Simmons AM, Chapman JA. Metamorphic changes in GABA immunoreactivity in the brainstem of the bullfrog, Rana catesbeiana.
BRAIN, BEHAVIOR AND EVOLUTION 2003;
60:189-206. [PMID:
12457079 DOI:
10.1159/000066701]
[Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined immunoreactivity for gamma-aminobutyric acid (GABA) in auditory and vestibular brainstem nuclei of the bullfrog, Rana catesbeiana, across metamorphosis, a developmental period featuring significant anatomical and functional remodeling of the nervous system. In the early larval period, GABA-immunoreactive cell somata were visible in the vestibular nucleus complex and the torus semicircularis, as well as in the spinal cord, cerebellum and optic tectum. Fiber bundles such as the medial longitudinal fasciculus and the lemnsical pathways also exhibited intense label at these early stages. In contrast, only diffuse neuropil label was visible in the dorsolateral nucleus and the superior olivary nucleus at the same stages. This diffuse immunoreactivity became progressively more reduced over larval development, and stained somata were visible in these medullary nuclei by metamorphic climax stages. In the torus semicircularis, the numbers of labeled somata in both the developing laminar and principal nuclei increased over metamorphic development, and became progressively more organized into distinct layers. The adult pattern of GABA-like immunoreactivity in the auditory brainstem was reached by metamorphic climax stages, coincident with the maturation of the opercularis system, and preceding the final development of the external tympanum and the tympanic conduction pathway. The relatively earlier maturation of vestibular, compared to auditory, areas in the medulla might reflect the behavioral importance of vestibular-mediated motor reactions during tadpole life. The distribution of GABA in auditory brainstem nuclei in both developing and adult frogs is comparable to that observed in mammals and birds.
Collapse