1
|
Yip TTY, Li Z, Li T. Clinical validation of MR-generated synthetic CT by MRCAT for brain tumor radiotherapy. J Appl Clin Med Phys 2025; 26:e14494. [PMID: 39673148 PMCID: PMC11713499 DOI: 10.1002/acm2.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 12/16/2024] Open
Abstract
OBJECTIVE MRI is an emerging modality in radiotherapy (RT). Accuracy synthetic CT is the prerequisite for implementing MR-only RT planning. This study validated the commercial algorithm of MR for calculating attenuation (MRCAT) in terms of image quality and dosimetric agreement. METHODS Brain tumor cases with 18 treated using intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT), and 15 treated using stereotactic radiosurgery (SRS) were analyzed. Synthetic CTs were resampled referencing planning CT. Treatment plan calculated on planning CT was recalculated on resampled MRCAT. Image quality of selected metrics and dosimetric agreements were assessed by dose-volume-histogram and 3D gamma analysis. RESULTS For IMRT/VMAT and SRS cases, mean error were 23.42 ± 1.05 and 28.39 ± 3.17 HU; mean absolute error were 38.03 ± 1.42 and 52.36 ± 2.63 HU; root mean squared error were 89.09 ± 6.65 and 108.38 ± 12.23 HU; peak signal-to-noise ratio were 29.11 ± 0.60 and 27.65 ± 0.59 dB; and structural similarity index measures were 0.88 ± 0.00 and 0.70 ± 0.01 respectively. No significant differences were identified for DVH metrics accounting the target coverage. Most OARs did not have significant dose deviation, except left lens with 0.70% higher in D-mean after recalculation (p < 0.001). For criteria of 3 mm/3%, 2 mm/2%, and 1 mm/1%, gamma passing rates for IMRT/VMAT were 99.92%, 99.42%, and 96.47%, while SRS were 99.86%, 99.52%, and 97.57% respectively. Correlation between passing rate and image quality metrics was established in IMRT/VMAT cases, with higher similarity yield better dosimetric agreement between planning and synthetic CT. CONCLUSION This study has validated the MRCAT for clinical use in terms of comparable image quality and dosimetric agreement with planning CT. Further case selection and MR-compatible immobilization device would be required.
Collapse
Affiliation(s)
- Tyrone Tsz Yeung Yip
- Department of Health Technology and InformaticsFaculty of Health and Social SciencesThe Hong Kong Polytechnic UniversityHong KongHong Kong
| | - Zhichun Li
- Department of Health Technology and InformaticsFaculty of Health and Social SciencesThe Hong Kong Polytechnic UniversityHong KongHong Kong
| | - Tian Li
- Department of Health Technology and InformaticsFaculty of Health and Social SciencesThe Hong Kong Polytechnic UniversityHong KongHong Kong
| |
Collapse
|
2
|
Lerner M, Medin J, Jamtheim Gustafsson C, Alkner S, Olsson LE. Prospective Clinical Feasibility Study for MRI-Only Brain Radiotherapy. Front Oncol 2022; 11:812643. [PMID: 35083159 PMCID: PMC8784680 DOI: 10.3389/fonc.2021.812643] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/20/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES MRI-only radiotherapy (RT) provides a workflow to decrease the geometric uncertainty introduced by the image registration process between MRI and CT data and to streamline the RT planning. Despite the recent availability of validated synthetic CT (sCT) methods for the head region, there are no clinical implementations reported for brain tumors. Based on a preceding validation study of sCT, this study aims to investigate MRI-only brain RT through a prospective clinical feasibility study with endpoints for dosimetry and patient setup. MATERIAL AND METHODS Twenty-one glioma patients were included. MRI Dixon images were used to generate sCT images using a CE-marked deep learning-based software. RT treatment plans were generated based on MRI delineated anatomical structures and sCT for absorbed dose calculations. CT scans were acquired but strictly used for sCT quality assurance (QA). Prospective QA was performed prior to MRI-only treatment approval, comparing sCT and CT image characteristics and calculated dose distributions. Additional retrospective analysis of patient positioning and dose distribution gamma evaluation was performed. RESULTS Twenty out of 21 patients were treated using the MRI-only workflow. A single patient was excluded due to an MRI artifact caused by a hemostatic substance injected near the target during surgery preceding radiotherapy. All other patients fulfilled the acceptance criteria. Dose deviations in target were within ±1% for all patients in the prospective analysis. Retrospective analysis yielded gamma pass rates (2%, 2 mm) above 99%. Patient positioning using CBCT images was within ± 1 mm for registrations with sCT compared to CT. CONCLUSION We report a successful clinical study of MRI-only brain radiotherapy, conducted using both prospective and retrospective analysis. Synthetic CT images generated using the CE-marked deep learning-based software were clinically robust based on endpoints for dosimetry and patient positioning.
Collapse
Affiliation(s)
- Minna Lerner
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden
| | - Joakim Medin
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Department of Medical Radiation Physics, Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Christian Jamtheim Gustafsson
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden
| | - Sara Alkner
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Lund, Sweden
| | - Lars E. Olsson
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden
| |
Collapse
|
3
|
Kurz C, Buizza G, Landry G, Kamp F, Rabe M, Paganelli C, Baroni G, Reiner M, Keall PJ, van den Berg CAT, Riboldi M. Medical physics challenges in clinical MR-guided radiotherapy. Radiat Oncol 2020; 15:93. [PMID: 32370788 PMCID: PMC7201982 DOI: 10.1186/s13014-020-01524-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
The integration of magnetic resonance imaging (MRI) for guidance in external beam radiotherapy has faced significant research and development efforts in recent years. The current availability of linear accelerators with an embedded MRI unit, providing volumetric imaging at excellent soft tissue contrast, is expected to provide novel possibilities in the implementation of image-guided adaptive radiotherapy (IGART) protocols. This study reviews open medical physics issues in MR-guided radiotherapy (MRgRT) implementation, with a focus on current approaches and on the potential for innovation in IGART.Daily imaging in MRgRT provides the ability to visualize the static anatomy, to capture internal tumor motion and to extract quantitative image features for treatment verification and monitoring. Those capabilities enable the use of treatment adaptation, with potential benefits in terms of personalized medicine. The use of online MRI requires dedicated efforts to perform accurate dose measurements and calculations, due to the presence of magnetic fields. Likewise, MRgRT requires dedicated quality assurance (QA) protocols for safe clinical implementation.Reaction to anatomical changes in MRgRT, as visualized on daily images, demands for treatment adaptation concepts, with stringent requirements in terms of fast and accurate validation before the treatment fraction can be delivered. This entails specific challenges in terms of treatment workflow optimization, QA, and verification of the expected delivered dose while the patient is in treatment position. Those challenges require specialized medical physics developments towards the aim of fully exploiting MRI capabilities. Conversely, the use of MRgRT allows for higher confidence in tumor targeting and organs-at-risk (OAR) sparing.The systematic use of MRgRT brings the possibility of leveraging IGART methods for the optimization of tumor targeting and quantitative treatment verification. Although several challenges exist, the intrinsic benefits of MRgRT will provide a deeper understanding of dose delivery effects on an individual basis, with the potential for further treatment personalization.
Collapse
Affiliation(s)
- Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748, Garching, Germany
| | - Giulia Buizza
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133, Milano, Italy
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748, Garching, Germany
- German Cancer Consortium (DKTK), 81377, Munich, Germany
| | - Florian Kamp
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Moritz Rabe
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133, Milano, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133, Milano, Italy
- Bioengineering Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Privata Campeggi 53, 27100, Pavia, Italy
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Paul J Keall
- ACRF Image X Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Cornelis A T van den Berg
- Department of Radiotherapy, University Medical Centre Utrecht, PO box 85500, 3508 GA, Utrecht, The Netherlands
| | - Marco Riboldi
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748, Garching, Germany.
| |
Collapse
|
4
|
Radiotherapy Advances in Pediatric Neuro-Oncology. Bioengineering (Basel) 2018; 5:bioengineering5040097. [PMID: 30400370 PMCID: PMC6315761 DOI: 10.3390/bioengineering5040097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 12/31/2022] Open
Abstract
Radiation therapy (RT) represents an integral component in the treatment of many pediatric brain tumors. Multiple advances have emerged within pediatric radiation oncology that aim to optimize the therapeutic ratio—improving disease control while limiting RT-related toxicity. These include innovations in treatment planning with magnetic resonance imaging (MRI) simulation, as well as increasingly sophisticated radiation delivery techniques. Advanced RT techniques, including photon-based RT such as intensity-modulated RT (IMRT) and volumetric-modulated arc therapy (VMAT), as well as particle beam therapy and stereotactic RT, have afforded an array of options to dramatically reduce radiation exposure of uninvolved normal tissues while treating target volumes. Along with advances in image guidance of radiation treatments, novel RT approaches are being implemented in ongoing and future prospective clinical trials. As the era of molecular risk stratification unfolds, personalization of radiation dose, target, and technique holds the promise to meaningfully improve outcomes for pediatric neuro-oncology patients.
Collapse
|
5
|
Galbusera F, Bassani T, Casaroli G, Gitto S, Zanchetta E, Costa F, Sconfienza LM. Generative models: an upcoming innovation in musculoskeletal radiology? A preliminary test in spine imaging. Eur Radiol Exp 2018; 2:29. [PMID: 30377873 PMCID: PMC6207611 DOI: 10.1186/s41747-018-0060-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/27/2018] [Indexed: 12/28/2022] Open
Abstract
Background Deep learning is a ground-breaking technology that is revolutionising many research and industrial fields. Generative models are recently gaining interest. Here, we investigate their potential, namely conditional generative adversarial networks, in the field of magnetic resonance imaging (MRI) of the spine, by performing clinically relevant benchmark cases. Methods First, the enhancement of the resolution of T2-weighted (T2W) images (super-resolution) was tested. Then, automated image-to-image translation was tested in the following tasks: (1) from T1-weighted to T2W images of the lumbar spine and (2) vice versa; (3) from T2W to short time inversion-recovery (STIR) images; (4) from T2W to turbo inversion recovery magnitude (TIRM) images; (5) from sagittal standing x-ray projections to T2W images. Clinical and quantitative assessments of the outputs by means of image quality metrics were performed. The training of the models was performed on MRI and x-ray images from 989 patients. Results The performance of the models was generally positive and promising, but with several limitations. The number of disc protrusions or herniations showed good concordance (κ = 0.691) between native and super-resolution images. Moderate-to-excellent concordance was found when translating T2W to STIR and TIRM images (κ ≥ 0.842 regarding disc degeneration), while the agreement was poor when translating x-ray to T2W images. Conclusions Conditional generative adversarial networks are able to generate perceptually convincing synthetic images of the spine in super-resolution and image-to-image translation tasks. Taking into account the limitations of the study, deep learning-based generative methods showed the potential to be an upcoming innovation in musculoskeletal radiology.
Collapse
Affiliation(s)
- Fabio Galbusera
- Laboratory of Biological Structures Mechanics, IRCCS Istituto Ortopedico Galeazzi, via Galeazzi 4, 20161, Milan, Italy.
| | - Tito Bassani
- Laboratory of Biological Structures Mechanics, IRCCS Istituto Ortopedico Galeazzi, via Galeazzi 4, 20161, Milan, Italy
| | - Gloria Casaroli
- Laboratory of Biological Structures Mechanics, IRCCS Istituto Ortopedico Galeazzi, via Galeazzi 4, 20161, Milan, Italy
| | - Salvatore Gitto
- Unit of Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Galeazzi, via Galeazzi 4, 20161, Milan, Italy
| | - Edoardo Zanchetta
- Unit of Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Galeazzi, via Galeazzi 4, 20161, Milan, Italy
| | - Francesco Costa
- Department of Neurosurgery, Humanitas Clinical and Research Hospital, Via Manzoni 56, 20089, Rozzano, Italy
| | - Luca Maria Sconfienza
- Unit of Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Galeazzi, via Galeazzi 4, 20161, Milan, Italy.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Carlo Pascal 36, 20133, Milan, Italy
| |
Collapse
|
6
|
Wagner J, Welzel T, Habermehl D, Debus J, Combs SE. Radiotherapy in Patients with Vestibular Schwannoma and Neurofibromatosis Type 2: Clinical Results and Review of the Literature. TUMORI JOURNAL 2018; 100:189-94. [DOI: 10.1177/030089161410000212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aims and Background To evaluate the long-term outcome of patients with vestibular schwannoma (VS) and neurofibromatosis type 2 (NF2) treated with fractionated stereotactic radiotherapy (FSRT) or stereotactic radiosurgery (SRS). Patients and Methods Sixteen VS in 14 patients with NF2 were treated with FSRT (n = 14) and SRS (n = 2). Patients with tumor progression and/or progression of clinical symptoms were selected for treatment. For patients treated with FSRT a median total dose of 57.6 Gy was prescribed with a median fractionation of 5 × 1.8 Gy per week. For patients who underwent SRS a median single dose of 17 Gy was prescribed to the 80% isodose. Results FSRT and SRS were well tolerated. Local control rate was 94% for a median follow-up time of 131 months; 2- and 5-year progression-free survival were 100%. The probability of maintaining the pretreatment hearing level was 44%. Useful hearing preservation was 33%. Cranial nerve toxicity was moderate. Trigeminal nerve function worsened in 2 patients (12%) and facial nerve function in 3 patients (19%). One patient developed a new tinnitus. Conclusion FSRT and SRS are both safe and effective noninvasive and minimally invasive treatment options for patients with VS in the setting of NF2. The long-term local control rates are excellent. Functional hearing preservation is worse in patients with VS and NF2 than in patients with sporadic VS.
Collapse
Affiliation(s)
- Johanna Wagner
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg
| | - Thomas Welzel
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg
| | - Daniel Habermehl
- Department of Radiation Oncology, Technical University Hospital of Munich, Munich, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University Hospital of Munich, Munich, Germany
| |
Collapse
|
7
|
Johnstone E, Wyatt JJ, Henry AM, Short SC, Sebag-Montefiore D, Murray L, Kelly CG, McCallum HM, Speight R. Systematic Review of Synthetic Computed Tomography Generation Methodologies for Use in Magnetic Resonance Imaging-Only Radiation Therapy. Int J Radiat Oncol Biol Phys 2017; 100:199-217. [PMID: 29254773 DOI: 10.1016/j.ijrobp.2017.08.043] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/07/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
Abstract
Magnetic resonance imaging (MRI) offers superior soft-tissue contrast as compared with computed tomography (CT), which is conventionally used for radiation therapy treatment planning (RTP) and patient positioning verification, resulting in improved target definition. The 2 modalities are co-registered for RTP; however, this introduces a systematic error. Implementing an MRI-only radiation therapy workflow would be advantageous because this error would be eliminated, the patient pathway simplified, and patient dose reduced. Unlike CT, in MRI there is no direct relationship between signal intensity and electron density; however, various methodologies for MRI-only RTP have been reported. A systematic review of these methods was undertaken. The PRISMA guidelines were followed. Embase and Medline databases were searched (1996 to March, 2017) for studies that generated synthetic CT scans (sCT)s for MRI-only radiation therapy. Sixty-one articles met the inclusion criteria. This review showed that MRI-only RTP techniques could be grouped into 3 categories: (1) bulk density override; (2) atlas-based; and (3) voxel-based techniques, which all produce an sCT scan from MR images. Bulk density override techniques either used a single homogeneous or multiple tissue override. The former produced large dosimetric errors (>2%) in some cases and the latter frequently required manual bone contouring. Atlas-based techniques used both single and multiple atlases and included methods incorporating pattern recognition techniques. Clinically acceptable sCTs were reported, but atypical anatomy led to erroneous results in some cases. Voxel-based techniques included methods using routine and specialized MRI sequences, namely ultra-short echo time imaging. High-quality sCTs were produced; however, use of multiple sequences led to long scanning times increasing the chances of patient movement. Using nonroutine sequences would currently be problematic in most radiation therapy centers. Atlas-based and voxel-based techniques were found to be the most clinically useful methods, with some studies reporting dosimetric differences of <1% between planning on the sCT and CT and <1-mm deviations when using sCTs for positional verification.
Collapse
Affiliation(s)
- Emily Johnstone
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom.
| | - Jonathan J Wyatt
- The Northern Centre for Cancer Care, The Newcastle-upon-Tyne NHS Foundation Trust, Newcastle-upon-Tyne, United Kingdom
| | - Ann M Henry
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom; Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Susan C Short
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom; Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - David Sebag-Montefiore
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom; Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Louise Murray
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom; Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Charles G Kelly
- The Northern Centre for Cancer Care, The Newcastle-upon-Tyne NHS Foundation Trust, Newcastle-upon-Tyne, United Kingdom
| | - Hazel M McCallum
- The Northern Centre for Cancer Care, The Newcastle-upon-Tyne NHS Foundation Trust, Newcastle-upon-Tyne, United Kingdom
| | - Richard Speight
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|
8
|
Edmund JM, Nyholm T. A review of substitute CT generation for MRI-only radiation therapy. Radiat Oncol 2017; 12:28. [PMID: 28126030 PMCID: PMC5270229 DOI: 10.1186/s13014-016-0747-y] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy based on magnetic resonance imaging as the sole modality (MRI-only RT) is an area of growing scientific interest due to the increasing use of MRI for both target and normal tissue delineation and the development of MR based delivery systems. One major issue in MRI-only RT is the assignment of electron densities (ED) to MRI scans for dose calculation and a similar need for attenuation correction can be found for hybrid PET/MR systems. The ED assigned MRI scan is here named a substitute CT (sCT). In this review, we report on a collection of typical performance values for a number of main approaches encountered in the literature for sCT generation as compared to CT. A literature search in the Scopus database resulted in 254 papers which were included in this investigation. A final number of 50 contributions which fulfilled all inclusion criteria were categorized according to applied method, MRI sequence/contrast involved, number of subjects included and anatomical site investigated. The latter included brain, torso, prostate and phantoms. The contributions geometric and/or dosimetric performance metrics were also noted. The majority of studies are carried out on the brain for 5–10 patients with PET/MR applications in mind using a voxel based method. T1 weighted images are most commonly applied. The overall dosimetric agreement is in the order of 0.3–2.5%. A strict gamma criterion of 1% and 1mm has a range of passing rates from 68 to 94% while less strict criteria show pass rates > 98%. The mean absolute error (MAE) is between 80 and 200 HU for the brain and around 40 HU for the prostate. The Dice score for bone is between 0.5 and 0.95. The specificity and sensitivity is reported in the upper 80s% for both quantities and correctly classified voxels average around 84%. The review shows that a variety of promising approaches exist that seem clinical acceptable even with standard clinical MRI sequences. A consistent reference frame for method benchmarking is probably necessary to move the field further towards a widespread clinical implementation.
Collapse
Affiliation(s)
- Jens M Edmund
- Radiotherapy Research Unit, Department of Oncology, Herlev & Gentofte Hospital, Copenhagen University, Herlev, Denmark. .,Niels Bohr Institute, Copenhagen University, Copenhagen, Denmark.
| | - Tufve Nyholm
- Department of Radiation Sciences, Umeå University, Umeå, SE-901 87, Sweden.,Medical Radiation Physics, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Review of potential improvements using MRI in the radiotherapy workflow. Z Med Phys 2015; 25:210-20. [PMID: 25779877 DOI: 10.1016/j.zemedi.2014.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/20/2014] [Accepted: 11/25/2014] [Indexed: 12/29/2022]
Abstract
The goal of modern radiotherapy is to deliver a lethal amount of dose to tissue volumes that contain a significant amount of tumour cells while sparing surrounding unaffected or healthy tissue. Online image guided radiotherapy with stereotactic ultrasound, fiducial-based planar X-ray imaging or helical/conebeam CT has dramatically improved the precision of radiotherapy, with moving targets still posing some methodical problems regarding positioning. Therefore, requirements for precise target delineation and identification of functional body structures to be spared by high doses become more evident. The identification of areas of relatively radioresistant cells or areas of high tumor cell density is currently under development. This review outlines the state of the art of MRI integration into treatment planning and its importance in follow up and the quantification of biological effects. Finally the current state of the art of online imaging for patient positioning will be outlined and indications will be given what the potential of integrated radiotherapy/online MRI systems is.
Collapse
|
10
|
Abstract
Over the last two decades, the computed tomography simulator became the standard of the contemporary radiotherapy treatment planning (RTP) process. Along the same time, the superb soft tissue contrast of magnetic resonance imaging (MRI) was widely incorporated into RTP through the process of image coregistration. This review summarizes the efforts of incorporation of MRI data into target definition process for RTP based on gained clinical evidence so far and opens a question whether the time is up for bringing a MRI-simulator as an additional standard imaging tool into radiation oncology departments.
Collapse
Affiliation(s)
- Slobodan Devic
- Department of Radiation Oncology, Jewish General Hospital, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
11
|
Combs SE, Welzel T, Schulz-Ertner D, Huber PE, Debus J. Differences in clinical results after LINAC-based single-dose radiosurgery versus fractionated stereotactic radiotherapy for patients with vestibular schwannomas. Int J Radiat Oncol Biol Phys 2010; 76:193-200. [PMID: 19604653 DOI: 10.1016/j.ijrobp.2009.01.064] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 01/13/2009] [Accepted: 01/14/2009] [Indexed: 11/28/2022]
Abstract
PURPOSE To evaluate the outcomes of patients with vestibular schwannoma (VS) treated with fractionated stereotactic radiotherapy (FSRT) vs. those treated with stereotactic radiosurgery (SRS). METHODS AND MATERIALS This study is based on an analysis of 200 patients with 202 VSs treated with FSRT (n = 172) or SRS (n = 30). Patients with tumor progression and/or progression of clinical symptoms were selected for treatment. In 165 out of 202 VSs (82%), RT was performed as the primary treatment for VS, and for 37 VSs (18%), RT was conducted for tumor progression after neurosurgical intervention. For patients receiving FSRT, a median total dose of 57.6 Gy was prescribed, with a median fractionation of 5 x 1.8 Gy per week. For patients who underwent SRS, a median single dose of 13 Gy was prescribed to the 80% isodose. RESULTS FSRT and SRS were well tolerated. Median follow-up time was 75 months. Local control was not statistically different for both groups. The probability of maintaining the pretreatment hearing level after SRS with doses of < or =13 Gy was comparable to that of FSRT. The radiation dose for the SRS group (< or =13 Gy vs. >13 Gy) significantly influenced hearing preservation rates (p = 0.03). In the group of patients treated with SRS doses of < or =13 Gy, cranial nerve toxicity was comparable to that of the FSRT group. CONCLUSIONS FSRT and SRS are both safe and effective alternatives for the treatment of VS. Local control rates are comparable in both groups. SRS with doses of < or =13 Gy is a safe alternative to FSRT. While FSRT can be applied safely for the treatment of VSs of all sizes, SRS should be reserved for smaller lesions.
Collapse
Affiliation(s)
- Stephanie E Combs
- Department of Radiation Oncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
12
|
Kristensen BH, Laursen FJ, Løgager V, Geertsen PF, Krarup-Hansen A. Dosimetric and geometric evaluation of an open low-field magnetic resonance simulator for radiotherapy treatment planning of brain tumours. Radiother Oncol 2008; 87:100-9. [PMID: 18262669 DOI: 10.1016/j.radonc.2008.01.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 12/19/2007] [Accepted: 01/13/2008] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE Magnetic resonance (MR) imaging is superior to computed tomography (CT) in radiotherapy of brain tumours. In this study an open low-field MR-simulator is evaluated in order to eliminate the cost of and time spent on additional CT scanning. MATERIALS AND METHODS Eleven patients with brain tumours are both CT and MR scanned and the defined tumour volumes are compared. Image distortions and dose calculations based on CT density correction, MR unit density and MR bulk density, bone segmentation are performed. Monte Carlo simulations using 4 and 8 MV beams on homogeneous and bone segmented mediums are performed. RESULTS Mean MR and CT tumour volumes of approximately the same size (V MR =55+/-34 cm3 and V CT =51+/-32 cm3) are observed, but for individual patients, small intersection volumes are observed. The MR images show negligible distortion within radial distances below 12 cm (<1.5 mm). On unit density mediums, dose errors above 2% are observed in low dose areas. Monte Carlo simulations with 4 MV photons show large deviations in dose (>2%) just behind the skull if bone is not segmented. CONCLUSIONS It is feasible to use an MR-simulator for radiotherapy planning of brain tumours if bone is segmented or a careful choice of beam energy (>4 MV) is selected.
Collapse
|
13
|
Lyons J, Thrall DE, Pruitt AF. Comparison of isodose distributions in canine brain in heterogeneity-corrected versus uncorrected treatment plans using 6 MV photons. Vet Radiol Ultrasound 2007; 48:292-6. [PMID: 17508520 DOI: 10.1111/j.1740-8261.2007.00245.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Magnetic resonance (MR) images may be useful for radiation planning due to greater contrast resolution. One disadvantage of MR images for radiation planning is the inability to incorporate electron density information into the dose calculation algorithm. To assess the magnitude of this problem, we evaluated radiation dose distribution in canine brain by comparing computed tomography (CT)-based radiotherapy plans with and without electron density correction. Computerized radiotherapy plans were generated for 13 dogs with brain tumors using 6 MV photons. A tissue-contouring program was used to outline the gross tumor volume (GTV) and the planning target volume (PTV) for each patient. Two treatment plans were generated for each dog. First, the plan was optimized without heterogeneity correction. Then the heterogeneity correction was implemented without changing any other plan parameters. Isodose distributions and dose volume histograms (DVHs) were used to compare the two plans. The D95 (dose delivered to 95% of the volume) within the PTV was calculated for each treatment plan and differences in the D95s were compared. The mean D95s without and with heterogeneity correction were 49.1 +/- 0.7 and 48.9 +/- 1.0Gy, respectively. The absolute mean percent dose difference without and with heterogeneity correction was 1.0 - 0.9% (-1.3-3.2%) and was not considered to be clinically significant. We found no clinically significant difference between CT-based radiotherapy plans without and with heterogeneity correction for brain tumors in small animals, which supports the use of MR-based treatment planning for radiotherapy of small animal brain tumors.
Collapse
Affiliation(s)
- J Lyons
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | |
Collapse
|
14
|
Khoo VS, Joon DL. New developments in MRI for target volume delineation in radiotherapy. Br J Radiol 2006; 79 Spec No 1:S2-15. [PMID: 16980682 DOI: 10.1259/bjr/41321492] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
MRI is being increasingly used in oncology for staging, assessing tumour response and also for treatment planning in radiotherapy. Both conformal and intensity-modulated radiotherapy requires improved means of defining target volumes for treatment planning in order to achieve its intended benefits. MRI can add to the radiotherapy treatment planning (RTP) process by providing excellent and improved characterization of soft tissues compared with CT. Together with its multiplanar capability and increased imaging functionality, these advantages for target volume delineation outweigh its drawbacks of lacking electron density information and potential image distortion. Efficient MR distortion assessment and correction algorithms together with image co-registration and fusion programs can overcome these limitations and permit its use for RTP. MRI developments using new contrast media, such as ultrasmall superparamagnetic iron oxide particles for abnormal lymph node identification, techniques such as dynamic contrast enhanced MRI and diffusion MRI to better characterize tissue and tumour regions as well as ultrafast volumetric or cine MR sequences to define temporal patterns of target and organ at risk deformity and variations in spatial location have all increased the scope and utility of MRI for RTP. Information from these MR developments may permit treatment individualization, strategies of dose escalation and image-guided radiotherapy. These developments will be reviewed to assess their current and potential use for RTP and precision high dose radiotherapy.
Collapse
Affiliation(s)
- V S Khoo
- Royal Marsden Hospital, Institute of Cancer Research, Fulham Road, London SW3 6JJ, UK
| | | |
Collapse
|
15
|
Combs SE, Volk S, Schulz-Ertner D, Huber PE, Thilmann C, Debus J. Management of acoustic neuromas with fractionated stereotactic radiotherapy (FSRT): Long-term results in 106 patients treated in a single institution. Int J Radiat Oncol Biol Phys 2005; 63:75-81. [PMID: 16111574 DOI: 10.1016/j.ijrobp.2005.01.055] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 01/17/2005] [Accepted: 01/18/2005] [Indexed: 11/22/2022]
Abstract
PURPOSE To assess the long-term outcome and toxicity of fractionated stereotactic radiotherapy for acoustic neuromas in 106 patients treated in a single institution. PATIENTS AND METHODS Between October 1989 and January 2004, fractionated stereotactic radiotherapy (FSRT) was performed in 106 patients with acoustic neuroma (AN). The median total dose applied was 57.6 Gy in median single fractions of 1.8 Gy in five fractions per week. The median irradiated tumor volume was 3.9 mL (range, 2.7-30.7 mL). The median follow-up time was 48.5 months (range, 3-172 months). RESULTS Fractionated stereotactic radiotherapy was well tolerated in all patients. Actuarial local tumor control rates at 3- and 5- years after FSRT were 94.3% and 93%, respectively. Actuarial useful hearing preservation was 94% at 5 years. The presence of neurofibromatosis (NF-2) significantly adversely influenced hearing preservation in patients that presented with useful hearing at the initiation of RT (p = 0.00062). Actuarial hearing preservation without the diagnosis of NF-2 was 98%. In cases with NF-2, the hearing preservation rate was 64%. Cranial nerve toxicity other than hearing impairment was rare. The rate of radiation induced toxicity to the trigeminal and facial nerve was 3.4% and 2.3%, respectively. CONCLUSION Fractionated stereotactic radiotherapy is safe and efficacious for the treatment of AN, with mild toxicity with regard to hearing loss and cranial nerve function. FSRT might be considered as an equieffective treatment modality compared to neurosurgery and therefore represents an interesting alternative therapy for patients with AN.
Collapse
Affiliation(s)
- Stephanie E Combs
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Aoyama H, Shirato H, Nishioka T, Hashimoto S, Tsuchiya K, Kagei K, Onimaru R, Watanabe Y, Miyasaka K. Magnetic resonance imaging system for three-dimensional conformal radiotherapy and its impact on gross tumor volume delineation of central nervous system tumors. Int J Radiat Oncol Biol Phys 2001; 50:821-7. [PMID: 11395252 DOI: 10.1016/s0360-3016(01)01598-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE We developed an MRI system for three-dimensional planning in radiotherapy. Its contribution on gross tumor volume (GTV) delineation of central nervous system (CNS) diseases was evaluated. METHODS AND MATERIALS The MRI system, with corrected distortion, was registered on computed tomography (CT) by means of fiducial/anatomic landmarks. In 41 consecutive patients with various CNS diseases, GTVs determined by MRI/CT registration (MR/CT-GTV) and CT alone (CT-GTV) were compared. Hard copies of diagnostic MRI were shown to doctors when CT-GTV was determined to simulate a conventional planning situation. Multi-observer volumetric analysis was conducted, assessing interobserver deviations among four radiation oncologists and intermethodological deviations between MR/CT-GTV and CT-GTV. RESULTS Overall, the mean of geometric distortion was significantly reduced from 1.08 mm to 0.3 mm by distortion correction (p < 0.0001). The contribution of the correction was apparent at >12.0 cm radius from the center of the magnetic field. Interobserver deviation was significantly reduced by MR/CT registration (p = 0.005). The improvement was significant for acoustic neurinoma (p = 0.038), astrocytomas (p = 0.043), and lesions at the cerebellum/brainstem (p = 0.008). The regression coefficient between MR/CT-GTV and CT-GTV was <0.9 for cerebellum/brainstem lesions, suggesting that MRI/CT-GTV was smaller than CT-GTV. CONCLUSIONS This system is feasible for three-dimensional planning and was shown to reduce interobserver deviations in GTV delineation for CNS diseases.
Collapse
Affiliation(s)
- H Aoyama
- Department of Radiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bednarz G, Downes B, Werner-Wasik M, Rosenwasser RH. Combining stereotactic angiography and 3D time-of-flight magnetic resonance angiography in treatment planning for arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys 2000; 46:1149-54. [PMID: 10725625 DOI: 10.1016/s0360-3016(99)00530-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
PURPOSE This study was initiated to evaluate the advantages of using three-dimensional time-of-flight magnetic resonance angiography (3D TOF MRA), as an adjuvant to conventional stereotactic angiography, in obtaining three-dimensional information about an arteriovenous malformation (AVM) nidus and in optimizing radiosurgical treatment plans. METHODS AND MATERIALS Following angiography, contrast-enhanced MRI and MRA studies were obtained in 22 consecutive patients undergoing Gamma Knife radiosurgery for AVM. A treatment plan was designed, based on the angiograms and modified as necessary, using the information provided by MRA. The quantitative analysis involved calculation of the ratio of the treated volume to the MRA nidus volume (the tissue volume ratio [TVR]) for the initial and final treatment plans. RESULTS In 12 cases (55%), the initial treatment plans were modified after including the MRA information in the treatment planning process. The mean TVR for the angiogram-based plans was 1.63 (range 1.17-2.17). The mean coverage of the MRA nidus by the angiogram-based plans was 93% (range 73-99%). The mean MRA nidus volume was 2.4 cc (range 0. 6-5.3 cc). The MRA-based modifications resulted in increased conformity with the mean TVR of 1.46 (range 1.20-1.74). These modifications were caused by MRA revealing irregular nidi and/or vascular components superimposed on the angiographic projections of the nidi. In a number of cases, the information from MRA was essential in defining the nidus when the projections of the angiographic outlines showed different superior and/or inferior extent of the nidus. In two cases, MRA revealed irregular nidi, correlating well with the angiograms and showed that the angiographically acceptable plans undertreated 27% of the MRA nidus in one case and 18% of the nidus in the other case. In the remaining 10 cases (45%), both MRI and MRA failed to detect the nidus due to surgical clip artifacts and the presence of embolizing glue. CONCLUSIONS The 3D TOF MRA provided information on irregular AVM shape, which was not visualized by angiography alone, and it was superior to MRI for defining the AVM nidus. However, when imaging artifacts obscured the AVM nidus on MRI and MRA, angiography permitted detection of AVM. Utilizing MRA as a complementary imaging modality to angiography increased accuracy of the AVM radiosurgery and allowed for optimal dose planning.
Collapse
Affiliation(s)
- G Bednarz
- Department of Radiation Oncology, Kimmel Cancer Center of the Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
18
|
Bednarz G, Downes MB, Corn BW, Curran WJ, Goldman HW. Evaluation of the spatial accuracy of magnetic resonance imaging-based stereotactic target localization for gamma knife radiosurgery of functional disorders. Neurosurgery 1999; 45:1156-61; discussion 1161-3. [PMID: 10549932 DOI: 10.1097/00006123-199911000-00028] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE This study was undertaken to determine the impact of geometric distortions on the spatial accuracy of magnetic resonance imaging (MRI)-guided stereotactic localization for gamma knife functional radiosurgery. METHOD The spatial accuracy of MRI was evaluated by comparing stereotactic coordinates of intracranial targets, external fiducials, and anatomic structures defined by computed tomographic and MRI studies of the Radionics skull phantom (Radionics, Inc., Burlington, MA), the Rando head phantom, and 11 patients who underwent gamma knife functional radiosurgery. The distortion in MRI was assessed from computed tomographic and MRI fusion studies for these patients, as well as from MRI studies acquired by swapping the direction of the magnetic field gradients for five patients who underwent gamma knife radiosurgery and three patients who underwent MRI-guided frameless surgery. A follow-up program to compare the location of the created lesion with the intended target complemented the analysis. RESULTS The average difference between computed tomographic and MRI stereotactic coordinates of external fiducials, intracranial targets, and anatomic landmarks was of the order of 1 pixel size (0.9 x 0.9 x 1 mm3) along the x, y, and z axes. The average linear scaling along these axes as determined by fusion studies was approximately 0.8% and consistent with a single pixel. The follow-up studies, available for seven patients, revealed good agreement between the location of the created lesion and the intended target. CONCLUSION The spatial accuracy of an MRI-based localization system can be comparable to computed tomography-based localization with the added benefit of MRI resolution. Both machine- and object-related MRI distortions can be reduced to an acceptable level with contemporary scanners, optimized scanning sequences, and distortion-resistant stereotactic instruments.
Collapse
Affiliation(s)
- G Bednarz
- Department of Radiation Oncology, Kimmel Cancer Center of the Jefferson Medical College, Thomas Jefferson University, and the Neurosensory Institute of Wills Eye Hospital, Philadelphia, Pennsylvania 19107-5097, USA
| | | | | | | | | |
Collapse
|
19
|
Rousseau J, Costi E, Gibon D. [Stereotactic localization in medical imaging. Technical and methodologic aspects]. Cancer Radiother 1998; 2:146-59. [PMID: 9749109 DOI: 10.1016/s1278-3218(98)89085-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stereotactic neurosurgery and stereotactic radiation therapy require the three-dimensional localization of lesions for biopsy or for treatment planning. The aim of this paper is the description of methods used in the different imaging modalities: x-ray teleradiography, digital subtracted angiography, computed tomography, and nuclear magnetic resonance imaging. The simple pin-target locating techniques are distinguished from those serving to the definition of volumes target necessary to treatment planning. Performances and difficulties of these techniques are emphasized. The specific methodology developed in Lille is described as an example. Organizational aspects and necessary quality controls for a good progress of the entire procedure, from imaging to treatment, are also discussed.
Collapse
Affiliation(s)
- J Rousseau
- Institut de technologie médicale, Pavillon Vancostenobel, CHRU de Lille, France
| | | | | |
Collapse
|
20
|
Khoo VS, Dearnaley DP, Finnigan DJ, Padhani A, Tanner SF, Leach MO. Magnetic resonance imaging (MRI): considerations and applications in radiotherapy treatment planning. Radiother Oncol 1997; 42:1-15. [PMID: 9132820 DOI: 10.1016/s0167-8140(96)01866-x] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The emerging utilisation of conformal radiotherapy (RT) planning requires sophisticated imaging modalities. Magnetic resonance imaging (MRI) has introduced several added imaging benefits that may confer an advantage over the use of computed tomography (CT) in RT planning such as improved soft tissue definition, unrestricted multiplannar and volumetric imaging as well as physiological and biochemical information with magnetic resonance (MR) angiography and spectroscopy. However, MRI has not yet seriously challenged CT for RT planning in most sites. The reasons for this include: (1) the poor imaging of bone and the lack of electron density information from MRI required for dosimetry calculations; (2) the presence of intrinsic system-related and object-induced MR image distortions; (3) the paucity of widely available computer software to accurately and reliably integrate and manipulate MR images within existing RT planning systems. In this review, the basic principals of MRI with its present potential and limitations for RT planning as well as possible solutions will be examined. Methods of MRI data acquisition and processing including image segmentation and registration to allow its application in RT planning will be discussed. Despite the difficulties listed, MRI has complemented CT-based RT planning and in some regions of the body especially the brain, it has been used alone with some success. Recent work with doped gel compounds allow the MRI mapping of dose distributions thus potentially providing a quality assurance tool and in a manner analogous to CT, the production of dose-response information in the form of dose volume histograms. However, despite the promise of MRI, much development research remains before its full potential and cost-effectiveness can be assessed.
Collapse
Affiliation(s)
- V S Khoo
- Department of Radiotherapy and Oncology, Royal Marsden NHS Trust, Sutton, Surrey, UK
| | | | | | | | | | | |
Collapse
|
21
|
Schad LR, Bock M, Baudendistel K, Essig M, Debus J, Knopp MV, Engenhart R, Lorenz WJ. Improved target volume definition in radiosurgery of arteriovenous malformations by stereotactic correlation of MRA, MRI, blood bolus tagging, and functional MRI. Eur Radiol 1996; 6:38-45. [PMID: 8797948 DOI: 10.1007/bf00619950] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this methodological paper the authors report the stereotactic correlation of different magnetic resonance imaging (MRI) techniques [MR angiography (MRA), MRI, blood bolus tagging (STAR), and functional MRI] in 10 patients with cerebral arteriovenous malformations (AVM) and its application in precision radiotherapy planning. The patient's head was fixed in a stereotactic localization system that is usable at the MR and the linear accelerator installations. By phantom measurements different materials (steel, aluminium, titanium, plastic, wood, ceramics) used for the stereotactic system were tested for mechanical stability and geometrical MR image distortion. All metallic stereotactic rings (closed rings made of massive metal) led to a more or less dramatic geometrical distortion and signal cancellation in the MR images. The best properties-nearly no distortion and high mechanical stability-are provided by a ceramic ring. If necessary, the remaining geometrical MR image distortion can be "corrected" (reducing displacements to the size of a pixel) by calculations based on modeling the distortion as a fourth-order two-dimensional polynomial. Using this method multimodality matching can be performed automatically as long as all images are acquired in the same examination and the patient is sufficiently immobilized. Precise definition of the target volume could be performed by the radiotherapist either directly in MR images or in calculated projection MR angiograms obtained by a maximum-intensity projection algorithm. As a result, information about the hemodynamics of the AVM was provided by a three-dimensional (3D) phase-contrast flow measurement and a dynamic MRA with the STAR technique leading to an improved definition of the size of the nidus, the origin of the feeding arteries, and the pattern of the venous drainage. In addition, functional MRI was performed in patients with lesions close to the primary motor cortex area leading to an improved definition of structures at risk for high-dose application in radiosurgery. The different imaging techniques of MR provide a sensitive, noninvasive, 3D method for defining target volume, critical structures, and for calculating dose distributions for radiosurgery of cerebral arteriovenous malformations, because dose calculation of radiosurgery at sufficient accuracy can be based on 3D MR data of the geometrical conformation of the patient's head.
Collapse
Affiliation(s)
- L R Schad
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Blüml S, Schad LR, Scharf J, Wenz F, Knopp MV, Lorenz WJ. A comparison of magnetization prepared 3D gradient-echo (MP-RAGE) sequences for imaging of intracranial lesions. Magn Reson Imaging 1996; 14:329-35. [PMID: 8725198 DOI: 10.1016/0730-725x(95)02095-b] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In a pilot study including 64 patients with different types of brain tumors we investigated four types of MP-RAGE sequences. The sequences differ in the length of the recovery period and the data acquisition mode (sequential vs. centric phase-encoding). The sequence with sequential encoding and a short recovery period provided images that reached the quality and reliability of spin-echo images. The other MP-RAGE sequences failed in providing equivalent information. In particular, a considerable number of small lesions identified in spin-echo images were not detected in MP-RAGE images. The impact of the evolving magnetization on the point spread function was analyzed by performing simulation calculations. It was found that lesions with short T1 times are rendered with low spatial resolution when sequence parameters are not set appropriately. The low overall quality of images obtained by sequences applying centric encoding may be explained by eddy current effects as reported in other recently published studies.
Collapse
Affiliation(s)
- S Blüml
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Wenz F, Hess T, Knopp MV, Weisser G, Blüml S, Schad LR, Hawighorst H, van Kaick G. 3D MPRAGE evaluation of lesions in the posterior cranial fossa. Magn Reson Imaging 1994; 12:553-8. [PMID: 8057759 DOI: 10.1016/0730-725x(94)92449-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Standard spin-echo images of the posterior cranial fossa are usually impaired by pulsation artifacts. We evaluated a heavily T1 weighted MPRAGE sequence (TR/TE/alpha/TI = 10/4/10-15 degrees/200-350) for detection of intracerebral lesions in the posterior fossa in 11 patients. Overall quality of the MPRAGE images was superior due to the lack of pulsation artifacts, high S/N and excellent gray-white matter contrast. Lesion detection was better in one patient, equal in six and inferior in four patients compared to SE technique. A cerebellar metastasis (8 mm) in one patient was completely blurred from pulsation artifacts on the SE images. Whereas multiple small lesions (< or = 4 mm) with discrete contrast enhancement were missed on the MPRAGE images in three patients. We conclude, that the MPRAGE sequence yields high quality images with isotropic spatial resolution in a reasonable time. But MPRAGE with these parameters can not replace standard SE images in screening the posterior fossa, because of a decreased sensitivity in the detection of small contrast-enhancing lesions.
Collapse
Affiliation(s)
- F Wenz
- Department of Radiological Diagnostics and Therapy, German Cancer Research Center (dkfz), Heidelberg
| | | | | | | | | | | | | | | |
Collapse
|