1
|
Philipp M, Hussnaetter KP, Reindl M, Müntjes K, Feldbrügge M, Schipper K. A Novel Potent Carrier for Unconventional Protein Export in Ustilago maydis. Front Cell Dev Biol 2022; 9:816335. [PMID: 35083222 PMCID: PMC8784666 DOI: 10.3389/fcell.2021.816335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/17/2021] [Indexed: 11/14/2022] Open
Abstract
Recombinant proteins are ubiquitously applied in fields like research, pharma, diagnostics or the chemical industry. To provide the full range of useful proteins, novel expression hosts need to be established for proteins that are not sufficiently produced by the standard platform organisms. Unconventional secretion in the fungal model Ustilago maydis is an attractive novel option for export of heterologous proteins without N-glycosylation using chitinase Cts1 as a carrier. Recently, a novel factor essential for unconventional Cts1 secretion termed Jps1 was identified. Here, we show that Jps1 is unconventionally secreted using a fusion to bacterial β-glucuronidase as an established reporter. Interestingly, the experiment also demonstrates that the protein functions as an alternative carrier for heterologous proteins, showing about 2-fold higher reporter activity than the Cts1 fusion in the supernatant. In addition, Jps1-mediated secretion even allowed for efficient export of functional firefly luciferase as a novel secretion target which could not be achieved with Cts1. As an application for a relevant pharmaceutical target, export of functional bi-specific synthetic nanobodies directed against the SARS-CoV2 spike protein was demonstrated. The establishment of an alternative efficient carrier thus constitutes an excellent expansion of the existing secretion platform.
Collapse
Affiliation(s)
- Magnus Philipp
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kai P Hussnaetter
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michèle Reindl
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kira Müntjes
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kerstin Schipper
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Chen CW, Liu HL, Lin JC, Ho Y. Molecular Dynamics Simulations of Metal Ion Binding to the His-tag Motif. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200500185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Computer-aided design to select optimal polypeptide tags to assist the purification of recombinant proteins. Sep Purif Technol 2009. [DOI: 10.1016/j.seppur.2008.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Integrated bioprocess for the production and purification of recombinant proteins by affinity chromatography in Escherichia coli. Bioprocess Biosyst Eng 2008; 32:149-58. [DOI: 10.1007/s00449-008-0227-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 04/14/2008] [Indexed: 11/26/2022]
|
5
|
Beshay U, Friehs K, Miksch G, Flaschel E. Integrierter Prozess für die Produktion und Aufarbeitung einer β-Glucanase mit Hilfe vonEscherichia coli. CHEM-ING-TECH 2006. [DOI: 10.1002/cite.200650409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Yang ZR, Dry J, Thomson R, Charles Hodgman T. A bio-basis function neural network for protein peptide cleavage activity characterisation. Neural Netw 2006; 19:401-7. [PMID: 16478661 DOI: 10.1016/j.neunet.2005.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2003] [Accepted: 07/28/2005] [Indexed: 11/20/2022]
Abstract
This paper presents a novel neural learning algorithm for analysing protein peptides which comprise amino acids as non-numerical attributes. The algorithm is derived from the radial basis function neural networks (RBFNNs) and is referred to as a bio-basis function neural network (BBFNN). The basic principle is to replace the radial basis function used by RBFNNs with a bio-basis function. Each basis in BBFNN is supported by a peptide. The bases collectively form a feature space, in which each basis represents a feature dimension. A linear classifier is constructed in the feature space for characterising a protein peptide in terms of functional status. The theoretical basis of BBFNN is that peptides, which perform the same function will have similar compositions of amino acids. Because of this, the similarity between peptides can have statistical significance for modelling while the proposed bio-basis function can well code this information from data. The application to two real cases shows that BBFNN outperformed multi-layer perceptrons and support vector machines.
Collapse
Affiliation(s)
- Zheng Rong Yang
- Department of Computer Science, University of Exeter, Northcote House, The Queen's Drive, Exeter EX4 4QJ, UK.
| | | | | | | |
Collapse
|
7
|
Hedhammar M, Gräslund T, Hober S. Protein Engineering Strategies for Selective Protein Purification. Chem Eng Technol 2005. [DOI: 10.1002/ceat.200500144] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Koschorreck M, Fischer M, Barth S, Pleiss J. How to find soluble proteins: a comprehensive analysis of alpha/beta hydrolases for recombinant expression in E. coli. BMC Genomics 2005; 6:49. [PMID: 15804363 PMCID: PMC1079826 DOI: 10.1186/1471-2164-6-49] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 04/02/2005] [Indexed: 11/15/2022] Open
Abstract
Background In screening of libraries derived by expression cloning, expression of active proteins in E. coli can be limited by formation of inclusion bodies. In these cases it would be desirable to enrich gene libraries for coding sequences with soluble gene products in E. coli and thus to improve the efficiency of screening. Previously Wilkinson and Harrison showed that solubility can be predicted from amino acid composition (Biotechnology 1991, 9(5):443–448). We have applied this analysis to members of the alpha/beta hydrolase fold family to predict their solubility in E. coli. alpha/beta hydrolases are a highly diverse family with more than 1800 proteins which have been grouped into homologous families and superfamilies. Results The predicted solubility in E. coli depends on hydrolase size, phylogenetic origin of the host organism, the homologous family and the superfamily, to which the hydrolase belongs. In general small hydrolases are predicted to be more soluble than large hydrolases, and eukaryotic hydrolases are predicted to be less soluble in E. coli than prokaryotic ones. However, combining phylogenetic origin and size leads to more complex conclusions. Hydrolases from prokaryotic, fungal and metazoan origin are predicted to be most soluble if they are of small, medium and large size, respectively. We observed large variations of predicted solubility between hydrolases from different homologous families and from different taxa. Conclusion A comprehensive analysis of all alpha/beta hydrolase sequences allows more efficient screenings for new soluble alpha/beta hydrolases by the use of libraries which contain more soluble gene products. Screening of hydrolases from families whose members are hard to express as soluble proteins in E. coli should first be done in coding sequences of organisms from phylogenetic groups with the highest average of predicted solubility for proteins of this family. The tools developed here can be used to identify attractive target genes for expression using protein sequences published in databases. This analysis also directs the design of degenerate, family- specific primers to amplify new members from homologous families or superfamilies with a high probability of soluble alpha/beta hydrolases.
Collapse
Affiliation(s)
- Markus Koschorreck
- Institute of Technical Biochemistry, Allmandring 31, 70569 Stuttgart, Gemany
| | - Markus Fischer
- Institute of Technical Biochemistry, Allmandring 31, 70569 Stuttgart, Gemany
| | - Sandra Barth
- Institute of Technical Biochemistry, Allmandring 31, 70569 Stuttgart, Gemany
| | - Jürgen Pleiss
- Institute of Technical Biochemistry, Allmandring 31, 70569 Stuttgart, Gemany
| |
Collapse
|
9
|
Yang ZR, Thomson R, Hodgman TC, Dry J, Doyle AK, Narayanan A, Wu X. Searching for discrimination rules in protease proteolytic cleavage activity using genetic programming with a min-max scoring function. Biosystems 2004; 72:159-76. [PMID: 14642665 DOI: 10.1016/s0303-2647(03)00141-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This paper presents an algorithm which is able to extract discriminant rules from oligopeptides for protease proteolytic cleavage activity prediction. The algorithm is developed using genetic programming. Three important components in the algorithm are a min-max scoring function, the reverse Polish notation (RPN) and the use of minimum description length. The min-max scoring function is developed using amino acid similarity matrices for measuring the similarity between an oligopeptide and a rule, which is a complex algebraic equation of amino acids rather than a simple pattern sequence. The Fisher ratio is then calculated on the scoring values using the class label associated with the oligopeptides. The discriminant ability of each rule can therefore be evaluated. The use of RPN makes the evolutionary operations simpler and therefore reduces the computational cost. To prevent overfitting, the concept of minimum description length is used to penalize over-complicated rules. A fitness function is therefore composed of the Fisher ratio and the use of minimum description length for an efficient evolutionary process. In the application to four protease datasets (Trypsin, Factor Xa, Hepatitis C Virus and HIV protease cleavage site prediction), our algorithm is superior to C5, a conventional method for deriving decision trees.
Collapse
Affiliation(s)
- Zheng Rong Yang
- School of Engineering and Computer Science, Exeter University, Northcote House The Queen's Drive, Exeter EX4 4QJ, UK.
| | | | | | | | | | | | | |
Collapse
|
10
|
β-Glucanase production from genetically modified recombinant Escherichia coli: Effect of growth substrates and development of a culture medium in shake flasks and stirred tank bioreactor. Process Biochem 2003. [DOI: 10.1016/s0032-9592(03)00078-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Abstract
Since immobilized metal ion affinity chromatography (IMAC) was first introduced, several variants of this method and many other metal affinity-based techniques have been devised. IMAC quickly established itself as a highly reliable purification procedure, showing rapid expansion in the number of preparative and analytical applications while not remaining confined to protein separation. It was soon applied to protein refolding (matrix-assisted refolding), evaluation of protein folding status, protein surface topography studies and biosensor development. In this review, applications in protein processing are described of IMAC as well as other metal affinity-based technologies.
Collapse
Affiliation(s)
- E K M Ueda
- Department of Biotechnology, Institute of Nuclear and Energy Research (IPEN-CNEN), Travessa R, 400, Cidade Universitária, 05508-900 São Paulo, SP, Brazil
| | | | | |
Collapse
|
12
|
Menkhaus TJ, Eriksson SU, Whitson PB, Glatz CE. Host selection as a downstream strategy: polyelectrolyte precipitation of beta-glucuronidase from plant extracts. Biotechnol Bioeng 2002; 77:148-54. [PMID: 11753921 DOI: 10.1002/bit.10135] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Host selection can be a strategy to simplify downstream processing for protein recovery. Advancing capabilities for using plants as hosts offers new host opportunities that have received only limited attention from a downstream processing perspective. Here, we investigated the potential of using a polycationic precipitating agent (polyethylenimine; PEI) to precipitate an acidic model protein (beta-glucuronidase; GUS) from aqueous plant extracts. To assess the potential of host selection to enhance the ease of recovery, the same procedure was applied to oilseed extracts of canola, corn (germ), and soy. For comparison, PEI precipitation of GUS was also evaluated from a crude bacterial fermentation broth. Two versions of the target protein were investigated--the wild-type enzyme (WTGUS) and a genetically engineered version containing 10 additional aspartates on each of the enzyme's four homologous subunits (GUSD10). It was found that canola was the most compatible expression host for use with this purification technique. GUS was completely precipitated from canola with the lowest dosage of PEI (30 mg PEI/g total protein), and over 80% of the initial WTGUS activity was recovered with 18-fold purification. Precipitation from soy gave yields over 90% for WTGUS but only 1.3-fold enrichment. Corn, although requiring the most PEI relative to total protein to precipitate (210 mg PEI/g total protein for 100% precipitation), gave intermediate results, with 81% recovery of WTGUS activity and a purification factor of 2.6. The addition of aspartate residues to the target protein did not enhance the selectivity of PEI precipitation in any of the systems tested. In fact, the additional charge reduced the ability to recover GUSD10 from the precipitate, resulting in lower yields and enrichment ratios compared to WTGUS. Compared to the bacterial host, plant systems provided lower polymer dosage requirements, higher yields of recoverable activity and greater purification factors.
Collapse
Affiliation(s)
- Todd J Menkhaus
- Department of Chemical Engineering, 2114 Sweeney Hall, Iowa State University, Ames, IA 5001-2230, USA
| | | | | | | |
Collapse
|
13
|
Hearn MT, Acosta D. Applications of novel affinity cassette methods: use of peptide fusion handles for the purification of recombinant proteins. J Mol Recognit 2001; 14:323-69. [PMID: 11757069 DOI: 10.1002/jmr.555] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this article, recent progress related to the use of different types of polypeptide fusion handles or 'tags' for the purification of recombinant proteins are critically discussed. In addition, novel aspects of the molecular cassette concept are elaborated, together with areas of potential application of these fundamental principles in molecular recognition. As evident from this review, the use of these concepts provides a powerful strategy for the high throughput isolation and purification of recombinant proteins and their derived domains, generated from functional genomic or zeomic studies, as part of the bioprocess technology leading to their commercial development, and in the study of molecular recognition phenomena per se. In addition, similar concepts can be exploited for high sensitivity analysis and detection, for the characterisation of protein bait/prey interactions at the molecular level, and for the immobilisation and directed orientation of proteins for use as biocatalysts/biosensors.
Collapse
Affiliation(s)
- M T Hearn
- Centre for Bioprocess Technology, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton 3800 Australia.
| | | |
Collapse
|
14
|
Clemmitt RH, Chase HA. Immobilised metal affinity chromatography of beta-galactosidase from unclarified Escherichia coli homogenates using expanded bed adsorption. J Chromatogr A 2000; 874:27-43. [PMID: 10768497 DOI: 10.1016/s0021-9673(00)00087-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The development of an expanded bed process for the direct extraction and partial purification of beta-galactosidase from unclarified Escherichia coli homogenates using its natural affinity for metal loaded STREAMLINE Chelating is described. Small packed beds were used to determine the effect of chelated metal ion (Cu2+, Ni2+, Co2+ or Zn2+), loading pH and ionic strength on the selective binding capacity, and recovery of beta-galactosidase from clarified homogenates. An elution protocol was developed using the competitive displacer, imidazole, to recover beta-galactosidase in 87% yield and 3.4-fold purification. These results were then used to develop a separation for the recovery of beta-galactosidase from unclarified homogenates in a 2.5-cm diameter expanded bed. Although Ni2+ loaded STREAMLINE Chelating had a 5% dynamic capacity for beta-galactosidase of just 118 U ml(-1) (0.39 mg ml(-1)), the low capacity was thought to be due to the large size of the target (464,000) relative to the exclusion limit of the macroporous adsorbent. Despite this low capacity, Ni2 STREAMLINE Chelating was used successfully to recover beta-galactosidase from an unclarified homogenate in 86.4% yield and at 5.95-fold purification. The degree of purification relative to a commercial standard, as assessed using the purification factor and sodium dodecyl sulphate-polyacrylamide gel electrophoresis was high suggesting that this pseudo-affinity procedure compared favourably with alternative methods.
Collapse
Affiliation(s)
- R H Clemmitt
- Department of Chemical Engineering, University of Cambridge, UK
| | | |
Collapse
|
15
|
Clemmitt RH, Chase HA. Facilitated downstream processing of a histidine-tagged protein from unclarified E. coli homogenates using immobilized metal affinity expanded-bed adsorption. Biotechnol Bioeng 2000; 67:206-16. [PMID: 10592518 DOI: 10.1002/(sici)1097-0290(20000120)67:2<206::aid-bit10>3.0.co;2-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The facilitated downstream processing of an intracellular, polyhistidine-tagged protein, glutathione S-transferase [GST-(His)(6)], direct from unclarified E. coli homogenates using expanded beds of STREAMLINE chelating, has been investigated. A series of pilot experiments were used to develop preparative-scale separations of GST-(His)(6), initially in packed and then in expanded beds. Packed beds of Ni(2+)-loaded STREAMLINE chelating proved to have the highest 5% dynamic capacity for GST-(His)(6), of 357 U mL(-1) (36 mg mL(-1)). When using immobilized Cu(2+) or Zn(2+), metal ion transfer was observed from the iminodiacetate ligands to the high-affinity chelator, GST-(His)(6). The subsequent metal affinity precipitation of this homodimer resulted in operational problems. An equilibrium adsorption isotherm demonstrated the high affinity of GST-(His)(6) for immobilized Ni(2+), with a q(m) of 695 U mL(-1) (70 mg mL(-1)) and a K(d) of 0.089 U mL(-1) (0.0089 mg mL(-1)). Ni(2+)-loaded STREAMLINE chelating was therefore selected to purify GST-(His)(6) from unclarified E. coli homogenate, resulting in an eluted yield of 80% and a 3.34-fold purification. The high dynamic capacity in the expanded mode of 357 U mL(-1) (36 mg mL(-1)) demonstrates that this specific interaction was not affected by the presence of E. coli cell debris.
Collapse
Affiliation(s)
- R H Clemmitt
- Department of Chemical Engineering, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK
| | | |
Collapse
|
16
|
Poppenborg L, Friehs K, Flaschel E. The green fluorescent protein is a versatile reporter for bioprocess monitoring. J Biotechnol 1997; 58:79-88. [PMID: 9383982 DOI: 10.1016/s0168-1656(97)00134-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The green fluorescent protein (GFP) of Aequorea victoria has become a convenient and versatile tool as a reporter protein in molecular cell biology and developmental biology. Here, it is shown that GFP may advantageously be used as a reporter system for bioprocess monitoring as well. Examples are given for monitoring fermentation as well as downstream processes for protein recovery. Thus, separation processes based on the application of affinity-fusion tags may be optimized in terms of the operational conditions by using GFP as a model target protein owing to facile screening by simple visual inspection. This item is discussed together with the presentation of a novel fusion tag with strong affinity for metal-chelate ligands: hisactophilin, a histidine-rich protein of Dictyostelium discoideum. This tag is of particular interest for affinity separation processes requiring multiple sites of interaction like aqueous and reverse micellar two-phase extraction as well as precipitation.
Collapse
Affiliation(s)
- L Poppenborg
- Universität Bielefeld, Technische Fakultät, Bielefeld, Germany
| | | | | |
Collapse
|
17
|
Nilsson J, Ståhl S, Lundeberg J, Uhlén M, Nygren PA. Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr Purif 1997; 11:1-16. [PMID: 9325133 DOI: 10.1006/prep.1997.0767] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J Nilsson
- Department of Biochemistry and Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | | | | | | | |
Collapse
|
18
|
Ghosh AC, Mathur RK, Dutta NN. Extraction and purification of cephalosporin antibiotics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1997; 56:111-45. [PMID: 8939060 DOI: 10.1007/bfb0103031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The biologically active natural and semisynthetic cephalosporin antibiotics require proper methods of extraction and purification for their isolation and subsequent pharmacological studies. This article reviews the various methods useful for extraction and purification of individual compounds as well as the enzymes involved in their biosynthesis. Applicability of the methods for downstream processing of the spent medium has been critically analysed. Adsorption chromatography, particularly with reverse phase materials, in combination with membrane separation is the most successful technique for extraction as well as purification of most of the enzymes and individual compounds. Techniques such as reactive extraction in liquid membrane, non-dispersive extraction in hollow fiber membrane and aqueous two-phase extraction are likely to emerge in new generation processes. Finally, some aspects of process design and scale-up have been discussed, highlighting the research needs of pragmatic importance.
Collapse
Affiliation(s)
- A C Ghosh
- Regional Research Laboratory, Jorhat, India
| | | | | |
Collapse
|
19
|
Stempfer G, Höll-Neugebauer B, Kopetzki E, Rudolph R. A fusion protein designed for noncovalent immobilization: stability, enzymatic activity, and use in an enzyme reactor. Nat Biotechnol 1996; 14:481-4. [PMID: 9630924 DOI: 10.1038/nbt0496-481] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have designed a new method for enzyme immobilization using a fusion protein of yeast alpha-glucosidase containing at its C-terminus a polycationic hexa-arginine fusion peptide. This fusion protein can be directly adsorbed from crude cell extracts on polyanionic matrices in a specific, oriented fashion. Upon noncovalent immobilization by polyionic interactions, the stability of the fusion protein is not affected by pH-, urea-, or thermal-denaturation. Furthermore, the enzymatic properties (specific activity at increasing enzyme concentration, Michaelis constant, or activation energy of the enzymatic reaction) are not influenced by this noncovalent coupling. The operational stability of the coupled enzyme under conditions of continuous substrate conversion is, however, increased significantly compared to the soluble form. Fusion proteins containing polyionic peptide sequences are proposed as versatile tools for the production of immobilized enzyme catalysts.
Collapse
Affiliation(s)
- G Stempfer
- Boehringer Mannheim Therapeutics, Pennzberg, Germany
| | | | | | | |
Collapse
|
20
|
Pires MJ, Martel P, Baptista A, Petersen SB, Willson RC, Cabral JMS. Improving protein extraction yield in reversed micellar systems through surface charge engineering. Biotechnol Bioeng 1994; 44:773-80. [DOI: 10.1002/bit.260440702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Affinity extraction of proteins by means of reverse micellar phases containing a metal-chelating surfactant. ACTA ACUST UNITED AC 1994. [DOI: 10.1007/bf02428972] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|