Tamba M, Torreggiani A. Free radical scavenging and copper chelation: a potentially beneficial action of captopril.
Free Radic Res 2000;
32:199-211. [PMID:
10730819 DOI:
10.1080/10715760000300211]
[Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Captopril (CpSH), an angiotensin converting enzyme (ACE) inhibitor, is reported to provide protection against free-radical mediated damage. The purpose of this study was to investigate, by means of pulse radiolysis technique, the behaviour of CpSH towards radiation-induced radicals in the absence and in the presence of copper(II) ions, which can play a relevant role in the metal catalysed generation of reactive oxygen species. The results indicate that the -SH group is crucial in determining the radical scavenging action of CpSH and the nature of the resulting CpSH transient products in the absence or in the presence of oxygen. In the presence of Cu(II), the -SH group is still involved in the biological action of the molecule participating both in the one-electron reduction of Cu(II) with formation of CpSSCp, and in Cu(I) chelation. This conclusion is supported by the Raman spectroscopic data which allow to identify the CpSH sites involved in the copper complex at different pH. These results suggest that CpSH may potentially inhibit oxidative damage both through free radical scavenging and metal chelation. Considering the low CpSH concentration in vivo, the metal chelation mechanism, more than the direct radical scavenging, could play the major role in moderating the toxicological effects of free radicals.
Collapse