Goodman JM, Pallandi DV, Reading JR, Plyley MJ, Liu PP, Kavanagh T. Central and peripheral adaptations after 12 weeks of exercise training in post-coronary artery bypass surgery patients.
JOURNAL OF CARDIOPULMONARY REHABILITATION 1999;
19:144-50. [PMID:
10361645 DOI:
10.1097/00008483-199905000-00001]
[Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE
Training adaptations in patients with coronary artery disease (CAD) have been reported previously, but little is known about central and peripheral adaptations in those recovering from coronary artery bypass graft surgery (CABG). The purpose of this study was to examine the effects of 12 weeks of endurance exercise training on exercise performance and left ventricular and peripheral vascular reserve in a group of uncomplicated CABG patients.
METHODS
Thirty-one patients were recruited and began training 8 to 10 weeks after uncomplicated CABG. Patients underwent progressive exercise training consisting of walking and jogging, at 75% to 80% maximal oxygen intake (VO2max). Measures of left ventricular function included ejection fraction (EF), ventricular volumes, and the pressure volume ratio, an index of contractility. Peak ischemic exercise calf blood flow and vascular conductance was determined using strain-gauge plethysmography. Maximal oxygen intake and submaximal blood lactate concentration also was determined.
RESULTS
A significant improvement in VO2max (1497 +/- 60 mL/min versus 1691 +/- 71 mL/min) was observed after training. This change was accompanied by an increase in the EF during submaximal exercise (60 +/- 3% versus 63 +/- 2% at 40% VO2max; 61 +/- 3% versus 64 +/- 3% at 70% VO2max) (P < 0.05), and the change in EF from rest to exercise (delta EF). No changes were observed for ventricular volumes during exercise, although there was a trend for a higher stroke volume at 70% VO2max. A significant increase (18%) was observed for peak ischemic exercise calf blood flow and vascular conductance. In addition, submaximal blood lactate concentration was lower after training.
CONCLUSIONS
These data indicate that exercise training for 12 weeks in patients recovering from CABG can elicit significant improvements in functional capacity that, for the most part, are secondary to peripheral adaptations, with limited support for improvement in left ventricular function.
Collapse