1
|
Neurotransmitter and Neurotransmitter Receptor Expression in the Saccule of the Human Vestibular System. Prog Neurobiol 2022; 212:102238. [DOI: 10.1016/j.pneurobio.2022.102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022]
|
2
|
Wang ZB, Han P, Tong LC, Luo Y, Su WH, Wei X, Yu XH, Liu WY, Zhang XH, Lei H, Li ZZ, Wang F, Chen JG, Ma TH, Su DF, Li L. Low level of swiprosin-1/EFhd2 in vestibular nuclei of spontaneously hypersensitive motion sickness mice. Sci Rep 2017; 7:40986. [PMID: 28128226 PMCID: PMC5269593 DOI: 10.1038/srep40986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/14/2016] [Indexed: 11/13/2022] Open
Abstract
Susceptibility to motion sickness (MS) varies considerably among humans. However, the cause of such variation is unclear. Here, we used a classical genetic approach to obtain mouse strains highly sensitive and resistant to MS (SMS and RMS). Proteomics analysis revealed substantially lower swiprosin-1 expression in SMS mouse brains. Inducing MS via rotary stimulation decreased swiprosin-1 in the mouse brains. Swiprosin-1 knockout mice were much more sensitive to motion disturbance. Immunohistochemistry revealed strong swiprosin-1 expression in the vestibular nuclei (VN). Over-expressing swiprosin-1 in the VN of SMS mice decreased MS susceptibility. Down-regulating swiprosin-1 in the VN of RMS mice by RNAi increased MS susceptibility. Additional in vivo experiments revealed decreased swiprosin-1 expression by glutamate via the NMDA receptor. Glutamate increased neuronal excitability in SMS or swiprosin-1 knockout mice more prominently than in RMS or wild-type mice. These results indicate that swiprosin-1 in the VN is a critical determinant of the susceptibility to MS.
Collapse
Affiliation(s)
- Zhi-Bin Wang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ping Han
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ling-Chang Tong
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yi Luo
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei-Heng Su
- Basal medical College, Dalian Medical University, Dalian, Liaoning 130041, China
| | - Xin Wei
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xu-Hong Yu
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wei-Ye Liu
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xiu-Hua Zhang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hong Lei
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhen-Zhen Li
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Fang Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jian-Guo Chen
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tong-Hui Ma
- Basal medical College, Dalian Medical University, Dalian, Liaoning 130041, China
| | - Ding-Feng Su
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ling Li
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
3
|
Candiani S, Moronti L, Ramoino P, Schubert M, Pestarino M. A neurochemical map of the developing amphioxus nervous system. BMC Neurosci 2012; 13:59. [PMID: 22676056 PMCID: PMC3484041 DOI: 10.1186/1471-2202-13-59] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 04/27/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Amphioxus, representing the most basal group of living chordates, is the best available proxy for the last invertebrate ancestor of the chordates. Although the central nervous system (CNS) of amphioxus comprises only about 20,000 neurons (as compared to billions in vertebrates), the developmental genetics and neuroanatomy of amphioxus are strikingly vertebrate-like. In the present study, we mapped the distribution of amphioxus CNS cells producing distinctive neurochemicals. To this end, we cloned genes encoding biosynthetic enzymes and/or transporters of the most common neurotransmitters and assayed their developmental expression in the embryo and early larva. RESULTS By single and double in situ hybridization experiments, we identified glutamatergic, GABAergic/glycinergic, serotonergic and cholinergic neurons in developing amphioxus. In addition to characterizing the distribution of excitatory and inhibitory neurons in the developing amphioxus CNS, we observed that cholinergic and GABAergic/glycinergic neurons are segmentally arranged in the hindbrain, whereas serotonergic, glutamatergic and dopaminergic neurons are restricted to specific regions of the cerebral vesicle and the hindbrain. We were further able to identify discrete groups of GABAergic and glutamatergic interneurons and cholinergic motoneurons at the level of the primary motor center (PMC), the major integrative center of sensory and motor stimuli of the amphioxus nerve cord. CONCLUSIONS In this study, we assessed neuronal differentiation in the developing amphioxus nervous system and compiled the first neurochemical map of the amphioxus CNS. This map is a first step towards a full characterization of the neurotransmitter signature of previously described nerve cell types in the amphioxus CNS, such as motoneurons and interneurons.
Collapse
Affiliation(s)
- Simona Candiani
- Dipartimento per lo Studio del Territorio e delle sue Risorse, Università di Genova, Viale Benedetto XV, 5, 16132 Genoa, Italy.
| | | | | | | | | |
Collapse
|
4
|
Irons-Brown SR, Jones TA. Effects of selected pharmacological agents on avian auditory and vestibular compound action potentials. Hear Res 2005; 195:54-66. [PMID: 15350279 DOI: 10.1016/j.heares.2004.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Accepted: 02/27/2004] [Indexed: 11/24/2022]
Abstract
Glutamate is currently the consensus candidate for the hair cell transmitter in the inner ear of vertebrates. However, other candidate transmitter systems have been proposed and there may be differences in this regard for auditory and vestibular neuroepithelia. In the present study, perilymphatic perfusion was used to deliver prescribed concentrations of ten drugs to the interstitial fluids of the inner ear of hatchling chickens (n = 124). Dose-response curves were obtained for four of these pharmacological agents. The work was carried out in part to distinguish further the neuroepithelial chemical receptors mediating auditory and vestibular compound action potentials (CAPs). Kainic acid (KA) eliminated both auditory and vestibular responses. D-alpha-Aminoadipic acid (DAA) and dizocilpine maleate (MK-801), both NMDA-specific antagonists, failed to alter vestibular CAPs at any concentration. MK-801 significantly and selectively reduced auditory CAPs at concentrations equal to or greater than 1 mM. Similarly, kynurenic acid (4-hydroxyquinoline-2-carboxylic acid, 1 mM), a glutamate antagonist, significantly reduced auditory but not vestibular CAPs. A non-NMDA glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), reduced vestibular CAPs significantly but only at the highest concentration tested (1 mM). In contrast, CNQX reduced auditory responses at concentration as low as 1 microM. The CNQX concentration effective in reducing auditory CAPs by 50% (EC(50)) was approximately 20 microM. Glutamate (1 mM) as well as alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), a glutamate agonist, significantly reduced auditory CAPs (AMPA EC(50)=100 microM). Bicuculline, a GABA(A) receptor antagonist, and L-NAME, a nitric oxide synthase inhibitor, failed to alter responses from either modality. These findings support the hypothesis that glutamate receptors mediate auditory CAPs in birds. However, the results underscore a remarkable difference in sensitivity of the vestibular neuroepithelium (here gravity receptors) to non-NMDA receptor antagonists. The basis of the vestibular insensitivity to glutamate blockers is unknown but it may reflect differences in receptors themselves, differences in the transmission modes available to vestibular synapses or differences in the access of compounds to vestibular neuroepithelial receptors from the interstitial-perilymphatic fluid spaces.
Collapse
Affiliation(s)
- Shunda R Irons-Brown
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | | |
Collapse
|
5
|
Holstein GR, Martinelli GP, Henderson SC, Friedrich VL, Rabbitt RD, Highstein SM. Gamma-aminobutyric acid is present in a spatially discrete subpopulation of hair cells in the crista ampullaris of the toadfish Opsanus tau. J Comp Neurol 2004; 471:1-10. [PMID: 14983471 DOI: 10.1002/cne.11025] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although gamma-aminobutyric acid (GABA) and glutamate are known to be present in the vestibular sensory epithelia of a variety of species, the functional relationship between these two transmitters is not clear. The present study addresses the three-dimensional spatial distribution of GABA and glutamate immunoreactivity in the vestibular labyrinth of the oyster toadfish by using whole end organs labeled by immunofluorescence with monoclonal anti-GABA and/or antiglutamate antibodies and visualized as whole mounts by multiphoton confocal microscopy. We find glutamate-immunoreactive hair cells present throughout the sensory epithelium. In contrast, prominent GABA immunoreactivity is restricted to a small population of hair cells located in the central region of the crista. Double immunofluorescence reveals two distinct staining patterns in GABA-labeled hair cells. Most ( approximately 80%) GABA-labeled cells show trace levels of glutamate, appropriate for the metabolic/synthetic role of cytoplasmic glutamate. The remainder of the GABA-stained cells contain substantial levels of both GABA and glutamate, suggesting transmitter colocalization. In the toadfish utricle, glutamatergic hair cells are present throughout the macula. GABA-immunoreactive hair cells follow the arc of the striola, and most GABA-labeled receptor cells coexpress glutamate. The localization of GABA was explored in other species as well. In the pigeon, GABAergic hair cells are present throughout the crista ampullaris. Our findings demonstrate that multiple, neurochemically distinct types of hair cells are present in vestibular sensory epithelia. These observations, together with the excitatory activity generally associated with 8th nerve afferent fibers, strongly suggest that GABA serves an important, specific, and complex role in determining primary afferent response dynamics.
Collapse
Affiliation(s)
- Gay R Holstein
- Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Yang SM, Doi T, Asako M, Matsumoto A, Yamashita T. Optical recording of membrane potential in dissociated mouse vestibular ganglion cells using a voltage-sensitive dye. Auris Nasus Larynx 2000; 27:15-21. [PMID: 10648063 DOI: 10.1016/s0385-8146(99)00068-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We investigated membrane electrophysiological features of dissociated vestibular ganglion neurons, using a voltage-sensitive dye and a multiple site optical imaging system. The neuronal nature of the cultured vestibular ganglion cells was confirmed by positive staining with the anti-neurofilament 200 kDa antibody, using immunocytochemical methods. Optical absorption of the dye which binds to the external surface of neuron membranes increased while the cells were depolarized during perfusion with 150 mM potassium solution. The relative ratio (deltaI/I) of optical absorption change was 0.23 +/- 0.08% (means +/- S.D., n = 16). These optical responses were wavelength dependent, therefore, the optical response apparently originated from the voltage-sensitive dye. Under our experimental conditions, photodynamic damage and pharmacological effects of the dye were either absent or insignificant. We therefore concluded that optical recording is a new, practical and non-invasive method to simultaneously monitor changes in membrane potential from cultured vestibular ganglion cells. Optical recording is expected to provide further insight into mechanisms of information processing by vestibular ganglion neurons.
Collapse
Affiliation(s)
- S M Yang
- Department of Otolaryngology, Kansai Medical University, Moriguchi, Osaka, Japan
| | | | | | | | | |
Collapse
|
7
|
Ishiyama G, Lopez I, Ishiyama A. Subcellular immunolocalization of NMDA receptor subunit NR-1 in the chinchilla vestibular periphery. Brain Res 1999; 851:270-6. [PMID: 10642856 DOI: 10.1016/s0006-8993(99)02171-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The immunohistochemical localization of N-methyl-D-aspartate (NMDA) glutamate receptor subunit, NR-1 was investigated in the chinchilla cristae ampullaris and utricular maculae at the light and electron microscopy level with the use of specific antipeptide antibodies. The afferent calyces that innervate type I hair cell, and the basolateral type I vestibular hair cell is NR-1 immunoreactive. The afferent boutons innervating type II hair cells and the basal portion of type II hair cell are NR-1 non-immunoreactive. These findings are consistent with NMDA receptor mediation of afferent excitatory neurotransmission from type I, but not type II hair cells to the primary afferent vestibular nerve. The NMDA receptors on the type I hair cell are located in areas of synaptic specialization, and may play a role in autoregulation. The localization of the NMDA receptor subunit in type I but not type II hair cells is intriguing.
Collapse
Affiliation(s)
- G Ishiyama
- Department of Neurology, UCLA School of Medicine, USA.
| | | | | |
Collapse
|
8
|
Andrianov GN, Ryzhova IV. Opioid peptides as possible neuromodulators of the afferent synaptic transmission in the frog semicircular canal. Neuroscience 1999; 93:801-6. [PMID: 10465463 DOI: 10.1016/s0306-4522(99)00159-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Vestibular receptors of the frog, Rana temporaria, were examined for the effect of bath-applied opioid peptide leu-enkephalin, its synthetic analogue dalargin and the specific opiate antagonist naloxone. Multiunit afferent activity of the whole vestibular nerve was recorded in an in vitro preparation. Leu-enkephalin (0.005-100 nM) and dalargin (0.1-100 nM) depress the resting discharge frequency. Naloxone (10 nM-1 microM) antagonizes responses induced by leu-enkephalin and dalargin that suggests a specific action of opioid peptides. Leu-enkephalin and delargin inhibit the excitatory action of L-glutamate. The effects of opioid peptides on L-glutamate-induced responses are unaffected by Co2+ block of transmitter release from hair cells that could speak in favour of the postsynaptic nature of these responses. At the same time, the other possible site of action of opioid peptides, such as efferent system, can not be excluded. The results indicate that opiate receptors are present in hair cells and that the neurotransmitter L-glutamate is involved in opiate action at the peripheral vestibular system of the frog. We suggest that opioid peptides may act as a neuromodulator in this system.
Collapse
Affiliation(s)
- G N Andrianov
- Laboratory of Physiology of Reception, Pavlov Institute of Physiology, Russian Academy of Sciences, St Petersburg
| | | |
Collapse
|
9
|
Chin KW, Lopez I, Lee SC, Honrubia V. Glutamate-like immunoreactivity during hair cell recovery after gentamicin exposure in the chinchilla vestibular sensory periphery. Laryngoscope 1999; 109:1037-44. [PMID: 10401837 DOI: 10.1097/00005537-199907000-00005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Determine the expression of glutamate by immunohistochemistry in normal and recovering vestibular hair cells in the chinchilla crista ampullaris after gentamicin ototoxicity. STUDY DESIGN In five groups of three animals each, ototoxicity was produced by placing gentamicin (50 microg)-impregnated Gelfoam pellets within the perilymphatic space of the superior semicircular canal. Animals were sacrificed at 1, 2, 4, 8, and 16 weeks after treatment. A group of normal (n=3) animals was also processed. METHODS For the detection of glutamate the inner ears of these animals were dissected, and the horizontal cristae ampullaris embedded in plastic. Two-micron-thick tissue sections were obtained and incubated with monoclonal antibodies against glutamate. The immunoreaction was detected using the avidinbiotinylated-complex technique and diaminobenzidine was the chromogen. RESULTS Normal sensory epithelia demonstrated type I and type II hair cells with moderate glutamate-like immunoreactivity. Supporting cells demonstrated no glutamate-like immunoreactivity. Afferent nerve fibers and calyxes surrounding type I hair cells demonstrated strong glutamate-like immunoreactivity. At 1 and 2 weeks after treatment the few type II hair cells surviving ototoxic treatment (15%-18%) contained moderate glutamate-like immunoreactivity, supporting cells showed no immunoreactivity, and nerve terminals and fibers displayed strong immunoreactivity. At 4 and 8 weeks after treatment, recovered hair cells (80%) had greater glutamate-like immunoreactivity when compared with normal hair cells, supporting cells displayed no glutamate-like immunoreactivity, and afferent fibers contained strong glutamate-like immunoreactivity. At 16 weeks, glutamate-like immunoreactivity in hair cells returned to normal level. CONCLUSION Glutamate may be used as an indicator of hair cell differentiation and as an index of the molecular recovery of hair cells after ototoxicity.
Collapse
Affiliation(s)
- K W Chin
- Department of Surgery, University of California at Los Angeles, School of Medicine, USA
| | | | | | | |
Collapse
|
10
|
Usami S, Ottersen OP. Aspartate is enriched in sensory cells and subpopulations of non-neuronal cells in the guinea pig inner ear: a quantitative immunoelectron microscopic analysis. Brain Res 1996; 742:43-9. [PMID: 9117420 DOI: 10.1016/s0006-8993(96)01001-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cellular and subcellular localization of aspartate in the guinea pig inner ear was studied by means of quantitative postembedding cytochemistry. High levels of aspartate immunoreactivity were found in neuronal compartments, including all types of hair cells, and afferent and efferent nerve fibers. In addition, sub-basilar tympanic cells, interdental cells, and the mesothelial cells in the Reissner's membrane were strongly immunoreactive. The present immunocytochemical results are consistent with the idea that aspartate is involved in neurotransmission in the inner ear, but also point to possible metabolic roles of aspartate.
Collapse
Affiliation(s)
- S Usami
- Department of Otorhinolaryngology, Hirosaki University School of Medicine, Japan.
| | | |
Collapse
|