
The mammalian efferent vestibular system utilizes cholinergic mechanisms to excite primary vestibular afferents. Sci Rep 2021; 11:1231. [PMID: 33441862 PMCID: PMC7806594 DOI: 10.1038/s41598-020-80367-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
Electrical stimulation of the mammalian efferent vestibular system (EVS) predominantly excites primary vestibular afferents along two distinct time scales. Although roles for acetylcholine (ACh) have been demonstrated in other vertebrates, synaptic mechanisms underlying mammalian EVS actions are not well-characterized. To determine if activation of ACh receptors account for efferent-mediated afferent excitation in mammals, we recorded afferent activity from the superior vestibular nerve of anesthetized C57BL/6 mice while stimulating EVS neurons in the brainstem, before and after administration of cholinergic antagonists. Using a normalized coefficient of variation (CV*), we broadly classified vestibular afferents as regularly- (CV* < 0.1) or irregularly-discharging (CV* > 0.1) and characterized their responses to midline or ipsilateral EVS stimulation. Afferent responses to efferent stimulation were predominantly excitatory, grew in amplitude with increasing CV*, and consisted of fast and slow components that could be identified by differences in rise time and post-stimulus duration. Both efferent-mediated excitatory components were larger in irregular afferents with ipsilateral EVS stimulation. Our pharmacological data show, for the first time in mammals, that muscarinic AChR antagonists block efferent-mediated slow excitation whereas the nicotinic AChR antagonist DHβE selectively blocks efferent-mediated fast excitation, while leaving the efferent-mediated slow component intact. These data confirm that mammalian EVS actions are predominantly cholinergic.
Collapse
|
3
|
Effects of Efferent Activity on Hair Bundle Mechanics. J Neurosci 2020; 40:2390-2402. [PMID: 32086256 DOI: 10.1523/jneurosci.1312-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/31/2020] [Accepted: 02/09/2020] [Indexed: 11/21/2022] Open
Abstract
Hair cells in both the auditory and vestibular systems receive efferent innervation. A number of prior studies have indicated that efferent regulation serves to diminish the overall sensitivity of the auditory system. The efferent pathway is believed to affect the sensitivity and frequency selectivity of the hair cell by modulating its membrane potential. However, its effect on the mechanical response of the hair cell has not been established. We explored how stimulation of the efferent neurons affects the mechanical responsiveness of an individual hair bundle. We tested this effect on in vitro preparations of hair cells in the sacculi of American bullfrogs of both genders. Efferent stimulation routinely resulted in an immediate increase of the frequency of hair bundle spontaneous oscillations for the duration of the stimulus. Enlarging the stimulus amplitude and pulse length, or conversely, decreasing the interpulse interval led to oscillation suppression. Additionally, we tested the effects of efference on the hair bundle response to mechanical stimulation. The receptive field maps of hair cells undergoing efferent actuation demonstrated an overall desensitization with respect to those of unstimulated cells.SIGNIFICANCE STATEMENT The efferent system is an important aide for the performance of the auditory system. It has been seen to contribute to sound detection and localization, ototoxicity prevention, and speech comprehension. Although measurements have demonstrated that efference suppresses basilar membrane movement, there is still much unknown about how efferent activity affects hearing mechanics. Here, we explore the mechanical basis for the efferent system's capabilities at the level of the hair bundle. We present optical recordings, receptive field maps, and sensitivity curves that show a hair bundle is desensitized by efferent stimulation. This supports the hypothesis that efferent regulation may be a biological control parameter for tuning the hair bundle's mechanical sensitivity.
Collapse
|
4
|
Poppi LA, Holt JC, Lim R, Brichta AM. A review of efferent cholinergic synaptic transmission in the vestibular periphery and its functional implications. J Neurophysiol 2019; 123:608-629. [PMID: 31800345 DOI: 10.1152/jn.00053.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been over 60 years since peripheral efferent vestibular terminals were first identified in mammals, and yet the function of the efferent vestibular system remains obscure. One reason for the lack of progress may be due to our deficient understanding of the peripheral efferent synapse. Although vestibular efferent terminals were identified as cholinergic less than a decade after their anatomical characterization, the cellular mechanisms that underlie the properties of these synapses have had to be inferred. In this review we examine how recent mammalian studies have begun to reveal both nicotinic and muscarinic effects at these terminals and therefore provide a context for fast and slow responses observed in classic electrophysiological studies of the mammalian efferent vestibular system, nearly 40 years ago. Although incomplete, these new results together with those of recent behavioral studies are helping to unravel the mysterious and perplexing action of the efferent vestibular system. Armed with this information, we may finally appreciate the behavioral framework in which the efferent vestibular system operates.
Collapse
Affiliation(s)
- L A Poppi
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Preclinical Neurobiology Research Group, The University of Newcastle, Newcastle, NSW, Australia
| | - J C Holt
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, New York
| | - R Lim
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Preclinical Neurobiology Research Group, The University of Newcastle, Newcastle, NSW, Australia
| | - A M Brichta
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Preclinical Neurobiology Research Group, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
5
|
Voltage-Gated Calcium Influx Modifies Cholinergic Inhibition of Inner Hair Cells in the Immature Rat Cochlea. J Neurosci 2018; 38:5677-5687. [PMID: 29789373 DOI: 10.1523/jneurosci.0230-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 11/21/2022] Open
Abstract
Until postnatal day (P) 12, inner hair cells of the rat cochlea are invested with both afferent and efferent synaptic connections. With the onset of hearing at P12, the efferent synapses disappear, and afferent (ribbon) synapses operate with greater efficiency. This change coincides with increased expression of voltage-gated potassium channels, the loss of calcium-dependent electrogenesis, and the onset of graded receptor potentials driven by sound. The transient efferent synapses include near-membrane postsynaptic cisterns thought to regulate calcium influx through the hair cell's α9-containing and α10-containing nicotinic acetylcholine receptors. This influx activates small-conductance Ca2+-activated K+ (SK) channels. Serial-section electron microscopy of inner hair cells from two 9-d-old (male) rat pups revealed many postsynaptic efferent cisterns and presynaptic afferent ribbons whose average minimal separation in five cells ranged from 1.1 to 1.7 μm. Efferent synaptic function was studied in rat pups (age, 7-9 d) of either sex. The duration of these SK channel-mediated IPSCs was increased by enhanced calcium influx through L-type voltage-gated channels, combined with ryanodine-sensitive release from internal stores-presumably the near-membrane postsynaptic cistern. These data support the possibility that inner hair cell calcium electrogenesis modulates the efficacy of efferent inhibition during the maturation of inner hair cell synapses.SIGNIFICANCE STATEMENT Strict calcium buffering is essential for cellular function. This problem is especially acute for compact hair cells where increasing cytoplasmic calcium promotes the opposing functions of closely adjoining afferent and efferent synapses. The near-membrane postsynaptic cistern at efferent synapses segregates synaptic calcium signals by acting as a dynamic calcium store. The hair cell serves as an informative model for synapses with postsynaptic cisterns (C synapses) found in central neurons.
Collapse
|
6
|
Pastras CJ, Curthoys IS, Sokolic L, Brown DJ. Suppression of the vestibular short-latency evoked potential by electrical stimulation of the central vestibular system. Hear Res 2018; 361:23-35. [DOI: 10.1016/j.heares.2018.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 01/12/2023]
|
7
|
Guo CK. Existence of nicotinic receptors in a subset of type I vestibular hair cells of guinea pigs. Brain Res 2018; 1681:85-90. [PMID: 29294348 DOI: 10.1016/j.brainres.2017.12.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 11/19/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
In mammals, vestibular hair cells (VHCs) are classified as type I and II according to morphological criteria. Acetylcholine (ACh) is identified as the primary efferent neurotransmitter. To date, cholinergic activities have been reported in mammalian type II VHCs, but similar activities in type I VHCs have not been pursued presumably because the body of type I VHCs were suggested to be totally surrounded by afferent nerve calyces. A few reports showed that part of type I VHCs were incompletely surrounded by calyces and received contact from the efferent nerve endings in the mammals studied. The possibility of the expression of cholinergic receptors, their subunit composition, and their function in mammals' type I VHCs are still unclear. In this study, nicotinic responses were investigated by the whole-cell patch clamp technique in isolated type I VHCs of guinea pigs. Of the cells, 7.3% were sensitive to cholinergic agonists and showed an excitatory current at -40 mV which was not sensitive to nifedipine, iberiotoxin (IBTX), and apamin. The main carriers of this current were Na+ and K+. The rank order of activation potency was nicotine > 1,1-dimethyl-4-phenyl-piperazinium (DMPP) > ACh. These nicotinic ACh receptors (nAChRs) were not blocked by strychnine and α-bungarotoxin (α-BTX), but sensitive to d-tubocurarine (dTC) and mecamylamine (Mec). The findings provide physiological evidence that some subtypes of nAChRs may be located in a subset of type I VHCs, which were different from α9α10 nAChRs.
Collapse
Affiliation(s)
- Chang-Kai Guo
- Shoujia ENT Hospital, 180 Jiefang Avenue, Qiaokou District, Wuhan 430033, China.
| |
Collapse
|
8
|
Poppi LA, Tabatabaee H, Drury HR, Jobling P, Callister RJ, Migliaccio AA, Jordan PM, Holt JC, Rabbitt RD, Lim R, Brichta AM. ACh-induced hyperpolarization and decreased resistance in mammalian type II vestibular hair cells. J Neurophysiol 2017; 119:312-325. [PMID: 28978760 DOI: 10.1152/jn.00030.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In the mammalian vestibular periphery, electrical activation of the efferent vestibular system (EVS) has two effects on afferent activity: 1) it increases background afferent discharge and 2) decreases afferent sensitivity to rotational stimuli. Although the cellular mechanisms underlying these two contrasting afferent responses remain obscure, we postulated that the reduction in afferent sensitivity was attributed, in part, to the activation of α9- containing nicotinic acetylcholine (ACh) receptors (α9*nAChRs) and small-conductance potassium channels (SK) in vestibular type II hair cells, as demonstrated in the peripheral vestibular system of other vertebrates. To test this hypothesis, we examined the effects of the predominant EVS neurotransmitter ACh on vestibular type II hair cells from wild-type (wt) and α9-subunit nAChR knockout (α9-/-) mice. Immunostaining for choline acetyltransferase revealed there were no obvious gross morphological differences in the peripheral EVS innervation among any of these strains. ACh application onto wt type II hair cells, at resting potentials, produced a fast inward current followed by a slower outward current, resulting in membrane hyperpolarization and decreased membrane resistance. Hyperpolarization and decreased resistance were due to gating of SK channels. Consistent with activation of α9*nAChRs and SK channels, these ACh-sensitive currents were antagonized by the α9*nAChR blocker strychnine and SK blockers apamin and tamapin. Type II hair cells from α9-/- mice, however, failed to respond to ACh at all. These results confirm the critical importance of α9nAChRs in efferent modulation of mammalian type II vestibular hair cells. Application of exogenous ACh reduces electrical impedance, thereby decreasing type II hair cell sensitivity. NEW & NOTEWORTHY Expression of α9 nicotinic subunit was crucial for fast cholinergic modulation of mammalian vestibular type II hair cells. These findings show a multifaceted efferent mechanism for altering hair cell membrane potential and decreasing membrane resistance that should reduce sensitivity to hair bundle displacements.
Collapse
Affiliation(s)
- Lauren A Poppi
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute , Newcastle, New South Wales , Australia
| | - Hessam Tabatabaee
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute , Newcastle, New South Wales , Australia
| | - Hannah R Drury
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute , Newcastle, New South Wales , Australia
| | - Phillip Jobling
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute , Newcastle, New South Wales , Australia
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute , Newcastle, New South Wales , Australia
| | | | - Paivi M Jordan
- Department of Otolaryngology, University of Rochester , Rochester, New York
| | - Joseph C Holt
- Department of Otolaryngology, University of Rochester , Rochester, New York
| | - Richard D Rabbitt
- Department of Bioengineering, University of Utah , Salt Lake City, Utah
| | - Rebecca Lim
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute , Newcastle, New South Wales , Australia
| | - Alan M Brichta
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute , Newcastle, New South Wales , Australia
| |
Collapse
|
9
|
Mathews MA, Camp AJ, Murray AJ. Reviewing the Role of the Efferent Vestibular System in Motor and Vestibular Circuits. Front Physiol 2017; 8:552. [PMID: 28824449 PMCID: PMC5539236 DOI: 10.3389/fphys.2017.00552] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/17/2017] [Indexed: 12/31/2022] Open
Abstract
Efferent circuits within the nervous system carry nerve impulses from the central nervous system to sensory end organs. Vestibular efferents originate in the brainstem and terminate on hair cells and primary afferent fibers in the semicircular canals and otolith organs within the inner ear. The function of this efferent vestibular system (EVS) in vestibular and motor coordination though, has proven difficult to determine, and remains under debate. We consider current literature that implicate corollary discharge from the spinal cord through the efferent vestibular nucleus (EVN), and hint at a potential role in overall vestibular plasticity and compensation. Hypotheses range from differentiating between passive and active movements at the level of vestibular afferents, to EVS activation under specific behavioral and environmental contexts such as arousal, predation, and locomotion. In this review, we summarize current knowledge of EVS circuitry, its effects on vestibular hair cell and primary afferent activity, and discuss its potential functional roles.
Collapse
Affiliation(s)
- Miranda A Mathews
- Sensory Systems and Integration Laboratory, Bosch Institute, Discipline of Biomedical Science, University of SydneySydney, NSW, Australia
| | - Aaron J Camp
- Sensory Systems and Integration Laboratory, Bosch Institute, Discipline of Biomedical Science, University of SydneySydney, NSW, Australia
| | - Andrew J Murray
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondon, United Kingdom
| |
Collapse
|
10
|
Pharmacologically distinct nicotinic acetylcholine receptors drive efferent-mediated excitation in calyx-bearing vestibular afferents. J Neurosci 2015; 35:3625-43. [PMID: 25716861 DOI: 10.1523/jneurosci.3388-14.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Electrical stimulation of vestibular efferent neurons rapidly excites the resting discharge of calyx/dimorphic (CD) afferents. In turtle, this excitation arises when acetylcholine (ACh), released from efferent terminals, directly depolarizes calyceal endings by activating nicotinic ACh receptors (nAChRs). Although molecular biological data from the peripheral vestibular system implicate most of the known nAChR subunits, specific information about those contributing to efferent-mediated excitation of CD afferents is lacking. We sought to identify the nAChR subunits that underlie the rapid excitation of CD afferents and whether they differ from α9α10 nAChRs on type II hair cells that drive efferent-mediated inhibition in adjacent bouton afferents. We recorded from CD and bouton afferents innervating the turtle posterior crista during electrical stimulation of vestibular efferents while applying several subtype-selective nAChR agonists and antagonists. The α9α10 nAChR antagonists, α-bungarotoxin and α-conotoxin RgIA, blocked efferent-mediated inhibition in bouton afferents while leaving efferent-mediated excitation in CD units largely intact. Conversely, 5-iodo-A-85380, sazetidine-A, varenicline, α-conotoxin MII, and bPiDDB (N,N-dodecane-1,12-diyl-bis-3-picolinium dibromide) blocked efferent-mediated excitation in CD afferents without affecting efferent-mediated inhibition in bouton afferents. This pharmacological profile suggested that calyceal nAChRs contain α6 and β2, but not α9, nAChR subunits. Selective blockade of efferent-mediated excitation in CD afferents distinguished dimorphic from calyx afferents by revealing type II hair cell input. Dimorphic afferents differed in having higher mean discharge rates and a mean efferent-mediated excitation that was smaller in amplitude yet longer in duration. Molecular biological data demonstrated the expression of α9 in turtle hair cells and α4 and β2 in associated vestibular ganglia.
Collapse
|
11
|
Im GJ, Moskowitz HS, Lehar M, Hiel H, Fuchs PA. Synaptic calcium regulation in hair cells of the chicken basilar papilla. J Neurosci 2014; 34:16688-97. [PMID: 25505321 PMCID: PMC4261095 DOI: 10.1523/jneurosci.2615-14.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/26/2014] [Accepted: 10/30/2014] [Indexed: 11/21/2022] Open
Abstract
Cholinergic inhibition of hair cells occurs by activation of calcium-dependent potassium channels. A near-membrane postsynaptic cistern has been proposed to serve as a store from which calcium is released to supplement influx through the ionotropic ACh receptor. However, the time and voltage dependence of acetylcholine (ACh)-evoked potassium currents reveal a more complex relationship between calcium entry and release from stores. The present work uses voltage steps to regulate calcium influx during the application of ACh to hair cells in the chicken basilar papilla. When calcium influx was terminated at positive membrane potential, the ACh-evoked potassium current decayed exponentially over ∼100 ms. However, at negative membrane potentials, this current exhibited a secondary rise in amplitude that could be eliminated by dihydropyridine block of the voltage-gated calcium channels of the hair cell. Calcium entering through voltage-gated channels may transit through the postsynaptic cistern, since ryanodine and sarcoendoplasmic reticulum calcium-ATPase blockers altered the time course and magnitude of this secondary, voltage-dependent contribution to ACh-evoked potassium current. Serial section electron microscopy showed that efferent and afferent synaptic structures are juxtaposed, supporting the possibility that voltage-gated influx at afferent ribbon synapses influences calcium homeostasis during long-lasting cholinergic inhibition. In contrast, spontaneous postsynaptic currents ("minis") resulting from stochastic efferent release of ACh were made briefer by ryanodine, supporting the hypothesis that the synaptic cistern serves primarily as a calcium barrier and sink during low-level synaptic activity. Hypolemmal cisterns such as that at the efferent synapse of the hair cell can play a dynamic role in segregating near-membrane calcium for short-term and long-term signaling.
Collapse
Affiliation(s)
- Gi Jung Im
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, and the Center for Sensory Biology, the Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Howard S Moskowitz
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, and the Center for Sensory Biology, the Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Mohammed Lehar
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, and the Center for Sensory Biology, the Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Hakim Hiel
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, and the Center for Sensory Biology, the Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Paul Albert Fuchs
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, and the Center for Sensory Biology, the Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
12
|
Yao Q, Cheng H, Guo C, Zhou T, Huang X, Kong W. Muscarinic acetylcholine receptor subtype expression in type vestibular hair cells of guinea pigs. ACTA ACUST UNITED AC 2011; 31:682. [PMID: 22038361 DOI: 10.1007/s11596-011-0582-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Indexed: 10/16/2022]
Abstract
Recent studies have demonstrated that five subtypes (M1-M5) of muscarinic acetylcholine receptor (mAChR) are expressed in the vestibular periphery. However, the exact cellular location of the mAChRs is not clear. In this study, we investigated whether there is the expression of M1-M5 muscarinic receptor mRNA in isolated type II vestibular hair cells of guinea pig by using single-cell RT-PCR. In vestibular end-organ, cDNA of the expected size was obtained by RT-PCR. Moreover, mRNA was identified by RT-PCR from individually isolated type II vestibular hair cells (single-cell RT-PCR). Sequence analysis confirmed that the products were M1-M5 mAChR. These results demonstrated that M1-M5 mAChR was expressed in the type II vestibular hair cells of the guinea pig, which lends further support for the role of M1-M5 mAChR as a mediator of efferent cholinergic signalling pathway in vestibular hair cells.
Collapse
Affiliation(s)
- Qi Yao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huamao Cheng
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Changkai Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang Huang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
13
|
The efferent medial olivocochlear-hair cell synapse. ACTA ACUST UNITED AC 2011; 106:47-56. [PMID: 21762779 DOI: 10.1016/j.jphysparis.2011.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 06/24/2011] [Indexed: 01/14/2023]
Abstract
Amplification of incoming sounds in the inner ear is modulated by an efferent pathway which travels back from the brain all the way to the cochlea. The medial olivocochlear system makes synaptic contacts with hair cells, where the neurotransmitter acetylcholine is released. Synaptic transmission is mediated by a unique nicotinic cholinergic receptor composed of α9 and α10 subunits, which is highly Ca2+ permeable and is coupled to a Ca2+-activated SK potassium channel. Thus, hyperpolarization of hair cells follows efferent fiber activation. In this work we review the literature that has enlightened our knowledge concerning the intimacies of this synapse.
Collapse
|
14
|
|
15
|
Castellano-Muñoz M, Israel SH, Hudspeth AJ. Efferent control of the electrical and mechanical properties of hair cells in the bullfrog's sacculus. PLoS One 2010; 5:e13777. [PMID: 21048944 PMCID: PMC2966443 DOI: 10.1371/journal.pone.0013777] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 08/25/2010] [Indexed: 11/22/2022] Open
Abstract
Background Hair cells in the auditory, vestibular, and lateral-line systems respond to mechanical stimulation and transmit information to afferent nerve fibers. The sensitivity of mechanoelectrical transduction is modulated by the efferent pathway, whose activity usually reduces the responsiveness of hair cells. The basis of this effect remains unknown. Methodology and Principal Findings We employed immunocytological, electrophysiological, and micromechanical approaches to characterize the anatomy of efferent innervation and the effect of efferent activity on the electrical and mechanical properties of hair cells in the bullfrog's sacculus. We found that efferent fibers form extensive synaptic terminals on all macular and extramacular hair cells. Macular hair cells expressing the Ca2+-buffering protein calretinin contain half as many synaptic ribbons and are innervated by twice as many efferent terminals as calretinin-negative hair cells. Efferent activity elicits inhibitory postsynaptic potentials in hair cells and thus inhibits their electrical resonance. In hair cells that exhibit spiking activity, efferent stimulation suppresses the generation of action potentials. Finally, efferent activity triggers a displacement of the hair bundle's resting position. Conclusions and Significance The hair cells of the bullfrog's sacculus receive a rich efferent innervation with the heaviest projection to calretinin-containing cells. Stimulation of efferent axons desensitizes the hair cells and suppresses their spiking activity. Although efferent activation influences mechanoelectrical transduction, the mechanical effects on hair bundles are inconsistent.
Collapse
Affiliation(s)
- Manuel Castellano-Muñoz
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York, United States of America
| | - Samuel H. Israel
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York, United States of America
| | - A. J. Hudspeth
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
|
17
|
Holt JC, Lysakowski A, Goldberg JM. Mechanisms of efferent-mediated responses in the turtle posterior crista. J Neurosci 2006; 26:13180-93. [PMID: 17182768 PMCID: PMC4157627 DOI: 10.1523/jneurosci.3539-06.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 10/12/2006] [Accepted: 11/06/2006] [Indexed: 11/21/2022] Open
Abstract
To study the cellular mechanisms of efferent actions, we recorded from vestibular-nerve afferents close to the turtle posterior crista while efferent fibers were electrically stimulated. Efferent-mediated responses were obtained from calyx-bearing (CD, calyx and dimorphic) afferents and from bouton (B) afferents distinguished by their neuroepithelial locations into BT units near the torus and BM units at intermediate sites. The spike discharge of CD units is strongly excited by efferent stimulation, whereas BT and BM units are inhibited, with BM units also showing a postinhibitory excitation. Synaptic activity was recorded intracellularly after spikes were blocked. Responses of BT/BM units to single efferent shocks consist of a brief depolarization followed by a prolonged hyperpolarization. Both components reflect variations in hair-cell quantal release rates and are eliminated by pharmacological antagonists of alpha9/alpha10 nicotinic receptors. Blocking calcium-dependent SK potassium channels converts the biphasic response into a prolonged depolarization. Results can be explained, as in other hair-cell systems, by the sequential activation of alpha9/alpha10 and SK channels. In BM units, the postinhibitory excitation is based on an increased rate of hair-cell quanta and depends on the preceding inhibition. There is, in addition, an efferent-mediated, direct depolarization of BT/BM and CD fibers. In CD units, it is the exclusive efferent response. Nicotinic antagonists have different effects on hair-cell efferent actions and on the direct depolarization of CD and BT/BM units. Ultrastructural studies, besides confirming the efferent innervation of type II hair cells and calyx endings, show that turtle efferents commonly contact afferent boutons terminating on type II hair cells.
Collapse
Affiliation(s)
- Joseph C Holt
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
18
|
Derbenev AV, Linn CL, Guth PS. Muscarinic ACh Receptor Activation Causes Transmitter Release From Isolated Frog Vestibular Hair Cells. J Neurophysiol 2005; 94:3134-42. [PMID: 16222072 DOI: 10.1152/jn.00131.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the frog, vestibular efferent fibers innervate only type-II vestibular hair cells. Through this direct contact with hair cells, efferent neurons are capable of modifying transmitter release from hair cells onto primary vestibular afferents. The major efferent transmitter, acetylcholine (ACh), is known to produce distinct pharmacological actions involving several ACh receptors. Previous studies have implicated the presence of muscarinic ACh receptors on vestibular hair cells, although, surprisingly, a muscarinic-mediated electrical response has not been demonstrated in solitary vestibular hair cells. This study demonstrates that muscarinic receptors can evoke transmitter release from vestibular hair cells. Detection of this release was obtained through patch-clamp recordings from catfish cone horizontal cells, serving as glutamate detectors after pairing them with isolated frog semicircular canal hair cells in a two-cell preparation. Although horizontal cells alone failed to respond to carbachol, application of 20 μM carbachol to the two-cell preparation resulted in a horizontal cell response that could be mimicked by exogenous application of glutamate. All of the horizontal cells in the two-cell preparation responded to 20 μM CCh. Furthermore, this presumed transmitter release persisted in the presence of d-tubocurarine at concentrations that block all known hair cell nicotinic ACh receptors. The effect on the detector cell, imparted by the carbachol application to the hair cell-horizontal cell preparation, was blocked both by 2-amino-5-phosphonopentanoic acid, a selective N-methyl-d-aspartate antagonist, and the muscarinic antagonist, atropine. Thus vestibular hair cells from the frog semicircular canal can be stimulated to release transmitter by activating their muscarinic receptors.
Collapse
Affiliation(s)
- Andrei V Derbenev
- Dept. of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | | | | |
Collapse
|
19
|
Goutman JD, Fuchs PA, Glowatzki E. Facilitating efferent inhibition of inner hair cells in the cochlea of the neonatal rat. J Physiol 2005; 566:49-59. [PMID: 15878942 PMCID: PMC1464729 DOI: 10.1113/jphysiol.2005.087460] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cholinergic brainstem neurones make inhibitory synapses on outer hair cells (OHCs) in the mature mammalian cochlea and on inner hair cells (IHCs) prior to the onset of hearing. We used electrical stimulation in an excised organ of Corti preparation to examine evoked release of acetylcholine (ACh) onto neonatal IHCs from these efferent fibres. Whole-cell voltage-clamp recording revealed that low frequency (0.25-1 Hz) electrical stimulation produced evoked inhibitory postsynaptic currents (IPSCs) at a relatively high fraction of failures (65%) and with mean amplitudes of about -20 pA at -90 mV, corresponding to a quantum content of approximately 1. Evoked IPSCs had biphasic waveforms at -60 mV, were blocked reversibly by alpha-bungarotoxin and strychnine and are most likely mediated by the alpha9/alpha10 acetylcholine receptor, with subsequent activation of calcium-dependent potassium (SK2) channels. Paired pulse stimulation with intervals of 10-100 ms caused facilitation of 200-300% in the mean IPSC amplitude. A train of 10 pulses with an interpulse interval of 25 ms produced increasingly larger IPSCs with maximum amplitudes greater than -100 pA due to facilitation and summation throughout the train. Repetitive efferent stimulation at 5 Hz or higher hyperpolarized IHCs by 5-10 mV and could completely prevent the generation of calcium action potentials normally evoked by depolarizing current injection.
Collapse
Affiliation(s)
- Juan Diego Goutman
- The Cochlear Neurotransmission Laboratory, Center for Hearing and Balance, Department of Otolaryngology--Head and Neck Surgery, 521 Traylor Building, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205-2195, USA
| | | | | |
Collapse
|
20
|
Matthews TM, Duncan RK, Zidanic M, Michael TH, Fuchs PA. Cloning and characterization of SK2 channel from chicken short hair cells. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191:491-503. [PMID: 15868189 DOI: 10.1007/s00359-005-0601-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2004] [Revised: 12/07/2004] [Accepted: 12/18/2004] [Indexed: 10/25/2022]
Abstract
In the inner ear of birds, as in mammals, reptiles and amphibians, acetylcholine released from efferent neurons inhibits hair cells via activation of an apamin-sensitive, calcium-dependent potassium current. The particular potassium channel involved in avian hair cell inhibition is unknown. In this study, we cloned a small-conductance, calcium-sensitive potassium channel (gSK2) from a chicken cochlear library. Using RT-PCR, we demonstrated the presence of gSK2 mRNA in cochlear hair cells. Electrophysiological studies on transfected HEK293 cells showed that gSK2 channels have a conductance of approximately 16 pS and a half-maximal calcium activation concentration of 0.74+/-0.17 microM. The expressed channels were blocked by apamin (IC(50)=73.3+/-5.0 pM) and d-tubocurarine (IC(50)=7.6+/-1.0 microM), but were insensitive to charybdotoxin. These characteristics are consistent with those reported for acetylcholine-induced potassium currents of isolated chicken hair cells, suggesting that gSK2 is involved in efferent inhibition of chicken inner ear. These findings imply that the molecular mechanisms of inhibition are conserved in hair cells of all vertebrates.
Collapse
Affiliation(s)
- T M Matthews
- Department of Biomedical Engineering, The Center for Hearing Sciences, Johns Hopkins University School of Medicine, 521 Traylor Building, 720 Rutland Ave., Baltimore, MD 21205-2195, USA
| | | | | | | | | |
Collapse
|
21
|
Drescher DG, Ramakrishnan NA, Drescher MJ, Chun W, Wang X, Myers SF, Green GE, Sadrazodi K, Karadaghy AA, Poopat N, Karpenko AN, Khan KM, Hatfield JS. Cloning and characterization of α9 subunits of the nicotinic acetylcholine receptor expressed by saccular hair cells of the rainbow trout (Oncorhynchus mykiss). Neuroscience 2004; 127:737-52. [PMID: 15283971 DOI: 10.1016/j.neuroscience.2004.05.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 04/27/2004] [Accepted: 05/11/2004] [Indexed: 11/19/2022]
Abstract
alpha9/alpha10 Subunits are thought to constitute the nicotinic acetylcholine receptors mediating cholinergic efferent modulation of vertebrate hair cells. The present report describes the cloning and sequence analysis of subunits of the alpha9-containing receptor of a hair-cell layer from the saccule of the rainbow trout (Oncorhynchus mykiss). A major alpha9 subunit, termed alpha9-I, displayed typical features of a nicotinic alpha subunit, with total coding sequence of 572 amino acids including a 16 amino-acid signal peptide. It possessed an extended cytoplasmic loop between membrane-spanning regions M3 and M4, compared with mammalian homologs. Transcript for alpha9-I was robustly expressed in the saccular hair cell layer and less prominently in trout olfactory mucosa, spleen, pituitary gland, and liver, as determined by reverse transcription-polymerase chain reaction. alpha9-I cDNA was not detected in trout brain, skeletal muscle, retina, and kidney. The alpha9-I nicotinic receptor protein was immunolocalized, with an affinity-purified antibody directed against a trout alpha9-I epitope, to hair-cell and neural sites in the saccular hair-cell layer. Foci were found at basal and basolateral membrane sites on hair cells as well as on afferent nerve. Receptor clustering was observed in hair cells bordering non-sensory epithelium. Since in higher vertebrates the alpha9 is reported to associate with another nicotinic subunit, alpha10, we examined the possibility of expression of additional nicotinic subunits in trout saccular hair cells. Message for another nicotinic subunit, termed alpha9-II, was found to be expressed in the hair cells, although more difficult to amplify than alpha9-I. In contrast to alpha9-I, alpha9-II was expressed in brain, as well as in olfactory mucosa, less prominently in pituitary gland and liver, but not in spleen, skeletal muscle, retina, or kidney. The cloned alpha9-II had a total coding sequence of 550 amino acids, which included a 17-amino-acid signal peptide, and an extended M3-M4 loop. A third nicotinic subunit message, termed alpha9-III, was PCR-amplified from trout olfactory mucosa where it was strongly expressed. However, message for alpha9-III was not detected in hair cells. Message for alpha9-III was moderately expressed in trout brain, retina, and pituitary gland but not in trout spleen, skeletal muscle, liver, and kidney. Thus, alpha9-I and alpha9-II may together contribute to the formation of the hair-cell nicotinic receptor of teleosts, where no ortholog of alpha10 appears to exist. The current work is, to our knowledge, the first description of alpha9 coding sequences directly from a vertebrate hair cell source. Further, the generality of hair cell expression of subunits for the alpha9-containing nicotinic cholinergic receptor has been extended to fishes, suggesting a similar efferent mechanism across all vertebrate octavolateralis sensory systems.
Collapse
Affiliation(s)
- D G Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Holt JC, Lioudyno M, Guth PS. A pharmacologically distinct nicotinic ACh receptor is found in a subset of frog semicircular canal hair cells. J Neurophysiol 2003; 90:1526-36. [PMID: 12966175 DOI: 10.1152/jn.00273.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Frog vestibular organs are endowed with a prominent cholinergic efferent innervation whose stimulation results in several different effects, thereby suggesting diversity in the expression of postsynaptic acetylcholine (ACh) receptors. The application of ACh can mimic efferent stimulation in producing both an inhibition and a facilitation of afferent discharge which are thought to be mediated by at least two distinct ACh receptors present on vestibular hair cells, i.e., alpha9-containing nicotinic receptors (alpha9nAChR) and muscarinic receptors (mAChR), respectively. Using patch-clamp and multiunit vestibular afferent recordings, we demonstrate the presence of an additional excitatory hair cell nicotinic ACh receptor pharmacologically distinct from both alpha9nAChR and mAChR. In order of increasing potency, this distinct receptor was activated by ACh, carbachol, and particularly by the selective nicotinic agonist 1,1-dimethyl-4-phenyl-piperazinium (DMPP). This DMPP-sensitive nicotinic receptor (RDMPP) was antagonized by the classic nicotinic antagonist d-tubocurarine, but refractory to strychnine, atropine, and propylbenzilylcholine mustard, at concentrations that completely block alpha9nAChR and/or mAChR. Activation of RDMPP on application of ACh or DMPP to a subpopulation of isolated posterior semicircular canal (SCC) hair cells resulted in a large depolarization (18.0 +/- 1.2 mV). The current underlying this depolarization was typically small (80.1 +/- 21.6 pA) and showed an inward rectification starting around -45 mV. Given their respective EC50s (47 nM vs. 20 microM), RDMPP was nearly 400 times more sensitive to ACh than alpha9nAChR and thus responded to concentrations of ACh considered too low to be effective at stimulating alpha9nAChR. Despite this remarkable sensitivity, exogenous ACh readily stimulated the mAChR in the intact posterior SCC preparation but failed to activate RDMPP unless the acetylcholinesterase inhibitor physostigmine was present, or high concentrations of ACh were used (>3 mM). In frog, RDMPP most likely underlies the rapid excitatory response seen during efferent stimulation.
Collapse
Affiliation(s)
- Joseph C Holt
- Department of Pharmacology (SL83), Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.
| | | | | |
Collapse
|
23
|
Holt JC, Lioudyno M, Athas G, Garcia MM, Perin P, Guth PS. The effect of proteolytic enzymes on the alpha9-nicotinic receptor-mediated response in isolated frog vestibular hair cells. Hear Res 2001; 152:25-42. [PMID: 11223279 DOI: 10.1016/s0378-5955(00)00225-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In frog vestibular organs, efferent neurons exclusively innervate type II hair cells. Acetylcholine, the predominant efferent transmitter, acting on acetylcholine receptors of these hair cells ultimately inhibits and/or facilitates vestibular afferent firing. A coupling between alpha9-nicotinic acetylcholine receptors (alpha9nAChR) and apamin-sensitive, small-conductance, calcium-dependent potassium channels (SK) is thought to drive the inhibition by hyperpolarizing hair cells thereby decreasing their release of transmitter onto afferents. The presence of alpha9nAChR in these cells was demonstrated using pharmacological, immunocytochemical, and molecular biological techniques. However, fewer than 10% of saccular hair cells dissociated using protease VIII, protease XXIV, or papain responded to acetylcholine during perforated-patch clamp recordings. When present, these responses were invariably transient, small in amplitude, and difficult to characterize. In contrast, the majority of saccular hair cells ( approximately 90%) dissociated using trypsin consistently responded to acetylcholine with an increase in outward current and concomitant hyperpolarization. In agreement with alpha9nAChR pharmacology obtained in other hair cells, the acetylcholine response in saccular hair cells was reversibly antagonized by strychnine, curare, tetraethylammonium, and apamin. Brief perfusions with either protease or papain permanently abolished the alpha9-nicotinic response in isolated saccular hair cells. These enzymes when inactivated became completely ineffective at abolishing the alpha9-nicotinic response, suggesting an enzymatic interaction with the alpha9nAChR and/or downstream effector. The mechanism by which these enzymes render saccular hair cells unresponsive to acetylcholine remains unknown, but it most likely involves proteolysis of alpha9nAChR, SK, or both.
Collapse
Affiliation(s)
- J C Holt
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
24
|
Holt JC, Pantoja AM, Athas GB, Guth PS. A role for chloride in the hyperpolarizing effect of acetylcholine in isolated frog vestibular hair cells. Hear Res 2000; 146:17-27. [PMID: 10913880 DOI: 10.1016/s0378-5955(00)00092-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Acetylcholine (ACh) is the dominant transmitter released from inner ear efferent neurons. In frog vestibular organs, these efferent neurons synapse exclusively with type II hair cells. Hair cells isolated from the frog saccule hyperpolarize following the application of 50 microM ACh, thereby demonstrating the presence of an ACh receptor. A role for Cl(-) in the response of hair cell-bearing organs to efferent nerve activation or ACh application was suggested some years ago. Perfusion with solutions in which most of the Cl(-) was replaced by large impermeant anions decreased the cholinergic inhibition of afferent firing in the cat and turtle cochleas, and frog semicircular canal. Our previous work in the intact organ demonstrated that substitution of large impermeant anions for Cl(-) or use of Cl(-) channel blockers reduced the effect of ACh on saccular afferent firing. Using the perforated-patch clamping technique, replacement of Cl(-) by methanesulfonate, iodide, nitrate, or thiocyanate attenuated the hyperpolarizing response to ACh in hair cells isolated from the frog saccule. The chloride channel blockers picrotoxin and 4,4'-dinitrostilbene-2,2'-disulfonic acid were also tested and found to inhibit the ACh response. Thus, the present work demonstrates that the effects of Cl(-) substitutions or Cl(-) channel blockers on the ACh response in the intact saccule can be explained completely by effects on the hair cell. Evidence is also presented for the presence of the messenger RNA for a calcium-dependent chloride channel in all hair cells but especially saccular hair cells. This channel may be involved in the response to ACh. The precise role for chloride in this response, whether as a distinct ion current, as a transported ion, or as a permissive ion for other components, is discussed.
Collapse
Affiliation(s)
- J C Holt
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
25
|
Hiel H, Luebke AE, Fuchs PA. Cloning and expression of the alpha9 nicotinic acetylcholine receptor subunit in cochlear hair cells of the chick. Brain Res 2000; 858:215-25. [PMID: 10700617 DOI: 10.1016/s0006-8993(00)01947-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hair cells of the vertebrate inner ear are subject to efferent control by the release of acetylcholine (ACh) from brainstem neurons. While ACh ultimately causes the hair cell to hyperpolarize through the activation of small conductance Ca(2+)-activated K(+) channels, the initial effect is to open a ligand-gated cation channel that briefly depolarizes the hair cell. The hair cell's ligand-gated cation channel has unusual pharmacology that is well matched to that of the nicotinic subunit alpha9 expressed in Xenopus oocytes. We used sequence-specific amplification to identify the ortholog of alpha9 in the chick's cochlea (basilar papilla). Chick alpha9 is 73% identical to rat alpha9 at the amino acid level. A second transcript was identified that differed by the loss of 132 base pairs coding for 44 amino acids near the putative ligand-binding site. RT-PCR on whole cochlear ducts suggested that this short variant is less abundant than the full length alpha9 mRNA. In situ hybridization revealed alpha9 mRNA in sensory hair cells of the chick cochlea. The pattern of expression was consistent with the efferent innervation pattern. The alpha9 label was strongest in short (outer) hair cells on which large calyciform efferent endings are found. Tall (inner) hair cells receiving little or no efferent innervation had substantially less label. The cochlear ganglion neurons were not labeled, consistent with the absence of axo-dendritic efferent innervation in birds. These findings suggest that alpha9 contributes to the ACh receptor of avian hair cells and supports the generality of this hypothesis among all vertebrates.
Collapse
Affiliation(s)
- H Hiel
- Center for Hearing Science, Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
26
|
Dailey SH, Wackym PA, Brichta AM, Gannon PJ, Popper P. Topographic distribution of nicotinic acetylcholine receptors in the cristae of a turtle. Hear Res 2000; 141:51-6. [PMID: 10713495 DOI: 10.1016/s0378-5955(99)00208-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neurochemical basis of cholinergic efferent modulation of afferent function in the vestibular periphery remains incompletely understood; however, there is cellular, biochemical and molecular biological evidence for both muscarinic and nicotinic acetylcholine (ACh) receptors (nAChRs) in this system. This study examined the topographic distribution of alpha-bungarotoxin (alpha-BTX) nAChRs in the cristae of a turtle species. Cristae were perfusion-fixed, cut at 20 micrometer on a cryostat and incubated with alpha-BTX or polyclonal antibodies raised against Torpedo nAChR. Light microscopy showed abundant specific labeling of nAChR in the central zone of each hemicrista on the calyx-bearing afferents surrounding type I hair cells and on the base of the type II hair cells. Within the peripheral zone, dense labeling of type II hair cells near the torus and sparse or no label was observed on type II hair cells near the planum. The alpha-BTX binding showed a similar pattern within the cristae. The similarity between the topographic distribution of alpha-BTX binding nAChR and of efferent inhibition of afferents supports the notion that the inhibitory effect of afferents is mediated by nAChR.
Collapse
Affiliation(s)
- S H Dailey
- Department of Otolaryngology, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | |
Collapse
|
27
|
Drescher DG, Kerr TP, Drescher MJ. Autoradiographic demonstration of quinuclidinyl benzilate binding sites in the vestibular organs of the gerbil. Brain Res 1999; 845:199-207. [PMID: 10536199 DOI: 10.1016/s0006-8993(99)01939-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gerbil vestibular tissues were isolated by microdissection and incubated in vitro with 3H-quinuclidinyl benzilate (3H-QNB). Control tissues were incubated in medium containing unlabeled atropine to differentiate non-specific from specific binding. Autoradiographic grain densities were determined by morphometric techniques and evaluated by two-tailed t-test. The label densities of sensory epithelia from experimental preparations of ampulla, utricle and saccule were found to be significantly higher than those in the adjacent endolymphatic compartment and also higher than those of adjacent stromal tissue comprising connective tissue, nerve fibers and capillaries. In contrast, no tissue region in atropine controls showed label density significantly above that of the endolymphatic compartment. Label density of ampullar sensory epithelium incubated with 3H-QNB alone was significantly higher than that of sensory epithelium from utricle or saccule. Grain density was greater in the peripheral regions of the ampullar crista compared to the vertex. Appreciable label was also present in nerve bundles beneath the sensory epithelium of the ampulla. The current study demonstrates the existence of putative muscarinic neurotransmitter/neuromodulator receptor sites in mammalian vestibular sense organs at locations corresponding to efferent innervation, with particularly significant concentrations in the ampulla.
Collapse
Affiliation(s)
- D G Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
28
|
Demêmes D, Broca C. Calcitonin gene-related peptide immunoreactivity in the rat efferent vestibular system during development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 108:59-67. [PMID: 9693784 DOI: 10.1016/s0165-3806(98)00030-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The organization of the efferent fiber network during postnatal development was investigated by immunocytochemical detection of the calcitonin gene-related peptide (CGRP) in rat vestibular receptors from postnatal day 0 (PD 0) to adulthood. CGRP was detected at birth in a few efferent fibers below the sensory epithelia of cristae and maculae. Thereafter, the nerve fibers in the cristae progressively invaded the epithelia with an apex to base gradient from PD 2 to PD 4. There was also a rearrangement of the fibers during maturation of the efferent innervation, such that after reaching the surface of the epithelium, they turned back and moved towards the base of the sensory cells, producing numerous synaptic contacts. Analysis of surface preparations of utricules showed the irregular and asymmetric topographic organization of the efferent fiber network and the extensive, complex distribution of this innervation. The presence and broad distribution of CGRP in the epithelium at critical stages of development and synaptogenesis suggests that it is involved in the maturation of vestibular receptors.
Collapse
Affiliation(s)
- D Demêmes
- INSERM U 432, UM 2, Montpellier, France.
| | | |
Collapse
|
29
|
Anderson AD, Troyanovskaya M, Wackym PA. Differential expression of alpha2-7, alpha9 and beta2-4 nicotinic acetylcholine receptor subunit mRNA in the vestibular end-organs and Scarpa's ganglia of the rat. Brain Res 1997; 778:409-13. [PMID: 9459561 DOI: 10.1016/s0006-8993(97)01121-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To further characterize the pattern of expression of the nicotinic acetylcholine receptor (nAChR) subunits in the peripheral vestibular system, we conducted RT-PCR of all known mammalian nAChR alpha and beta subunits in mRNA extracted from adult rat vestibular primary afferent neurons (Scarpa's ganglia) and vestibular end-organs. Transcripts encoding the alpha2-7 and beta2-4 nAChR subunits were found in the vestibular ganglia, while alpha3, alpha5-7, alpha9 and beta2-4 nAChR subunits were expressed in the vestibular end-organs. These results support previous electrophysiological, immunocytochemical and molecular biological data, and also provide a more complete understanding of the role of nAChRs in the neurochemical transmission subserving the efferent-afferent interaction in the vestibular periphery.
Collapse
Affiliation(s)
- A D Anderson
- Department of Otolaryngology, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | |
Collapse
|
30
|
Pantoja AM, Holt JC, Guth PS. A role for chloride in the suppressive effect of acetylcholine on afferent vestibular activity. Hear Res 1997; 112:21-32. [PMID: 9367226 DOI: 10.1016/s0378-5955(97)00101-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Afferents of the frog semicircular canal (SCC) respond to acetylcholine (ACh) application (0.3-1.0 mM) with a facilitation of their activity while frog saccular afferents respond with suppression (Guth et al., 1994). All recordings are of resting (i.e., non-stimulated) multiunit activity as previously reported (Guth et al., 1994). Substitution of 80% of external chloride (Cl-) by large, poorly permeant anions of different structures (isethionate, methanesulfonate, methylsulfate, and gluconate) reduced the suppressive effect of ACh in the frog saccular afferents. This substitution did not affect the facilitatory response of SCC afferents to ACh. Chloride channel blockers were also used to test further whether Cl- is involved in the ACh suppressive effect. These included: niflumic and flufenamic acids, picrotoxin, 5-nitro-2-(-3-phenylpropylamino)benzoic acid (NPPB), and 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS). As with the Cl- substitutions, all of these agents reduced the suppressive response to ACh in the saccule, but not the facilitatory response seen in the SCC. The suppressive effect of ACh on saccular afferents is considered to be due to activation of a nicotinic-like receptor (Guth et al., 1994; Guth and Norris, 1996). Taking into account the effects of both Cl- substitutions and Cl- channel blockers, we conclude that changes in Cl- availability influence the suppressive effect of ACh and that therefore Cl- may be involved in this effect.
Collapse
Affiliation(s)
- A M Pantoja
- Departamento de Farmacologia, Universidad del Valle, Cali, Colombia
| | | | | |
Collapse
|
31
|
Hiel H, Elgoyhen AB, Drescher DG, Morley BJ. Expression of nicotinic acetylcholine receptor mRNA in the adult rat peripheral vestibular system. Brain Res 1996; 738:347-52. [PMID: 8955534 DOI: 10.1016/s0006-8993(96)01046-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The mRNA expression of the neuronal nicotinic acetylcholine receptor subunits was determined in adult rat vestibular end-organs and in Scarpa's ganglion (SCG) by in situ hybridization with [35S] riboprobes. Neurons in the SCG expressed the alpha 4-7 and beta 2-3 mRNAs, but not alpha 3 or beta 4 mRNAs. Not all SCG neurons expressed every mRNA found in SCG. The alpha 6 and beta 2-3 riboprobes labeled all neurons, but alpha 4, alpha 5, and alpha 7 mRNAs were selectively expressed in one or more subpopulations of SCG neurons. Vestibular sensory hair cells, in contrast, expressed only alpha 9 mRNA.
Collapse
Affiliation(s)
- H Hiel
- Neurochemistry Laboratory, Boys Town National Research Hospital, Omaha, NE 68131, USA
| | | | | | | |
Collapse
|
32
|
Abstract
In this article the evidence concerning the nature of the acetylcholine (ACh) receptors on hair cells is reviewed. A schematic organization of these receptors is offered, based on the evidence as follows. (1) There are two kinds of ACh receptors on hair cells: muscarinic-like and nicotinic-like. (2) The nicotinic-like receptor mediates a hyperpolarizing response to ACh and a consequent reduction in afferent firing. (3) The muscarinic-like receptors mediate both a depolarization and a hyperpolarization of hair cells. (4) The hyperpolarization results in a reduction in afferent firing and (5) the depolarization results in an increase in afferent firing.
Collapse
Affiliation(s)
- P S Guth
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | |
Collapse
|
33
|
Abstract
Mechanosensory hair cells release chemical transmitters onto associated afferent dendrites and respond to transmitters released by efferent neurons. Dihydropyridine-sensitive, voltage-gated calcium channels support transmitter release from hair cells and may be expressed preferentially at release sites. Recently, a novel subunit of the nicotinic acetylcholine receptor family, alpha9, was identified and found to be expressed in rat hair cells. It appears to mediate efferent inhibition via associated calcium-activated potassium channels.
Collapse
Affiliation(s)
- P A Fuchs
- Hearing Science Center, 521 Traylor Building, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, USA.
| |
Collapse
|
34
|
Ishiyama A, Lopez I, Wackym PA. Distribution of efferent cholinergic terminals and alpha-bungarotoxin binding to putative nicotinic acetylcholine receptors in the human vestibular end-organs. Laryngoscope 1995; 105:1167-72. [PMID: 7475869 DOI: 10.1288/00005537-199511000-00005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although acetylcholine (ACh) has been identified as the primary neurotransmitter of the efferent vestibular system in most animals studied, no direct evidence exists that ACh is the efferent neurotransmitter of the human vestibular system. Choline acetyltransferase immunohistochemistry (ChATi), acetylcholinesterase (AChE) histochemistry, and alpha-bungarotoxin binding were used in human vestibular end-organs to address this question. ChATi and AChE activity was found in numerous bouton-type terminals contacting the basal area of type II vestibular hair cells and the afferent chalices surrounding type I hair cells; alpha-bungarotoxin binding suggested the presence of nicotinic acetylcholine receptors on type II vestibular hair cells and on the afferent chalices surrounding type I hair cells. This study provides evidence that the human efferent vestibular axons and terminals are cholinergic and that the receptors receiving this innervation may be nicotinic.
Collapse
Affiliation(s)
- A Ishiyama
- Department of Surgery, University of California, Los Angeles, School of Medicine, USA
| | | | | |
Collapse
|
35
|
Erostegui C, Nenov AP, Norris CH, Bobbin RP. Acetylcholine activates a K+ conductance permeable to Cs+ in guinea pig outer hair cells. Hear Res 1994; 81:119-29. [PMID: 7537728 DOI: 10.1016/0378-5955(94)90159-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Acetylcholine (ACh), the major neurotransmitter released by efferent nerve fibers in the cochlea, has been shown to activate a Ca(2+)-dependent K+ conductance in outer hair cells (OHCs). Previously we reported that this ACh operated conductance is permeable to Cs+. The purpose of the present study was to characterize further this Cs(+)-permeable channel and its dependency on Ca2+ using isolated OHCs and the patch clamp technique in the whole cell configuration. The changes in the ACh response were examined when Cs+, Ba2+, Cd2+, N-methyl-D-glucamine (NMG+) and tetraethylammonium (TEA+) were placed in the external or internal solutions. Cs+ substituted for K+ in carrying the ACh-evoked Ca(2+)-dependent K+ current. When NMG+/TEA+ was substituted for internal K+ ACh-evoked an inward and an outward current, and Cs+ substituted for external K+ blocked the outward but not the inward current evoked by ACh suggesting it was carried by K+. In the NMG+/TEA+ condition, when the cell was held at different Vh values for an extended period of time, the ACh-induced K+ current rectified. In Ba2+ (3 mM) with zero Ca2+ ACh failed to induce any detectable current and the ACh response slowly recovered from the Ba2+ block, suggesting a block at an intracellular site. Cd2+ (1 mM) readily and reversibly blocked ACh-induced currents even when carried by Cs+. This data suggests that ACh opens a channel selective for K+, conductive to Cs+ and dependent on Ca2+.
Collapse
Affiliation(s)
- C Erostegui
- Department of Otolaryngology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | | |
Collapse
|
36
|
Ohtani M, Devau G, Lehouelleur J, Sans A. Cholinergic agonists increase intracellular calcium concentration in frog vestibular hair cells. Hear Res 1994; 80:167-73. [PMID: 7896575 DOI: 10.1016/0378-5955(94)90108-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acetylcholine (ACh) is usually considered to be the neurotransmitter of the efferent vestibular system. The nature and the localization of cholinergic receptors have been investigated on frog isolated vestibular hair cells (VHCs), by measuring variations of intracellular calcium concentration ([Ca2+]i), using calcium sensitive dye fura-2. Focal iontophoretic ACh (1 M, 300 nA.40 ms) application induced a rapid increase in [Ca2+]i, reaching a peak in 20 s and representing about 5-fold the resting level (from 61 +/- 6 to 320 +/- 26 nM). Applications of muscarinic agonists as methacholine and carbachol induced weaker calcium responses (from 78 +/- 25 to 238 +/- 53 nM) than the one obtained with ACh applications. These muscarinic agonists were efficient only in precise zones. Desensitization of muscarinic receptors to successive stimulations was significant. Perfusion of nicotine or 1,1-dimethyl-4-phenyl-piperazinium (DMPP), a nicotinic agonist, induced an increase in [Ca2+]i only in some cells (4/28 with DMPP). These results indicated the presence of cholinergic receptors on frog VHCs: muscarinic receptors were more responsive than nicotinic receptors. Presence of muscarinic and nicotinic receptors in the membrane of VHCs could indicate different modulations of VHCs activity mediated by [Ca2+]i and involving an efferent control which represents a central regulation of the vestibular afferent message.
Collapse
Affiliation(s)
- M Ohtani
- Laboratoire de Neurophysiologie Sensorielle, Université de Montpellier II, France
| | | | | | | |
Collapse
|
37
|
Ishiyama A, Lopez I, Wackym PA. Subcellular innervation patterns of the calcitonin gene-related peptidergic efferent terminals in the chinchilla vestibular periphery. Otolaryngol Head Neck Surg 1994; 111:385-95. [PMID: 7936671 DOI: 10.1177/019459989411100402] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We examined the ultrastructural distribution of calcitonin gene-related peptide immunoreactivity in the peripheral vestibular system of the chinchilla to study the innervation patterns of this efferent neuropeptide. Immunoelectron microscopic localization of calcitonin gene-related peptide immunoreactive terminals in the maculae and cristae revealed an extensive innervation pattern on the afferent vestibular pathway. Calcitonin gene-related peptide immuno-reactive terminals made synaptic contacts with the unmyelinated portions of the primary afferent vestibular dendrites innervating both type I and type II hair cells. Abundant synaptic contact between calcitonin gene-related peptide immunoreactive terminals and the chalices surrounding type I hair cells was observed. Direct contact between calcitonin gene-related peptide immunoreactive terminals and type II hair cells was observed. In addition, vesiculated efferent terminals without calcitonin gene-related peptide immunoreactivity were seen synapsing on the chalices of type II hair cells and on the surrounding type I hair cells. The primary afferent somata in the vestibular ganglion of Scarpa did not contain calcitonin gene-related peptide immunoreactivity. Unmyelinated calcitonin gene-related peptide immunoreactive axons passed among the primary afferent fibers in Scarpa's ganglion, and these fibers continued through the subepithelial regions of the vestibular end-organs. The calcitonin gene-related peptide immunoreactive axons ramified to produce numerous calcitonin gene-related peptide immunoreactive terminals throughout the neurosensory epithelium of the maculae and cristae. These data suggest that calcitonin gene-related peptide-mediated modulation of the afferent vestibular system is functionally important.
Collapse
Affiliation(s)
- A Ishiyama
- Goodhill Ear Center, Section of Otology, 90024-1794
| | | | | |
Collapse
|
38
|
Abstract
Ca2+ is critical for mechanosensory adaptation, frequency tuning, afferent synaptic transmission, and efferent modulation in hair cells. These four processes involve cytoplasmic Ca2+ in three independent signalling pathways. Recent work suggests that Ca2+ regulates a myosin adaptation motor, and that a mobile Ca2+ buffer is highly concentrated in hair cells. Focal Ca2+ entry and the cytoplasmic Ca2+ buffer help to separate these pathways by limiting the spread of Ca2+ signals.
Collapse
Affiliation(s)
- D Lenzi
- Institute of Neuroscience, University of Oregon, Eugene 97403-1254
| | | |
Collapse
|
39
|
Abstract
Stimulation of the efferent nerves to the vestibular organs of the frog's inner ear produces either facilitation or inhibition of afferent firing. Similarly, application of acetylcholine (ACH), the major transmitter of the efferents, can produce both facilitation and/or inhibition as previously reported [Guth et al. (1986) Acta Otolaryngol. 102, 194-204; Norris et al. (1988) Hear. Res. 32, 197-206]. The firing rates of afferent neurons of the semicircular canal (SCC) using multiunit recordings are generally facilitated by ACH. Conversely, the firing rates of afferent units innervating the saccule are generally inhibited by ACH. This latter inhibition is antagonized by strychnine more potently than by curare, which is more potent than atropine. When inhibition is antagonized by strychnine or curare an underlying facilitation is revealed. The inhibition of saccular afferents by ACH shows desensitization requiring about 20 min to recover. The ACH-induced inhibition is mimicked by nicotine at very high concentrations but not by dimethyl phenylpiperazinium or cytisine. The fact that multiunit afferent firing from the SCC is generally facilitated while that from the saccule is generally inhibited by ACH suggests a different distribution of ACH receptors and receptor types (i.e. muscarinic or nicotinic and their subtypes) in the two organs and demonstrates the usefulness of recording from multiple units simultaneously. The difference in distribution of ACH receptors may be important for understanding the physiology of vestibular efferents.
Collapse
Affiliation(s)
- P S Guth
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112
| | | | | | | |
Collapse
|
40
|
Yoshida N, Shigemoto T, Sugai T, Ohmori H. The role of inositol trisphosphate on ACh-induced outward currents in bullfrog saccular hair cells. Brain Res 1994; 644:90-100. [PMID: 8032954 DOI: 10.1016/0006-8993(94)90351-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Acetylcholine (ACh) is considered as the most likely candidate for a neurotransmitter of the efferent synapse onto hair cell. In this paper, the nature of this cholinergic receptor mechanism on dissociated bullfrog saccular hair cell was examined by using whole cell recording and Ca2+ sensitive fluorophotometric technique. Both the ACh-induced current and the increase of [Ca2+]i were observed in an oscillatory manner, and were the largest around the basal part of the cell where the efferent synapse is thought to make a contact with the membrane. The reversal potential of ACh-induced current indicated that ACh activated a K+ conductance. The ACh-induced current was reversibly blocked by atropine, d-tubocurarine (dTC), apamin, tetraethylammonium (TEA) and quinine. Neither muscarine nor nicotine mimicked the ACh-induced current. When GTP gamma S was injected into a hair cell, the first ACh application induced an outward current of transient kinetics, but in subsequent trials ACh-induced current lost its decay phase. Intracellularly injected D-myo-inositol 1,4,5-trisphosphate (InsP3) generated outward currents. Intracellularly injected heparin suppressed ACh-induced currents, and lithium (Li+) increased ACh-induced currents. These results indicate that ACh activates a receptor coupled with a guanine nucleotide binding protein (G-protein) which triggers metabolic cascades of InsP3 and Ca2+ leading to the activation of the Ca(2+)-activated K+ channel.
Collapse
Affiliation(s)
- N Yoshida
- Department of Physiology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
41
|
Roberts BL, Maslam S, Los I, Van der Jagt B. Coexistence of calcitonin gene-related peptide and choline acetyltransferase in eel efferent neurons. Hear Res 1994; 74:231-7. [PMID: 8040093 DOI: 10.1016/0378-5955(94)90191-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We applied choline acetyltransferase, (ChAT) and calcitonin gene-related peptide (CGRP) immunocytochemistry to the efferent neurons that innervate the lateral line and the ear of the eel. Strong immunoreactivity to the ChAT antiserum was observed in neurons located within the octavolateralis efferent nucleus that could be distinguished, on the basis of their form, location and dendritic organization, from the ChAT-immunopositive motoneurons of the adjacent facial motor nucleus. Both facial motoneurons and efferent neurons were found to be immunopositive for CGRP, although the reaction was always stronger in the motoneurons. Double labelling experiments established the presence of both ChAT and CGRP in many efferent neurons. The results are evidence that cholinergic efferent neurons supplying end organs of different modalities may also produce calcitonin gene-related peptide.
Collapse
Affiliation(s)
- B L Roberts
- Department of Experimental Zoology, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
42
|
Abstract
Acetylcholine (ACh) is the major neurotransmitter released from the efferent fibers in the cochlea onto the outer hair cells (OHCs). The type of ACh receptor on OHCs and the events subsequent to receptor activation are unclear. Therefore we studied the effect of agonists and antagonists of the ACh receptor on isolated OHCs from the guinea pig. OHCs were recorded from in whole cell voltage and current clamp configuration. ACh induced an increase in outward K+ current (IACh) which hyperpolarized the OHCs. No desensitization to ACh application was observed. Cs+ replaced K+ in carrying the IACh. The IACh is Ca(2+)-dependent, time and voltage sensitive, and different from the IKCa induced by depolarization of the membrane potential. When tested at 100 microM, several agonists also induced outward current responses (acetylcholine > suberyldicholine > or = carbachol > DMPP) whereas nicotine, cytisine and muscarine did not. The IACh response to 10 microM ACh was blocked by low concentrations of traditional and non-traditional-nicotinic antagonists (strychnine > curare > bicuculline > alpha-bungarotoxin > thimethaphan) and by higher concentrations of muscarinic antagonists (atropine > 4-DAMP > AF-DX 116 > pirenzepine). Pharmacologically, the ACh receptor on OHCs is nicotinic.
Collapse
Affiliation(s)
- C Erostegui
- Department of Otolaryngology, Tulane University School of Medicine, New Orleans LA
| | | | | |
Collapse
|
43
|
Ogawa K, Schacht J. Receptor-mediated release of inositol phosphates in the cochlear and vestibular sensory epithelia of the rat. Hear Res 1993; 69:207-14. [PMID: 8226341 DOI: 10.1016/0378-5955(93)90109-e] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Various neurotransmitters, hormones and other modulators involved in intercellular communication exert their biological action at receptors coupled to phospholipase C (PLC). This enzyme catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) to inositol 1,4,5-trisphosphate (InsP3) and 1,2-diacylglycerol (DG) which act as second messengers. In the organ of Corti of the guinea pig, the InsP3 second messenger system is linked to muscarinic cholinergic and P2y purinergic receptors. However, nothing is known about the InsP3 second messenger system in the vestibule. In this study, the receptor-mediated release of inositol phosphates (InsPs) in the vestibular sensory epithelia was compared to that in the cochlear sensory epithelia of Fischer-344 rats. After preincubation of the isolated intact tissues with myo-[3H]inositol, stimulation with the cholinergic agonist carbamylcholine or the P2 purinergic agonist ATP-gamma-S resulted in a concentration-dependent increase in the formation of [3H]InsPs in both epithelia. Similarly, the muscarinic cholinergic agonist muscarine enhanced InsPs release in both organs, while the nicotinic cholinergic agonist dimethylphenylpiperadinium (DMPP) was ineffective. The muscarinic cholinergic antagonist atropine completely suppressed the InsPs release induced by carbamylcholine, while the nicotinic cholinergic antagonist mecamylamine was ineffective. Potassium depolarization did not alter unstimulated or carbamylcholine-stimulated release of InsPs in either organ. In both tissues, the P2 purinergic agonist alpha,beta-methylene ATP also increased InsPs release, but the P1 purinergic agonist adenosine did not. These results extend our previous observations in the organ of Corti of the guinea pig to the rat and suggest a similar control of the InsP3 second messenger system in the vestibular sensory epithelia.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Ogawa
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor 48109-0506
| | | |
Collapse
|
44
|
González A, Meredith GE, Roberts BL. Choline acetyltransferase immunoreactive neurons innervating labyrinthine and lateral line sense organs in amphibians. J Comp Neurol 1993; 332:258-68. [PMID: 7687255 DOI: 10.1002/cne.903320209] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The goal of the present study was to investigate aspects of the central organization of the neurons belonging to the octavolateralis efferent system of amphibians. The perikarya of three genera, Pleurodeles, Xenopus, and Discoglossus, were located in the brainstem by applying retrograde tracers to the appropriate cranial nerves and choline acetyltransferase immunohistochemistry was used to identify cholinergic neurons. The efferent neurons supplying lateral line (Pleurodeles, Xenopus) and labyrinthine (Pleurodeles, Xenopus, and Discoglossus) end organs were found to intermingle in a single octavolateralis efferent nucleus. The neurons lie bilateral to the labelled nerves in Pleurodeles and ipsilateral in Xenopus and Discoglossus. Separate labelling of the anterior and posterior octavus rami provided no evidence for distinct groupings of efferent neurons that could be associated with auditory and vestibular end organs. In all three species many if not all octavolateral efferent neurons displayed immunoreactivity for choline acetyltransferase. They could be distinguished from the cholinergic facial motoneurons, with which they sometimes intermingle, on the basis of either their distinctive size and shape (Pleurodeles, Xenopus) or their location (Discoglossus). Double labelling in Xenopus confirmed the cholinergic nature of the efferent neurons.
Collapse
Affiliation(s)
- A González
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | | | | |
Collapse
|
45
|
Doi T, Ohmori H. Acetylcholine increases intracellular Ca2+ concentration and hyperpolarizes the guinea-pig outer hair cell. Hear Res 1993; 67:179-88. [PMID: 8340269 DOI: 10.1016/0378-5955(93)90245-v] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Extracellularly applied acetylcholine (ACh) induced outward currents in isolated outer hair cells of a guinea-pig cochlea. The ACh induced current was carried by K+ ions. The current amplitude was ACh dose dependent with a KD of 12 microM. The ACh induced outward current was reversibly blocked by extracellularly applied atropine (1 microM), d-tubocurarine (d-TC, 1 microM), apamin (1 microM) and strychnine (0.1-10 microM). D-TC (10 microM) not only blocked the ACh induced outward current, but also reduced the amplitude of depolarization induced outward current. ACh induced a rise of intracellular Ca2+ concentration ([Ca2+]i). D-TC (10 microM) reduced but did not totally block the increase of [Ca2+]i. In a low Ca2+ (0.1 mM) extracellular medium, the amplitude of ACh induced current was reduced rapidly and was recovered gradually to the normal level after the extracellular Ca2+ concentration was resumed. It is probable that ACh hyperpolarizes the guinea-pig outer hair cell membrane by activation of a Ca(2+)-activated K+ conductance.
Collapse
Affiliation(s)
- T Doi
- National Institute for Physiological Science, Okazaki, Japan
| | | |
Collapse
|