1
|
Luetic GG, Menichini ML, Deri N, Steinberg J, Carrá A, Cristiano E, Patrucco L, Curbelo MC, Rojas JI. High birth weight and risk of multiple sclerosis: A multicentre study in Argentina. Mult Scler Relat Disord 2020; 47:102628. [PMID: 33220566 DOI: 10.1016/j.msard.2020.102628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/11/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is now recognized as a multifactorial disease in which genetic and environmental factors intervene. Considerable efforts have been made to identify external risk factors present in childhood, adolescence and youth, though only a few perinatal risk factors have been positively associated with MS. Previously, we found an association between high birth weight and MS in male patients in a small study in Argentina. The present research was designed to further assess the association between high birth weight and MS in a larger sample of patients, using an extensive and validated general population database as control. METHODS We present an analytical observational, multicentre, population-based, and case-control study. A total of 637 patients (cases) with confirmed MS diagnosis attending five MS specialized centres in Argentina were included. Birth weight (BW) data was recalled by the patient's mother, which is a validated approach. A two-way comparison was performed. First, we used the standard categories of high, adequate and low BW in grams. Then, we applied the weight percentile distribution to provide reproducible results for further research. For a proper assessment and comparison of variables, we adopted the guidelines of the American Academy of Pediatrics for neonate classification according to gestational weeks and to BW in grams. The neonate's BW distribution of the general population was used as control. For the purposes of the study, we adapted Urquía's et al. curves, which are based on an extensive database of all the live births registered in the country from 2003 to 2007. To measure the magnitude of the proportional differences between low, adequate and high BW, the odds ratio (OR) and their 95% confidence interval (CI) were estimated. The mean BW and percentile values for each sex were compared using a z-Normal test. The respective MS patients and general population BW distribution curves by sex were compared between each other. RESULTS Cases and controls were comparable in their demographic, geographic and environmental characteristics. Males showed higher BW than females both in the MS patients and the general population groups. When we applied the sex stratified analysis separately, we found that males in the MS group showed an almost seven times higher risk of high birth weight than males from the general population (OR 6.58 [95% CI 4.81-8.99]). Female patients showed an almost five times higher risk of high BW than their respective controls (OR 4.5 [95% CI 3.06-6.58]). The comparison based on the BW percentile distribution confirmed that MS patients showed higher BW than the general population. This result reached statistical significance from the 75th percentile onwards for both sexes. CONCLUSION In summary, our findings suggested that high BW could be one of the earliest risk factors for MS in life. If this results were reproduced in other centres, high birth weight would emerge as a novel and very early risk factor, potentially modifiable in utero or immediately postpartum, representing a unique opportunity to prevent the disease in future generations.
Collapse
Affiliation(s)
- Geraldine G Luetic
- Instituto de Neurociencias de Rosario, San Lorenzo 3598, Rosario, Santa Fe, 2000, Argentina.
| | - Maria L Menichini
- Instituto de Neurociencias de Rosario, San Lorenzo 3598, Rosario, Santa Fe, 2000, Argentina
| | - Norma Deri
- Centro de Investigaciones Diabaid, CABA, Argentina
| | - Judith Steinberg
- Sección de enfermedades desmielinizantes, Hospital Británico; CABA, Argentina
| | - Adriana Carrá
- Sección de enfermedades desmielinizantes, Hospital Británico; CABA, Argentina
| | | | | | - Maria C Curbelo
- Sección de enfermedades desmielinizantes, Hospital Británico; CABA, Argentina; Hospital Municipal Sofía Santamarina, Buenos Aires, Argentina
| | - Juan I Rojas
- Centro de Esclerosis Múltiple de Buenos Aires, CABA, Argentina
| |
Collapse
|
2
|
Mandys V, Jirsová K, Vrana J. Neurotoxicity of Seven MEIC Chemicals Evaluated in Organotypic Cultures of Chick Embryonic Dorsal Root Ganglia. Altern Lab Anim 2020. [DOI: 10.1177/026119299702500311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The neurotoxic effects of seven selected Multicenter Evaluation of In Vitro Cytotoxicity programme chemicals (methanol, ethanol, isopropanol, sodium chloride, potassium chloride, iron [II] sulphate and chloroform) were evaluated in organotypic cultures of chick embryonic dorsal root ganglia (DRG), maintained in a soft agar culture medium. Two growth parameters of neurite outgrowth from the ganglia — the mean radial length of neurites and the area of neurite outgrowth — were used to evaluate the toxicities of the chemicals. Dose-dependent decreases of both parameters were observed in all experiments. IC50 values (the concentration causing 50% inhibition of growth) were calculated from the dose-response curves established at three time-points during culture, i.e. 24, 48 and 72 hours. The lowest toxic effect was observed in cultures exposed to methanol (the IC50 ranging from 580mM to 1020mM). The highest toxic effect was observed in cultures exposed to iron (II) sulphate (the IC50 ranging from 1.2mM to 1.7mM). The results of other recent experiments suggest that organotypic cultures of DRG can be used during in vitro studies on target organ toxicity within the peripheral nervous system. Moreover, these cultures preserve the internal organisation of the tissue, maintain intercellular contacts, and thus reflect the in vitro situation, more precisely than other cell cultures.
Collapse
Affiliation(s)
- Václav Mandys
- Laboratory of Cell Pathology, Institute of Experimental Medicine, Academy of Sciences of Czech Republic, Studnickova 2, 128 00 Prague 2, Czech Republic
| | - Katerina Jirsová
- Laboratory of Cell Pathology, Institute of Experimental Medicine, Academy of Sciences of Czech Republic, Studnickova 2, 128 00 Prague 2, Czech Republic
| | - Jirí Vrana
- First Department of Internal Medicine, First School of Medicine and University Hospital, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Eason J, Williams AL, Chawla B, Apsey C, Bohnsack BL. Differences in neural crest sensitivity to ethanol account for the infrequency of anterior segment defects in the eye compared with craniofacial anomalies in a zebrafish model of fetal alcohol syndrome. Birth Defects Res 2017; 109:1212-1227. [PMID: 28681995 DOI: 10.1002/bdr2.1069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Ethanol (ETOH) exposure during pregnancy is associated with craniofacial and neurologic abnormalities, but infrequently disrupts the anterior segment of the eye. In these studies, we used zebrafish to investigate differences in the teratogenic effect of ETOH on craniofacial, periocular, and ocular neural crest. METHODS Zebrafish eye and neural crest development was analyzed by means of live imaging, TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay, immunostaining, detection of reactive oxygen species, and in situ hybridization. RESULTS Our studies demonstrated that foxd3-positive neural crest cells in the periocular mesenchyme and developing eye were less sensitive to ETOH than sox10-positive craniofacial neural crest cells that form the pharyngeal arches and jaw. ETOH increased apoptosis in the retina, but did not affect survival of periocular and ocular neural crest cells. ETOH also did not increase reactive oxygen species within the eye. In contrast, ETOH increased ventral neural crest apoptosis and reactive oxygen species production in the facial mesenchyme. In the eye and craniofacial region, sod2 showed high levels of expression in the anterior segment and in the setting of Sod2 knockdown, low levels of ETOH decreased migration of foxd3-positive neural crest cells into the developing eye. However, ETOH had minimal effect on the periocular and ocular expression of transcription factors (pitx2 and foxc1) that regulate anterior segment development. CONCLUSION Neural crest cells contributing to the anterior segment of the eye exhibit increased ability to withstand ETOH-induced oxidative stress and apoptosis. These studies explain the rarity of anterior segment dysgenesis despite the frequent craniofacial abnormalities in fetal alcohol syndrome. Birth Defects Research 109:1212-1227, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jessica Eason
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Antionette L Williams
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Bahaar Chawla
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Christian Apsey
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Brenda L Bohnsack
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
4
|
Segobin S, Ritz L, Lannuzel C, Boudehent C, Vabret F, Eustache F, Beaunieux H, Pitel A. Integrity of white matter microstructure in alcoholics with and without Korsakoff's syndrome. Hum Brain Mapp 2015; 36:2795-808. [PMID: 25873017 PMCID: PMC6869167 DOI: 10.1002/hbm.22808] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 12/11/2022] Open
Abstract
Alcohol dependence results in two different clinical forms: "uncomplicated" alcoholism (UA) and Korsakoff's syndrome (KS). Certain brain networks are especially affected in UA and KS: the frontocerebellar circuit (FCC) and the Papez circuit (PC). Our aims were (1) to describe the profile of white matter (WM) microstructure in FCC and PC in the two clinical forms, (2) to identify those UA patients at risk of developing KS using their WM microstructural integrity as a biomarker. Tract-based spatial statistics and nonparametric voxel-based permutation tests were used to compare diffusion tensor imaging (DTI) data in 7 KS, 20 UA, and 14 healthy controls. The two patient groups were also pooled together and compared to controls. k-means classifications were then performed on mean fractional anisotropy values of significant clusters across all subjects for two fiber tracts from the FCC (the middle cerebellar peduncle and superior cerebellar peduncle) and two tracts from the PC (fornix and cingulum). We found graded effects of WM microstructural abnormalities in the PC of UA and KS. UA patients classified at risk of developing KS using fiber tracts of the PC from DTI data also had the lowest scores of episodic memory. That finding suggests that WM microstructure could be used as a biomarker for early detection of UA patients at risk of developing KS.
Collapse
Affiliation(s)
- Shailendra Segobin
- INSERMCaenFrance
- Université De Caen Basse‐NormandieCaenFrance
- Ecole Pratique Des Hautes EtudesCaenFrance
- Centre Hospitalier UniversitaireCaenFrance
| | - Ludivine Ritz
- INSERMCaenFrance
- Université De Caen Basse‐NormandieCaenFrance
- Ecole Pratique Des Hautes EtudesCaenFrance
- Centre Hospitalier UniversitaireCaenFrance
| | - Coralie Lannuzel
- INSERMCaenFrance
- Université De Caen Basse‐NormandieCaenFrance
- Ecole Pratique Des Hautes EtudesCaenFrance
- Centre Hospitalier UniversitaireCaenFrance
| | - Céline Boudehent
- INSERMCaenFrance
- Université De Caen Basse‐NormandieCaenFrance
- Ecole Pratique Des Hautes EtudesCaenFrance
- Centre Hospitalier UniversitaireCaenFrance
- Centre Hospitalier Universitaire, Service D'addictologieCaenFrance
| | - François Vabret
- INSERMCaenFrance
- Université De Caen Basse‐NormandieCaenFrance
- Ecole Pratique Des Hautes EtudesCaenFrance
- Centre Hospitalier UniversitaireCaenFrance
- Centre Hospitalier Universitaire, Service D'addictologieCaenFrance
| | - Francis Eustache
- INSERMCaenFrance
- Université De Caen Basse‐NormandieCaenFrance
- Ecole Pratique Des Hautes EtudesCaenFrance
- Centre Hospitalier UniversitaireCaenFrance
| | - Hélène Beaunieux
- INSERMCaenFrance
- Université De Caen Basse‐NormandieCaenFrance
- Ecole Pratique Des Hautes EtudesCaenFrance
- Centre Hospitalier UniversitaireCaenFrance
| | - Anne‐Lise Pitel
- INSERMCaenFrance
- Université De Caen Basse‐NormandieCaenFrance
- Ecole Pratique Des Hautes EtudesCaenFrance
- Centre Hospitalier UniversitaireCaenFrance
| |
Collapse
|
5
|
Recreational alcohol use induces changes in the concentrations of choline-containing compounds and total creatine in the brain: a 1H MRS study of healthy subjects. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2015; 28:503-10. [DOI: 10.1007/s10334-015-0486-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 04/24/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
|
6
|
Coutts DJC, Harrison NL. Acetaldehyde, not ethanol, impairs myelin formation and viability in primary mouse oligodendrocytes. Alcohol Clin Exp Res 2015; 39:455-62. [PMID: 25703384 DOI: 10.1111/acer.12642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/24/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND Excessive ethanol (EtOH) drinking is associated with white matter loss in the brain at all stages of life. Myelin-forming oligodendrocytes (OLs) are a major component of white matter, but their involvement in EtOH-mediated white matter loss is unclear. Myelination continues throughout the life with highest rates during fetal development and adolescence. However, little is known about the effects of EtOH and its principal metabolite acetaldehyde (ACD) on OLs at the cellular level. METHODS We compared the responses to different concentrations of EtOH or ACD by primary OLs in culture. RESULTS EtOH did not cause significant cell death at concentrations lower than 120 mM, even after 24 hours. In comparison, ACD was highly lethal at doses above 50 μM. High concentrations of EtOH (120 mM) and ACD (500 μM) for 24 hours did not reduce myelin in mature OLs. Myelin production and OL differentiation were significantly impaired by 7 days exposure to 500 or 50 μM ACD but not 120 mM EtOH. CONCLUSIONS This study shows that OLs are relatively resistant to EtOH, even at a concentration more than 4 times the typical blood EtOH concentrations associated with social drinking (10 to 30 mM). In contrast, OLs are much more sensitive to ACD than EtOH, particularly with long-term exposure. This suggests that part of white matter loss in response to EtOH, especially during high rates of myelin formation, may be due in part to the effects of its principal metabolite ACD.
Collapse
Affiliation(s)
- David J C Coutts
- Department of Anesthesiology, Columbia University, New York, New York
| | | |
Collapse
|
7
|
Morton RA, Diaz MR, Topper LA, Valenzuela CF. Construction of vapor chambers used to expose mice to alcohol during the equivalent of all three trimesters of human development. J Vis Exp 2014. [PMID: 25046568 DOI: 10.3791/51839] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Exposure to alcohol during development can result in a constellation of morphological and behavioral abnormalities that are collectively known as Fetal Alcohol Spectrum Disorders (FASDs). At the most severe end of the spectrum is Fetal Alcohol Syndrome (FAS), characterized by growth retardation, craniofacial dysmorphology, and neurobehavioral deficits. Studies with animal models, including rodents, have elucidated many molecular and cellular mechanisms involved in the pathophysiology of FASDs. Ethanol administration to pregnant rodents has been used to model human exposure during the first and second trimesters of pregnancy. Third trimester ethanol consumption in humans has been modeled using neonatal rodents. However, few rodent studies have characterized the effect of ethanol exposure during the equivalent to all three trimesters of human pregnancy, a pattern of exposure that is common in pregnant women. Here, we show how to build vapor chambers from readily obtainable materials that can each accommodate up to six standard mouse cages. We describe a vapor chamber paradigm that can be used to model exposure to ethanol, with minimal handling, during all three trimesters. Our studies demonstrate that pregnant dams developed significant metabolic tolerance to ethanol. However, neonatal mice did not develop metabolic tolerance and the number of fetuses, fetus weight, placenta weight, number of pups/litter, number of dead pups/litter, and pup weight were not significantly affected by ethanol exposure. An important advantage of this paradigm is its applicability to studies with genetically-modified mice. Additionally, this paradigm minimizes handling of animals, a major confound in fetal alcohol research.
Collapse
Affiliation(s)
- Russell A Morton
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center;
| | - Marvin R Diaz
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center
| | - Lauren A Topper
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center
| |
Collapse
|
8
|
Effects of early postnatal alcohol exposure on the developing retinogeniculate projections in C57BL/6 mice. Alcohol 2013; 47:173-9. [PMID: 23402901 DOI: 10.1016/j.alcohol.2012.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 12/21/2012] [Accepted: 12/24/2012] [Indexed: 12/13/2022]
Abstract
Previous studies on the adverse effects of perinatal exposure to ethanol (EtOH) on the developing visual system mainly focused on retinal and optic nerve morphology. The aim of the present study was to investigate whether earlier reported retinal and optic nerve changes are accompanied by anomalies in eye-specific fiber segregation in the dorsal lateral geniculate nucleus (dLGN). C57BL/6 mice pups were exposed to ethanol by intragastric intubation at either 3 or 4 g/kg from postnatal days (PD) 3-10, the third trimester equivalent to human gestation. Control (C) and intubation control (IC) groups not exposed to ethanol were included. On PD9, retinogeniculate projections were labeled by intraocular microinjections of cholera toxin-β (CTB) either conjugated to Alexa 488 (green) or 594 (red) administrated to the left and right eye, respectively. Pups were sacrificed 24 h after the last CTB injection. The results showed that ethanol exposure decreased the total number of dLGN neurons and significantly reduced the total dLGN projection as well as the contralateral and ipsilateral projection areas.
Collapse
|
9
|
Nguyen TT, Levy SS, Riley EP, Thomas JD, Simmons RW. Children with heavy prenatal alcohol exposure experience reduced control of isotonic force. Alcohol Clin Exp Res 2013; 37:315-24. [PMID: 22834891 PMCID: PMC3752030 DOI: 10.1111/j.1530-0277.2012.01896.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/21/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND Heavy prenatal alcohol exposure can result in diverse and extensive damage to the central nervous system, including the cerebellum, basal ganglia, and cerebral cortex. Given that these brain regions are involved in the generation and maintenance of motor force, we predicted that prenatal alcohol exposure would adversely affect this parameter of motor control. We previously reported that children with gestational alcohol exposure experience significant deficits in regulating isometric (i.e., constant) force. The purpose of this study was to determine whether these children exhibit similar deficits when producing isotonic (i.e., graded) force. METHODS Children with heavy prenatal alcohol exposure and typically developing children completed a series of isotonic force contractions by exerting force on a load cell to match a criterion target force displayed on a computer monitor. Two levels of target force (5 or 20% of maximum voluntary force) were investigated in combination with varying levels of visual feedback. RESULTS Compared with control children, children with heavy prenatal alcohol exposure generated isotonic force signals that were less accurate, more variable, and less complex in the time domain. Specifically, interactions were found between group and visual feedback for response accuracy and signal complexity, suggesting that these children have greater difficulty altering their motor output when visual feedback is low. CONCLUSIONS These data suggest that prenatal alcohol exposure produces deficits in regulating isotonic force, which presumably result from alcohol-related damage to developing brain regions involved in motor control. These children will most likely experience difficulty performing basic motor skills and daily functional skills that require coordination of finely graded force. Therapeutic strategies designed to increase feedback and, consequently, facilitate visual-motor integration could improve isotonic force production in these children.
Collapse
Affiliation(s)
- Tanya T. Nguyen
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120
- SDSU/UCSD Joint Doctoral Program in Clinical Psychology, San Diego, CA 92120
| | - Susan S. Levy
- Motor Control Laboratory, School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182
| | - Edward P. Riley
- SDSU/UCSD Joint Doctoral Program in Clinical Psychology, San Diego, CA 92120
| | - Jennifer D. Thomas
- SDSU/UCSD Joint Doctoral Program in Clinical Psychology, San Diego, CA 92120
| | - Roger W. Simmons
- Motor Control Laboratory, School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182
| |
Collapse
|
10
|
Abstract
The energetics of CNS white matter are poorly understood. We derive a signaling energy budget for the white matter (based on data from the rodent optic nerve and corpus callosum) which can be compared with previous energy budgets for the gray matter regions of the brain, perform a cost-benefit analysis of the energetics of myelination, and assess mechanisms for energy production and glucose supply in myelinated axons. We show that white matter synapses consume ≤0.5% of the energy of gray matter synapses and that this, rather than more energy-efficient action potentials, is the main reason why CNS white matter uses less energy than gray matter. Surprisingly, while the energetic cost of building myelin could be repaid within months by the reduced ATP cost of neuronal action potentials, the energetic cost of maintaining the oligodendrocyte resting potential usually outweighs the saving on action potentials. Thus, although it dramatically speeds action potential propagation, myelination need not save energy. Finally, we show that mitochondria in optic nerve axons could sustain measured firing rates with a plausible density of glucose transporters in the nodal membrane, without the need for energy transfer from oligodendrocytes.
Collapse
|
11
|
Dursun I, Jakubowska-Doğru E, van der List D, Liets LC, Coombs JL, Berman RF. Effects of early postnatal exposure to ethanol on retinal ganglion cell morphology and numbers of neurons in the dorsolateral geniculate in mice. Alcohol Clin Exp Res 2011; 35:2063-74. [PMID: 21651582 PMCID: PMC3410545 DOI: 10.1111/j.1530-0277.2011.01557.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The adverse effects of fetal and early postnatal ethanol intoxication on peripheral organs and the central nervous system are well documented. Ocular defects have also been reported in about 90% of children with fetal alcohol syndrome, including microphthalmia, loss of neurons in the retinal ganglion cell (RGC) layer, optic nerve hypoplasia, and dysmyelination. However, little is known about perinatal ethanol effects on retinal cell morphology. Examination of the potential toxic effects of alcohol on the neuron architecture is important because the changes in dendritic geometry and synapse distribution directly affect the organization and functions of neural circuits. Thus, in the present study, estimations of the numbers of neurons in the ganglion cell layer and dorsolateral geniculate nucleus (dLGN), and a detailed analysis of RGC morphology were carried out in transgenic mice exposed to ethanol during the early postnatal period. METHODS The study was carried out in male and female transgenic mice expressing yellow fluorescent protein (YFP) controlled by a Thy-1 (thymus cell antigen 1) regulator on a C57 background. Ethanol (3 g/kg/d) was administered to mouse pups by intragastric intubation throughout postnatal days (PDs) 3 to 20. Intubation control (IC) and untreated control (C) groups were included. Blood alcohol concentration was measured in separate groups of pups on PDs 3, 10, and 20 at 4 different time points, 1, 1.5, 2, and 3 hours after the second intubation. Numbers of neurons in the ganglion cell layer and in the dLGN were quantified on PD20 using unbiased stereological procedures. RGC morphology was imaged by confocal microscopy and analyzed using Neurolucida software. RESULTS Binge-like ethanol exposure in mice during the early postnatal period from PDs 3 to 20 altered RGC morphology and resulted in a significant decrease in the numbers of neurons in the ganglion cell layer and in the dLGN. In the alcohol exposure group, out of 13 morphological parameters examined in RGCs, soma area was significantly reduced and dendritic tortuosity significantly increased. After neonatal exposure to ethanol, a decrease in total dendritic field area and an increase in the mean branch angle were also observed. Interestingly, RGC dendrite elongation and a decrease in the spine density were observed in the IC group, as compared to both ethanol-exposed and pure control subjects. There were no significant effects of alcohol exposure on total retinal area. CONCLUSIONS Early postnatal ethanol exposure affects development of the visual system, reducing the numbers of neurons in the ganglion cell layer and in the dLGN, and altering RGCs' morphology.
Collapse
Affiliation(s)
- Ilknur Dursun
- Department of Biological Sciences, Middle East Technical University, 06531 Ankara, Turkey
| | - Ewa Jakubowska-Doğru
- Department of Biological Sciences, Middle East Technical University, 06531 Ankara, Turkey
| | | | - Lauren C. Liets
- Department of Neurobiology, Physiology, and Behavior, UC Davis, Davis, CA 95616
| | - Julie L. Coombs
- Department of Neurobiology, Physiology, and Behavior, UC Davis, Davis, CA 95616
| | - Robert F. Berman
- Center for Neuroscience & Department of Neurological Surgery, UC Davis, Davis, CA 95616
| |
Collapse
|
12
|
Hunt PS, Jacobson SE, Torok EJ. Deficits in trace fear conditioning in a rat model of fetal alcohol exposure: dose-response and timing effects. Alcohol 2009; 43:465-74. [PMID: 19801276 PMCID: PMC2758299 DOI: 10.1016/j.alcohol.2009.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/15/2009] [Accepted: 08/17/2009] [Indexed: 11/28/2022]
Abstract
In humans, prenatal alcohol exposure can result in significant impairments in several types of learning and memory, including declarative and spatial memory. Animal models have been useful for confirming that many of the observed effects are the result of alcohol exposure, and not secondary to poor maternal nutrition or adverse home environments. Wagner and Hunt (2006) reported that rats exposed to ethanol during the neonatal period (postnatal days [PDs] 4-9) exhibited impaired trace fear conditioning when trained as adolescents, but were unaffected in delay fear conditioning. The present series of three experiments represent a more detailed analysis of ethanol-induced deficits in trace conditioning. In Experiment 1, the dose of ethanol given to neonates was varied (3.0, 4.0, or 5.0g/kg/day). There was a dose-dependent reduction in trace conditioning, with the poorest performance observed in animals treated with the highest dose. In Experiment 2, it was found that the impairment in trace conditioning resulting from neonatal ethanol exposure was dependent on the duration of the trace interval used for training; less learning was evident in ethanol-exposed animals trained with longer trace interval durations. These results confirm other reports of delay-dependent memory deficits. Finally, Experiment 3 determined that ethanol exposure limited to the first half of the neonatal period (PDs 4-6) was more detrimental to later trace conditioning than exposure during the second half (PDs 7-9). These results support the hypothesis that trace-conditioning impairments resulting from early ethanol exposure are due to the drug's teratogenic effects on the developing hippocampus, as the findings parallel those observed in animals with discrete hippocampal lesions. Comparisons between delay and trace fear-conditioning performance in animals exposed to ethanol during the brain growth spurt provide a model system to study both selective learning impairments and possible treatment approaches for humans with fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Pamela S Hunt
- Department of Psychology, College of William and Mary, Williamsburg, VA 23187-8795, USA.
| | | | | |
Collapse
|
13
|
Abstract
Excessive alcohol use can cause structural and functional abnormalities of the brain and this has significant health, social and economic implications for most countries in the world. Even heavy social drinkers who have no specific neurological or hepatic problems show signs of regional brain damage and cognitive dysfunction. Changes are more severe and other brain regions are damaged in patients who have additional vitamin B1 (thiamine) deficiency (Wernicke-Korsakoff syndrome). Quantitative studies and improvements in neuroimaging have contributed significantly to the documentation of these changes but mechanisms underlying the damage are not understood. A human brain bank targeting alcohol cases has been established in Sydney, Australia, and tissues can be used for structural and molecular studies and to test hypotheses developed from animal models and in vivo studies. The recognition of potentially reversible changes and preventative medical approaches are important public health issues.
Collapse
Affiliation(s)
- Clive Harper
- Department of Pathology, University of Sydney and Sydney South West Area Health Service, Sydney, Australia.
| |
Collapse
|
14
|
He X, Sullivan EV, Stankovic RK, Harper CG, Pfefferbaum A. Interaction of thiamine deficiency and voluntary alcohol consumption disrupts rat corpus callosum ultrastructure. Neuropsychopharmacology 2007; 32:2207-16. [PMID: 17299515 DOI: 10.1038/sj.npp.1301332] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The relative roles of alcohol and thiamine deficiency in causing brain damage remain controversial in alcoholics without the Wernicke-Korsakoff syndrome. Experimental control over alcohol consumption and diet are impossible in humans but can be accomplished in animal models. This experiment was designed to differentiate the separate and combined effects on the macro- and ultrastructure of the corpus callosum of thiamine deficiency and voluntary alcohol consumption. Adult male alcohol-preferring (P) rats (9 chronically alcohol-exposed and 9 water controls) received a thiamine-deficient diet for 2 weeks. There were four groups: five rats previously exposed to alcohol were treated with pyrithiamine (a thiamine phosphorylation inhibitor); five rats never exposed to alcohol were treated with pyrithiamine; four alcohol-exposed rats were treated with thiamine; and four rats never exposed to alcohol were treated with thiamine. On day 14, thiamine was restored in all 18 rats; 2 weeks later the 10 pyrithiamine-treated rats received intraperitoneal thiamine. The rats were perfused 61 days post-pyrithiamine treatment at age 598 days. Brains were dissected and weight and volumes were calculated. Sagittal sections were stained to measure white matter structures. The corpus callosum was examined using transmission electron microscopy to determine density of myelinated fibers, fiber diameter, and myelin thickness. The corpus callosum in the alcohol/pyrithiamine group was significantly thinner, had greater fiber density, higher percentage of small fibers, and myelin thinning than in the alcohol/thiamine and water/thiamine groups. Several measures showed a graded effect, where the alcohol/pyrithiamine group had greater pathology than the water/pyrithiamine group, which had greater pathology than the two thiamine-replete groups. Across all 16 rats, thinner myelin sheaths correlated with higher percentage of small fibers. Myelin thickness and axon diameter together accounted for 71% of the variance associated with percentage of small fibers. Significant abnormalities in the alcohol/pyrithiamine group and lack of abnormality in the alcohol-exposed/thiamine-replete group indicate that thiamine deficiency caused white matter damage. The graded abnormalities across the dually to singly treated animals support a compounding effect of alcohol exposure and thiamine depletion, and indicate the potential for interaction between alcohol and thiamine deficiency in human alcohol-related brain damage.
Collapse
Affiliation(s)
- Xiaohua He
- Department of Pathology (D06), University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
15
|
Dlugos CA, Rabin RA. Ocular deficits associated with alcohol exposure during zebrafish development. J Comp Neurol 2007; 502:497-506. [PMID: 17394139 DOI: 10.1002/cne.21320] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Approximately 90% of fetal alcohol syndrome cases are accompanied by ocular abnormalities. The zebrafish (Danio rerio) is a well-known developmental model that provides an opportunity for better understanding the histological and cytological effects of developmental exposure to ethanol on the vertebrate eye. The purpose of the present study was to determine the gross, microscopic, and ultrastructual effects of developmental exposure to ethanol in the zebrafish model. Eggs were obtained from WT outbred zebrafish and exposed to 0%, 0.1%, 0.2%, 0.4%, 0.5%, or 1.0% (v/v) ethanol to assess viability and the effect of dose and duration of exposure on eye size. Light and electron microscopy were performed on ethanol-treated and control larvae. Results showed that ethanol treatment decreased viability by about 20% at concentrations of 0.1-0.5% ethanol and by 50% at 1.0% ethanol. Ethanol-related decreases in eye size were recorded at 6 days postfertilization (dpf) and were dose dependent. There were significant decreases in the volumes of the photoreceptor, inner nuclear, and ganglionic layers and in the lens of 9 dpf ethanol-exposed compared with control larvae. Ultrastructural examination showed signs of developmental lags in the ethanol-treated fish as well as abnormal retinal apoptosis in the 6 dpf ethanol-treated larvae compared with their controls. These results demonstrate that the developing zebrafish eye is sensitive to perturbation with ethanol and displays some of the eye deficits present in fetal alcohol syndrome.
Collapse
Affiliation(s)
- Cynthia A Dlugos
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214-3000, USA.
| | | |
Collapse
|
16
|
Tufan AC, Abban G, Akdogan I, Erdogan D, Ozogul C. The effect of in ovo ethanol exposure on retina and optic nerve in a chick embryo model system. Reprod Toxicol 2006; 23:75-82. [PMID: 17074462 DOI: 10.1016/j.reprotox.2006.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 09/06/2006] [Accepted: 09/19/2006] [Indexed: 11/17/2022]
Abstract
Ocular anomalies seen in children with fetal alcohol syndrome (FAS) suggest that ocular structures are sensitive to alcohol exposure during their development. This study was designed to investigate the effect of in ovo ethanol (EtOH) exposure on retinal development and myelinization of optic nerve fibers at an ultra structural level in a chick embryo model system. Prior to incubation, fertilized chicken eggs were injected once with 100 microl of either 0.9% NaCl (vehicle control), or EtOH solutions at different doses (10, 30, or 50%, v:v in 0.9% NaCl) into their air sacs and incubated at 37.5 degrees C and saturation humidity. On day 20 embryos were analyzed in terms of their viability and growth and the optic cups including the optic nerves were dissected out. Specimens were processed for electron microscopy (EM). Results showed that, EtOH significantly decreased the viability of chick embryos (P < 0.045), and caused significant prenatal growth retardation (P < 0.004) in a dose-dependant manner. Light microscopy of semi thin sections revealed that prenatal exposure to EtOH resulted in both retinal degeneration and optic nerve hypoplasia (P < 0.001) in a dose-dependant manner. EM revealed that a dose-dependant decrease in the number of myelinated nerve fibers was profound in groups exposed to EtOH (P < 0.001). Furthermore, the myelin coats observed were thinner than those seen in control embryos. In groups exposed to EtOH myelin sheets were unorganized and contained vacuolar structures in between them. The tissue in between the cells and optic nerve fibers, on the other hand, lost its intact appearance with vacuolar and vesicular structures in between them. In addition, the optic nerve fibers contained granular accumulations in EtOH exposed groups. A dose dependent degeneration was also observed in retinas of EtOH exposed groups. The effect of EtOH was profound in pigment epithelium (PE), inner plexiform layer (IPL), and ganglion cell layer (GC). Mitochondrial deficiencies, and alterations in melanin granule number and distribution dominated the defects seen in PE. On the other hand, EM findings of all the affected layers were suggestive of induced cell death in EtOH exposed groups. Thus, this study suggests retinal development with the emphasis on melanin pigmentation in PE and optic nerve myelinization as potential targets of prenatal EtOH exposure and discusses potential mechanisms of EtOH action on these tissues.
Collapse
Affiliation(s)
- A Cevik Tufan
- Department of Histology and Embryology, Pamukkale University, School of Medicine, Denizli, Turkey.
| | | | | | | | | |
Collapse
|
17
|
Ende G, Walter S, Welzel H, Demirakca T, Wokrina T, Ruf M, Ulrich M, Diehl A, Henn FA, Mann K. Alcohol consumption significantly influences the MR signal of frontal choline-containing compounds. Neuroimage 2006; 32:740-6. [PMID: 16759881 DOI: 10.1016/j.neuroimage.2006.03.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 03/02/2006] [Accepted: 03/21/2006] [Indexed: 11/25/2022] Open
Abstract
The aim of this work was to evaluate the relationship between the amount of alcohol consumption of a group of social drinkers and the magnetic resonance spectroscopy signal of choline-containing compounds (Cho) in the frontal lobe. Two independent long echo (TE = 135 ms) (1)H MRSI studies, the first comprising 24 subjects with very low alcohol consumption, the second 18 subjects with a more widespread alcohol consumption were conducted. Significant correlations of Cho measures from frontal white matter and from the anterior cingulate gyrus with alcohol consumption in the last 90 days prior to the MR examination were found. Age, gender, and smoking did not show significant effects on the metabolite measures. Partialling out the effect of the voxel white matter content did not change the correlation of choline measures with alcohol consumption. The main conclusion from the repeated finding of a positive correlation of alcohol consumption and frontal Cho signals is that monitoring for alcohol consumption is mandatory in MRS studies where pathology depended Cho changes are hypothesized.
Collapse
Affiliation(s)
- Gabriele Ende
- Department of Neuroimaging and Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, PO Box 12 21 20, D-68072 Mannheim, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ende G, Welzel H, Walter S, Weber-Fahr W, Diehl A, Hermann D, Heinz A, Mann K. Monitoring the effects of chronic alcohol consumption and abstinence on brain metabolism: a longitudinal proton magnetic resonance spectroscopy study. Biol Psychiatry 2005; 58:974-80. [PMID: 16084857 DOI: 10.1016/j.biopsych.2005.05.038] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 05/06/2005] [Accepted: 05/24/2005] [Indexed: 11/29/2022]
Abstract
BACKGROUND This study focused on metabolic brain alterations in recently detoxified alcohol-dependent patients (S1) and their possible reversibility after 3 (S2) and 6 months (S3) of abstinence. METHODS Thirty-three alcohol-dependent patients and 30 healthy control subjects were studied with multislice proton magnetic resonance spectroscopic imaging (echo time = 135 msec at 1.5 T at three time points). RESULTS In the patient group, we found that choline-containing compounds (Ch) in three frontal and cerebellar subregions at S1 were significantly below normal, whereas N-acetyl aspartate (NAA) differences did not reach significance but showed a trend toward below-normal values in frontal white matter. Abstinent patients showed a significant increase of Ch in all subregions at S2. At S3, no further significant metabolite changes in abstinent patients compared with S2 could be detected. No significant increase of NAA could be detected at follow-up. CONCLUSIONS The increase of the Ch signal in the follow-up measurement after 3 months in abstinent alcohol-dependent patients supports the hypotheses of an alcohol- or alcohol detoxification-induced altered cerebral metabolism of lipids in membranes or myelin, which seems to be reversible with duration of alcohol abstinence.
Collapse
Affiliation(s)
- Gabriele Ende
- Nuclear Magnetic Resonance Research in Psychiatry and Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Fetal alcohol syndrome is a major cause of learning and sensory deficits. These disabilities may result from disruption of neocortex development and plasticity. Alcohol exposure during the third trimester equivalent of human gestation may have especially severe and long-lasting consequences on learning and sensory processing, because this is when the functional properties and connectivity of neocortical neurons start to develop. To address this issue, we used the monocular deprivation model of neural plasticity, which shares many common mechanisms with learning. Ferrets were exposed to ethanol (3.5 mg/kg, i.p.) on alternate days for 3 weeks starting on postnatal day (P) 10. Animals were then monocularly deprived at the peak of ocular dominance plasticity after a prolonged alcohol-free period (15-20 d). Quantitative single-unit electrophysiology revealed that alcohol exposure disrupted ocular dominance plasticity while preserving robust visual responses. Moreover, optical imaging of intrinsic signals revealed that the reduction in visual cortex area driven by the deprived eye was much less pronounced in ethanol-treated than in control animals. Alcohol exposure starting at a later age (P20) did not disrupt ocular dominance plasticity, indicating that timing of exposure is crucial for the effects on visual plasticity. In conclusion, alcohol exposure during a brief period of development impairs ocular dominance plasticity at a later age. This model provides a novel approach to investigate the consequences of fetal alcohol exposure and should contribute to elucidate how alcohol disrupts neural plasticity.
Collapse
|
20
|
Harper C, Dixon G, Sheedy D, Garrick T. Neuropathological alterations in alcoholic brains. Studies arising from the New South Wales Tissue Resource Centre. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27:951-61. [PMID: 14499312 DOI: 10.1016/s0278-5846(03)00155-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alcohol dependence and abuse are among the most costly health problems in the world from both social and economic points of view. Patterns of drinking appear to be changing throughout the world with more women and young people drinking heavily. Excessive drinking can lead to impairment of cognitive function and structural brain changes--some permanent, some reversible. Patterns of damage appear to relate to lifetime alcohol consumption but, more importantly, to associated medical complications. The most significant of these is the alcohol-related vitamin deficient state, the Wernicke-Korsakoff syndrome (WKS), which is caused by thiamin deficiency but is seen most commonly in alcoholics. Careful selection and classification of alcoholic cases into those with and without these complications, together with detailed quantitative neuropathological analyses has provided data that gives clues to the most vulnerable regions and cells in the brain. Brain shrinkage is largely accounted for by loss of white matter. Some of this damage appears to be reversible. Alcohol-related neuronal loss has been documented in specific regions of the cerebral cortex (superior frontal association cortex), hypothalamus and cerebellum. No change is found in basal ganglia, nucleus basalis, or serotonergic raphe nuclei. Many of these regions which are normal in uncomplicated alcoholics are damaged in those with the WKS. Dendritic and synaptic changes have been documented in alcoholics and these, together with receptor and transmitter changes, may explain functional changes and cognitive deficits, which precede more severe structural neuronal changes. A resource to provide human brain tissues for these types of studies has been developed at the University of Sydney--the New South Wales Tissue Resource Centre. The aim of this facility is to provide research groups throughout the world with fresh and/or frozen tissues from well-characterized cases of alcohol-related brain damage and matched controls. The development of new technologies in pathology and molecular biology means that many more questions can be addressed using appropriately stored human brain tissues. Examples of the application of some of these techniques, involving neurochemical, neuropharmacological, neuroimaging and gene expression studies are included in this paper. Important public health outcomes have arisen from some of these studies including the enrichment of bread flour with thiamin for the whole of Australia. Researchers with an interest in alcohol studies can access tissues from this brain bank.
Collapse
Affiliation(s)
- Clive Harper
- Department of Neuropathology, Institute for Clinical Neurosciences, Central Sydney Area Health Service, Camperdown, NSW, Australia.
| | | | | | | |
Collapse
|
21
|
Effects of Ethanol and Transforming Growth Factor ?? (TGF??) on Neuronal Proliferation and nCAM Expression. Alcohol Clin Exp Res 2002. [DOI: 10.1097/00000374-200208000-00022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Miller MW, Luo J. Effects of Ethanol and Transforming Growth Factor beta (TGFbeta) on Neuronal Proliferation and nCAM Expression. Alcohol Clin Exp Res 2002. [DOI: 10.1111/j.1530-0277.2002.tb02668.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Sawada K, Sakata-Haga H, Komatsu S, Ohta K, Jeong YG, Fukui Y. A selective loss of small-diameter myelinated optic nerve axons in rats prenatally exposed to ethanol. Congenit Anom (Kyoto) 2002; 42:125-9. [PMID: 12196709 DOI: 10.1111/j.1741-4520.2002.tb00861.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pregnant rats were fed an ethanol-containing liquid diet between gestational days 10 and 21. The optic nerves of their litters at 49 days of age were examined using quantitative stereological procedures. Cross-sectional areas of the optic nerve in ethanol-exposed rats were significantly smaller than those in controls. This was reflected in the reduced number of myelinated fibers, but not of non-myelinated fibers. The size distribution histogram indicated a decreased number of small axonal-diameter myelinated fibers in ethanol-exposed rats. The results suggested optic nerve hypoplasia in ethanol-exposed rats characterized by a selective loss of small-diameter myelinated fibers.
Collapse
Affiliation(s)
- Kazuhiko Sawada
- Department of Anatomy and Developmental Neurobiology, University of Tokushima School of Medicine, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Bichenkov E, Ellingson JS. Effects of transient ethanol exposure on the incorporation of [(3)H]ethanolamine into plasmalogen in the differentiating CG-4 oligodendrocyte cell line. Biochem Pharmacol 2000; 60:1703-11. [PMID: 11077053 DOI: 10.1016/s0006-2952(00)00473-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We investigated the potential teratogenic effects of ethanol (EtOH) on myelination by monitoring its effects on the labeling of the myelin-typical lipid, ethanolamine plasmalogen (EPl), in the CG-4 cell line of differentiating oligodendrocytes (OLGs). On 5 different days during the first 8 days of OLG development, cells were labeled for 24 hr with [(3)H]ethanolamine to label EPl and diacyl-ethanolamine phosphoglycerols (diacyl-EPG), and the amount of labeled lipid expressed on each day was determined in the presence and absence of 25-120 mM EtOH. At early stages of development, a lower amount of [(3)H]EPl per cell was found in cells exposed to EtOH. The ratio of [(3)H]EPl to [(3)H]diacyl-EPG in cells exposed to 25, 50, or 120 mM EtOH was decreased by 50% after 4 days of differentiation compared with that in control cells. By adding or withdrawing EtOH at specific days of differentiation, we showed that EtOH inhibited the increased labeling of EPl if it was present for the first 48 hr of differentiation, and subsequent withdrawal failed to relieve the inhibition. Addition of EtOH anytime after the first day of differentiation did not inhibit the increased labeling of EPl. The results show that the increased labeling of EPl in differentiating OLGs resulted from an EtOH-sensitive, developmentally programmed, transient process active only during the first 2 days of differentiation.
Collapse
Affiliation(s)
- E Bichenkov
- Department of Pathology, Anatomy, and Cell Biology, Medical College of Thomas Jefferson University, 19107, USA, Philadelphia, PA, USA
| | | |
Collapse
|
25
|
Phillips DE, Cummings JD, Wall KA. Prenatal alcohol exposure decreases the number of nitric oxide synthase positive neurons in rat superior colliculus and periaqueductal gray. Alcohol 2000; 22:75-84. [PMID: 11113621 DOI: 10.1016/s0741-8329(00)00108-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Because nitric oxide (NO) is involved in the development and refinement of axonal projections and synapses, it is of interest to know if developmental alcohol exposures affect NO producing neurons. Pregnant rats were fed artificial liquid diet throughout gestation as the only fluid or caloric source. The diet for experimental dams contained ethanol (6.7% v/v) while the pair-fed diet for control dams contained isocaloric maltose-dextrin instead of ethanol. This ethanol diet regime is known to produce peak blood alcohol concentrations of approximately 140 mg%. Cells stained histochemically for nitric oxide synthase (NOS) were counted at postnatal day 15 (P15) and 35 (P35) in cross-sections of the stratum griseum superficiale (SGS) of the superior colliculus (SC) and in the dorsolateral column of the periaqueductal gray (dlPAG). Compared to control tissues, alcohol caused the following effects: In the SC, the areal density of NOS+ neurons was decreased 24% at P15 but a similar decrease in means at P35 was not statistically significant (P=0.10); soma size was unaffected at either P15 or P35. In the dlPAG, both the areal density and the total number of NOS+ neurons per section were unaffected at P15 but were decreased at P35 (33% and 37% decreases); soma size was unaffected at either P15 or P35. The decrease in NOS+ neurons in the SC at P15 could be expected to have a negative impact on the refinement of neuronal connections while the decreases in NOS+ neurons in the dlPAG at P35 likely represent more permanent effects that could alter the function of that nucleus.
Collapse
Affiliation(s)
- D E Phillips
- Department of Biology and WWAMI Medical Education Program, Montana State University, Bozeman, MT 59717, USA.
| | | | | |
Collapse
|
26
|
HARRIS SIMONJ, WILCE PETER, BEDI KULDIPS. Exposure of rats to a high but not low dose of ethanol during early postnatal life increases the rate of loss of optic nerve axons and decreases the rate of myelination. J Anat 2000; 197 Pt 3:477-85. [PMID: 11117631 PMCID: PMC1468146 DOI: 10.1046/j.1469-7580.2000.19730477.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Visual system abnormalities are commonly encountered in the fetal alcohol syndrome although the level of exposure at which they become manifest is uncertain. In this study we have examined the effects of either low (ETLD) or high dose (ETHD) ethanol, given between postnatal days 4-9, on the axons of the rat optic nerve. Rats were exposed to ethanol vapour in a special chamber for a period of 3 h per day during the treatment period. The blood alcohol concentration in the ETLD animals averaged approximately 171 mg/dl and in the ETHD animals approximately 430 mg/dl at the end of the treatment on any given day. Groups of 10 and 30-d-old mother-reared control (MRC), separation control (SC), ETLD and ETHD rats were anaesthetised with an intraperitoneal injection of ketamine and xylazine, and killed by intracardiac perfusion with phosphate-buffered glutaraldehyde. In the 10-d-old rat optic nerves there was a total of approximately 145,000-165,000 axons in MRC, SC and ETLD animals. About 4% of these fibres were myelinated. The differences between these groups were not statistically significant. However, the 10-d-old ETHD animals had only about 75,000 optic nerve axons (P < 0.05) of which about 2.8 % were myelinated. By 30 d of age there was a total of between 75,000-90,000 optic nerve axons, irrespective of the group examined. The proportion of axons which were myelinated at this age was still significantly lower (P < 0.001) in the ETHD animals (approximately 77 %) than in the other groups (about 98 %). It is concluded that the normal stages of development and maturation of the rat optic nerve axons, as assessed in this study, can be severely compromised by exposure to a relatively high (but not low) dose of ethanol between postnatal d 4 and 9.
Collapse
Affiliation(s)
- SIMON J.
HARRIS
- Department of Anatomical Sciences, University of Queensland, St Lucia, Brisbane, Australia
| | - PETER WILCE
- Department of Biochemistry, University of Queensland, St Lucia, Brisbane, Australia
| | - KULDIP S.
BEDI
- Department of Anatomical Sciences, University of Queensland, St Lucia, Brisbane, Australia
- Correspondence to Dr Kuldip S. Bedi. Department of Anatomical Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. Tel: +61-7-3365-3058; fax: +61-7-3365-1299; e-mail:
| |
Collapse
|
27
|
Abstract
PURPOSE The purpose of this study was to characterize the clinical and morphologic spectrum of all children referred for optic nerve hypoplasia to a tertiary referral hospital in Sweden during a 9-year period. SUBJECTS AND METHODS A retrospective review was undertaken of the charts of 117 children (age range, 0.25-16 years), treated at the Children's Hospital, Göteberg between 1988 and 1996, after the diagnosis of optic nerve hypoplasia. Ocular fundus morphologic condition was evaluated by digital image analysis of fundus photographs in 50 children, and neuroimaging was performed in 57 children. RESULTS Of the 117 children with optic nerve hypoplasia, 66 (56%) were boys and 51 (44%) were girls. Preterm birth occurred in 24 (20%), and 14 (12%) were born small for gestational age. Additional diagnoses, such as fetal alcohol syndrome, septo-optic dysplasia, perinatal adverse events, and neuropsychiatric disorders, were made in 88%; 7% had unilateral optic nerve hypoplasia. Most of the children had small optic disc, cup, and neuroretinal rim areas, as well as retinal vascular abnormalities; 75% were visually impaired, and a high incidence of nystagmus and strabismus was found among these children. CONCLUSION This study indicates that optic nerve hypoplasia has a wide clinical and morphologic spectrum and is associated with a broad range of disorders of the central nervous system. It is suggested that differences in the etiology and timing of the lesion as well as associated lesions may explain this spectrum of optic nerve hypoplasia in children.
Collapse
Affiliation(s)
- A Hellström
- Department of Clinical Neurosciences, University of Göteborg, Sweden.
| | | | | |
Collapse
|
28
|
Maier SE, Miller JA, Blackwell JM, West JR. Fetal alcohol exposure and temporal vulnerability: regional differences in cell loss as a function of the timing of binge-like alcohol exposure during brain development. Alcohol Clin Exp Res 1999; 23:726-34. [PMID: 10235310 DOI: 10.1111/j.1530-0277.1999.tb04176.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study was conducted to determine the temporal and regional vulnerability of the brain as a function of exposure to alcohol during brain development. Our goal was to manipulate the timing of alcohol exposure and assess the relative risk of cell loss in two different brain regions. Groups of timed pregnant Sprague-Dawley rats received binge-like alcohol exposure during either the first 10 days (first-trimester equivalent) or second 10 days of gestation (second-trimester equivalent), or the combination of first- and second-trimester equivalents for prenatal treatments. Offspring from some of the animals exposed to alcohol during the combined first- and second-trimester equivalent were reared artificially from postnatal days (P) 4 through 9 (part of the third-trimester equivalent) and also received binge-like alcohol during this period, producing animals that were exposed to alcohol during all three trimesters equivalent. Offspring from untreated dams were also reared artificially and received alcohol from only P4-9, thus creating animals that were exposed to alcohol only during part of the third-trimester equivalent. All pups were perfused on P10. Appropriate controls (nutritional and normally reared) were matched to every alcohol treatment combination. Peak blood alcohol concentrations were not different among the treatment groups for a given sampling time. Total cell numbers in the cerebellum (Purkinje and granule cells) and the olfactory bulb (mitral and granule cells) were estimated by the unbiased stereological technique, the optical disector. In terms of temporal vulnerability, alcohol exposure during the equivalent of all three trimesters resulted in a greater reduction in cerebellar Purkinje cell numbers compared with exposure to alcohol during the third-trimester equivalent, whereas both groups had a significant reduction in cell number compared with all other timing groups. Cerebellar granule cell number was reduced after alcohol exposure during all three trimesters equivalent, compared with all other timing groups. Alcohol exposure during the third-trimester equivalent resulted in a decrement in the number of olfactory bulb mitral cell numbers compared with all other groups, but there were no differences among the timing groups in numbers of olfactory bulb granule cells. When the cell loss in the two regions was compared within each alcohol treatment group to determine the relative regional vulnerability, the primary salient finding was that cerebellar Purkinje cells were more vulnerable to alcohol-induced loss subsequent to exposure during all three trimesters equivalent. No other regional differences were detected. These results extend earlier findings by showing that alcohol exposure during different periods of brain development results in regional differences in cell loss as a function of the timing of alcohol exposure during brain development and illustrate the variability of alcohol-induced neuronal loss.
Collapse
Affiliation(s)
- S E Maier
- Department of Human Anatomy and Medical Neurobiology, Texas A&M University Health Science Center, College Station 77843-1114, USA.
| | | | | | | |
Collapse
|
29
|
Maier SE, Chen WJ, Miller JA, West JR. Fetal alcohol exposure and temporal vulnerability regional differences in alcohol-induced microencephaly as a function of the timing of binge-like alcohol exposure during rat brain development. Alcohol Clin Exp Res 1997; 21:1418-28. [PMID: 9394113 DOI: 10.1111/j.1530-0277.1997.tb04471.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In humans, microcephaly (small head for body size) is a common feature of fetal alcohol syndrome. An analogous measure, termed microencephaly (small brain for body size), can be used for evaluating the detrimental effects of the differential timing of alcohol exposure on brain development in animal model systems. Timed-pregnant rats were exposed to binge-like alcohol during either the first 10 days (first trimester equivalent) or second 10 days of gestation (second trimester equivalent), or the combination of first and second trimesters equivalent for prenatal treatments. Offspring from some of the animals exposed to alcohol during the combined first and second trimesters equivalent were raised artificially from postnatal day (P) 4 through P9 (part of the third trimester equivalent), and also received binge-like alcohol during this period, producing animals that were exposed to alcohol during all three trimesters equivalent. Offspring from untreated dams were also raised artificially and received alcohol only from P4 to P9, thus creating animals that were exposed to alcohol only during part of the third trimester equivalent. All pups were perfused on P10. Appropriate controls (nutritional and normally reared) were used for every alcohol treatment combination. Peak blood alcohol concentrations were not different among the treatment groups for a given sampling time. Significant somatic growth deficits occurred in offspring exposed to alcohol for the equivalent of all three trimesters, compared with offspring exposed to alcohol during other periods. Brain growth in offspring also was significantly affected by the timing of alcohol exposure. The whole brain, forebrain, and cerebellum to body weight ratios of pups exposed to alcohol during the third trimester had more significant brain growth deficits than pups in groups exposed to alcohol during other times of brain development. Although alcohol exposure during the third trimester had a significant detrimental impact on overall brain growth, significant differences in temporal vulnerability were also found for the brainstem to body weight ratios. Offspring of dams exposed to alcohol during the first trimester had the same magnitude of deficit as those exposed to alcohol during the third trimester, and those two groups were significantly deficient compared with the groups exposed to alcohol at other times, suggesting some differential vulnerability of this region to alcohol-induced injury at different times of development. This study is the first thorough examination of microencephaly and gross regional vulnerability of the developing brain as related to temporal factors of alcohol exposure in an animal model system, and the results support and expand on the findings of the available clinical literature. Furthermore, our results substantiate claims that the cessation of alcohol before the third trimester can lessen the severity of some alcohol-related birth deficits.
Collapse
Affiliation(s)
- S E Maier
- Department of Human Anatomy and Medical Neurobiology, Texas A & M University Health Science Center, College Station 77843-1114, USA
| | | | | | | |
Collapse
|
30
|
Dangata YY, Kaufman MH. Morphometric analysis of the postnatal mouse optic nerve following prenatal exposure to alcohol. J Anat 1997; 191 ( Pt 1):49-56. [PMID: 9279658 PMCID: PMC1467658 DOI: 10.1046/j.1469-7580.1997.19110049.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pregnant female mice were divided on day 12 post coitum into a control and an experimental group. The experimental group was given a single intraperitoneal dose of 0.015 ml/g body weight of 25% solution of alcohol in distilled water while the control group was exposed to a similar weight related dose of normal saline. The optic nerves were isolated from the offspring of both control and experimental groups at wk 2, 3 and 5 (i.e. during the juvenile period of postnatal development) and analysed by light and electron microscopy. Although in both groups the optic nerve grew in size rapidly during the period studied, the rate of growth in the experimental groups lagged behind that of the controls. The difference was initially significant but tailed off, so that by wk 5 it was no longer significant. The time of initial onset and progression of myelinogenesis in the optic nerve of alcohol exposed mice also lagged behind that of controls. In both groups the size distribution of the myelinated nerve fibres in the optic nerve was unimodal with a positive skewing for all ages. The spectrum of size distribution of the nerve fibres was, however, broader in controls than in the corresponding experimental groups. With increasing age the proportion of small and medium size fibres was greater in the experimental group than in the controls, while for the large diameter fibres the reverse was observed. It is suggested that this study may shed light on the teratogenic effect of 'binge' drinking during pregnancy and that it is the critical period when exposure occurs that is more important than the duration of administration.
Collapse
Affiliation(s)
- Y Y Dangata
- Department of Anatomy, University Medical School, Edinburgh, UK
| | | |
Collapse
|
31
|
Phillips DE, Krueger SK, Wall KA, Smoyer-Dearing LH, Sikora AK. The development of the blood-brain barrier in alcohol-exposed rats. Alcohol 1997; 14:333-43. [PMID: 9209548 DOI: 10.1016/s0741-8329(96)00180-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Circulating horseradish peroxidase (HRP) was used as a tracer to determine if the blood-brain barrier to protein was altered by dietary prenatal alcohol exposure. Animals were prepared for light microscopic visualization of HRP after HRP infusion on gestational days 16, 18, 20, 22 and postnatal day 4. There was no consistent evidence of HRP leakage through the BBB in the alcohol-exposed animals compared to control animals. Capillary endothelial cells and perivascular astrocytic endfeet were morphologically characterized by electron microscopy in rat optic nerve and cerebellum following dietary prenatal and postnatal ethanol exposure. Photomontages of optic nerve capillaries from G20 and P5 animals and cerebellar capillaries from P15 animals were examined for evidences of effects of alcohol on the development of the capillaries and adjacent astroglial endfeet. There was no consistent evidence of any alcohol-induced effect that could indicate a disruption of the vessel, the endothelial tight junctions, the perivascular glial limiting membranes, or the extent of vascular ensheathment by astrocytic endfeet.
Collapse
Affiliation(s)
- D E Phillips
- Biology Department, Montana State University, Bozeman 59717, USA.
| | | | | | | | | |
Collapse
|
32
|
Langlais PJ, Zhang SX. Cortical and subcortical white matter damage without Wernicke's encephalopathy after recovery from thiamine deficiency in the rat. Alcohol Clin Exp Res 1997; 21:434-43. [PMID: 9161603 DOI: 10.1111/j.1530-0277.1997.tb03788.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The relative etiologic roles of ethanol and thiamine deficiency in the cortical atrophy and loss of cerebral white matter in chronic alcoholics are uncertain. The present study examined the distribution of degenerating axons within cortical and subcortical tracts 1 week after recovery from early to late symptomatic stages of thiamine deficiency in the absence of ethanol in Sprague-Dawley rats. The brains of rats exposed to an early symptomatic stage of pyrithiamine-induced thiamine deficiency, 12-13 days of treatment, contained degenerating axons in corpus callosum, anterior commissure, external and internal capsules, optic and olfactory tracts, and fornix and mammillothalamic tracts. A dense pattern of degenerating axons was evident in layers III-IV of frontal and parietal cortex. Less intense and more evenly distributed degenerating axons were present in layers IV-VI of frontal, parietal, cingulate, temporal, retrosplenial, occipital, and granular insular cortex. Neuronal counts in mammillary body nuclei and areal measurements of the mammillary body were unchanged from controls and the thalamus was relatively undamaged. In animals reversed at later and more advanced symptomatic stages of thiamine deficiency, 14-15 days of treatment, degenerating axons were found in other cortical regions and hippocampus and there was extensive neuronal loss and gliosis within mammillary body and medial thalamus. These results demonstrate that a single episode of thiamine deficiency can selectively damage cortical white matter tracts while sparing the thalamus and mammillary body and may be a critical factor responsible for the pathological and behavioral changes observed in alcoholics without Wernicke's encephalopathy.
Collapse
Affiliation(s)
- P J Langlais
- Department of Psychology, San Diego State University, CA 92120, USA
| | | |
Collapse
|
33
|
Shetty AK, Burrows RC, Wall KA, Phillips DE. Combined pre- and postnatal ethanol exposure alters the development of Bergmann glia in rat cerebellum. Int J Dev Neurosci 1994; 12:641-9. [PMID: 7900546 DOI: 10.1016/0736-5748(94)90016-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The development and maturation of Bergmann glial cells in the rat cerebellum was evaluated on postnatal day 15 by glial fibrillary acidic protein (GFAP) immunocytochemistry, following combined gestational and 10-day postnatal ethanol exposure (a full three trimester human equivalency). GFAP-positive Bergmann glial fibers of lobules I, III, VIb, VII and X of the cerebellar vermis were examined and counted in the molecular layer (ML), the external granular layer (EGL) and the external limiting membrane (ELM). Ethanol exposure reduced: (1) the number of GFAP-positive fibers (per unit length of folia surface) at all three levels; (2) the percentage of mature fibers; and (3) the cross-sectional area in all lobules examined. When data from the five lobules were pooled, there were 7% fewer GFAP-positive fibers in the ML, 15% fewer in the EGL and 20% fewer in the ELM; the percentage of mature fibers was reduced by 16%; and the cross-sectional areas of lobules were reduced by 16%. The altered development of Bergmann glia could be one of the factors causing delayed migration of granular neurons and reductions in the number of granule cells reported in other studies following developmental ethanol exposures and could help to explain some of the motor dysfunctions reported in FAS victims.
Collapse
Affiliation(s)
- A K Shetty
- Department of Biology, Montana State University 59717-0346
| | | | | | | |
Collapse
|
34
|
Zoeller RT, Butnariu OV, Fletcher DL, Riley EP. Limited postnatal ethanol exposure permanently alters the expression of mRNAS encoding myelin basic protein and myelin-associated glycoprotein in cerebellum. Alcohol Clin Exp Res 1994; 18:909-16. [PMID: 7526726 DOI: 10.1111/j.1530-0277.1994.tb00059.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Experiments were designed to test the hypothesis that ethanol exposure during development can selectively affect the expression of specific isoforms of myelin protein gene expression in the rat cerebellum. We focused on myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) gene expression. Both of these genes are alternatively spliced to yield 4 (MBP) or 2 (MAG) mRNA isoforms. Prenatal ethanol exposure, delivered to the dams in a liquid diet, did not significantly alter the expression of MBP or MAG gene expression in the cerebellums of 15-day-old pups, as measured by quantitative in situ hybridization using specific oligodeoxynucleotide probes. In contrast, postnatal ethanol exposure delivered directly to the pups over a 6-day period by gastrostomy tube (PN days 4-10) reduced the expression of specific MBP and MAG isoforms in the cerebellum of animals in adulthood. These data demonstrate that ethanol exposure, especially during the period of rapid myelination, has selective effects on mRNA isoforms encoding specific MBPs and MAG.
Collapse
Affiliation(s)
- R T Zoeller
- Department of Anatomy and Neurobiology, University of Missouri School of Medicine, Columbia
| | | | | | | |
Collapse
|
35
|
Strömland K, Pinazo-Durán MD. Optic nerve hypoplasia: comparative effects in children and rats exposed to alcohol during pregnancy. TERATOLOGY 1994; 50:100-11. [PMID: 7801297 DOI: 10.1002/tera.1420500204] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Children with the fetal alcohol syndrome often have ocular anomalies. These include abnormalities of the eyes and adnexa (strabismus, blepharoptosis, epicanthus), as well as intraocular defects (cataract, glaucoma, persistent hyperplastic primary vitreous, retinal and optic nerve anomalies). Based on the clinical results in an ophthalmological study of a group of Swedish children with the fetal alcohol syndrome, in which optic nerve hypoplasia was found in up to one-half of the group, an experimental study was designed in rats pre- and perinatally exposed to alcohol by means of a liquid diet. The optic nerve was seriously affected. Macroglial cells and optic axons were ultrastructurally damaged. The diameter of the optic nerve cross section, glial cell nuclear area, axonal diameter, and the total number of optic axons showed significantly lower values in the alcohol-exposed group than in the controls. In addition, the retina from the alcohol-exposed animals displayed significantly lower values of the retinal thickness and ganglion cell nuclear volume, as compared to the controls. Thus, rats exposed to alcohol in utero developed hypoplasia of the optic nerve similar to the findings in children born to alcoholic mothers. This strongly supports the hypothesis that prenatal alcohol exposure may adversely affect the development of the optic nerve.
Collapse
Affiliation(s)
- K Strömland
- Department of Clinical Neuroscience, University of Gothenburg, Sweden
| | | |
Collapse
|
36
|
Abstract
This is a review of the literature on the effects of alcohol on white matter development. For many years, human and animal studies have reported the vulnerability of developing white matter to the effects of alcohol. However, until recently, studies on alcohol and white matter were limited by existing technology. New technology documenting the presence of neurotransmitter receptors and ion channels on glial cells now provides a new focus for research on alcohol and white matter development. New research using new technology should enlarge our knowledge of the role of glial cells in brain damage associated with alcohol exposure during development.
Collapse
Affiliation(s)
- F E Lancaster
- Department of Biology, Texas Woman's University, Denton 76204
| |
Collapse
|
37
|
Miller MW, al-Rabiai S. Effects of prenatal exposure to ethanol on the number of axons in the pyramidal tract of the rat. Alcohol Clin Exp Res 1994; 18:346-54. [PMID: 8048737 DOI: 10.1111/j.1530-0277.1994.tb00024.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We examined the effect of gestational ethanol exposure on the number of axons in the caudal pyramidal tract. Between gestational day (G) 6 and G21, inclusive, pregnant rats were fed a liquid ethanol-containing diet (Et), an isocaloric liquid control diet (Ct), or a diet of chow and water (Ch). On postnatal day 30, the offspring of these rats were killed and their caudal medullas were processed for electron microscopy. The overall size of the pyramidal tract and the space occupied by the axons was smaller in the Et-treated rats than in the Ct-treated rats. The myelinated axons were smaller and the myelin was thinner in the Et-treated rats than in the Ct-treated rats. These decreases produced an ethanol-induced increase in the density of axons in the pyramidal tract. In particular, the density of myelinated axons (but not nonmyelinated axons) was greater in Et-treated rats. The net result was that the estimated number of axons in the pyramidal tracts of the Et-treated rats was not significantly different than the number in the Ch- and Ct-treated rats. The present data demonstrate that ethanol does not affect the absolute number of axons in the pyramidal tract. As a result of the ethanol-induced microencephaly, however, the data translate into a relative increase in the number of pyramidal tract axons. This relative increase matches the ethanol-induced increase in the density of corticospinal projection neurons that may result from the retention of a developmentally exuberant projection.
Collapse
Affiliation(s)
- M W Miller
- Research Service, Veterans Affairs Medical Center, University of Iowa College of Medicine, Iowa City
| | | |
Collapse
|
38
|
Streissguth AP, Sampson PD, Olson HC, Bookstein FL, Barr HM, Scott M, Feldman J, Mirsky AF. Maternal drinking during pregnancy: attention and short-term memory in 14-year-old offspring--a longitudinal prospective study. Alcohol Clin Exp Res 1994; 18:202-18. [PMID: 8198221 DOI: 10.1111/j.1530-0277.1994.tb00904.x] [Citation(s) in RCA: 263] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A large and compelling experimental literature has documented the adverse impact of prenatal alcohol exposure on the developing brain of the offspring. This is the first report of adolescent attention/memory performance and its relationship with prenatal alcohol exposure in a population-based, longitudinal, prospective study (n = 462) involving substantial covariate control and "blind" examiners. Prenatal alcohol exposure was significantly related to attention/memory deficits in a dose-dependent fashion. A latent variable reflecting 13 measures of maternal drinking was correlated 0.26 with a latent variable representing 52 scores from 6 tests measuring various components of attention and short-term memory performance. The number of drinks/occasion was the strongest alcohol predictor. Fluctuating attentional states, problems with response inhibition, and spatial learning showed the strongest association with prenatal alcohol exposure. A latent variable reflecting the pattern of attention/memory deficits observed at 14 years correlated 0.67 with a composite pattern of deficits previously detected on neurobehavioral tests administered during the first 7 years of life. The 14-year attention/memory deficits observed in the present study appear to be the adolescent sequelae of deficits observed earlier in development. As is usual in such studies, not all exposed offspring showed deficits.
Collapse
|
39
|
Kojima H, Mineta-Kitajima R, Saitoh-Harada N, Kurihara T, Takahashi Y, Furudate S, Shirataka M, Nakamura K, Tamai Y. Prenatal ethanol exposure affects the activity and mRNA expression of neuronal membrane enzymes in rat offspring. Life Sci 1994; 55:1433-42. [PMID: 7523823 DOI: 10.1016/0024-3205(94)00758-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In order to elucidate molecular mechanisms underlying brain dysfunction in offspring exposed to ethanol in utero, subclinical doses of ethanol that do not have apparent structural effect on the offspring were administered intraperitoneally to pregnant rats at various gestational stages. We measured the activity of membrane marker enzymes and the level of mRNA of myelin proteins of the offspring brain. The activity of a myelin specific enzyme, 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) decreased in ethanol-exposed offspring. This effect was not related to the period of gestation or the dose of ethanol. Perikaryonal enzymes, acetylcholinesterase and Na+, K(+)-ATPase, were significantly affected in groups exposed to ethanol at early fetal stage and in high doses. Expression of mRNAs of CNP and myelin basic proteins decreased significantly in the ethanol-treated group, with abnormal developmental profile suggesting a relationship with delayed myelination in offspring exposed to ethanol in utero. The present findings suggest that in spite of the low doses of ethanol that do not cause clinical symptoms in the offspring, prenatal exposure to ethanol affects the level of mRNA of membrane enzyme proteins in the offspring brain, consequently causing a corresponding reduction in enzyme activity, that may lead to neuronal dysfunction. In a separate study, blood ethanol levels were found to reach a maximum level within 30 min after injection and be undetectable after 5 to 10 h. No accumulation effects due to daily injection were observed.
Collapse
Affiliation(s)
- H Kojima
- Department of Biochemistry, Kitasato University School of Medicine, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pinazo-Duran MD, Renau-Piqueras J, Guerri C. Developmental changes in the optic nerve related to ethanol consumption in pregnant rats: analysis of the ethanol-exposed optic nerve. TERATOLOGY 1993; 48:305-22. [PMID: 8278930 DOI: 10.1002/tera.1420480404] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Visual impairment is one of the most common ophthalmic abnormalities in fetal alcohol syndrome. Pathologic changes in optic nerve development related to alcohol consumption could be involved in this dysfunction. In order to assess the consequences of pre- and postnatal exposure to alcohol on the developing optic nerve, we administered an ethanol-containing liquid diet (5% w/v) before and during gestation and throughout lactation to rats and their offspring. A group of control animals were kept on a pair-fed isocaloric diet. The optic nerves were obtained at key stages from fetuses (21 days of gestation) and pups (4, 7, 14, 21 and 28 postnatal days). Samples of the optic nerve cross-section, behind the eyeball, were processed for analysis of gliogenesis, myelinogenesis, axonal growth, and remodelling events, using light and electron microscopy. Qualitative, morphometric, and immunocytochemical analyses, alternatively using anti-GFAP and anti-MBP antibodies, were carried out. Optic nerve cross-sections from prenatal and postnatal alcohol-exposed rats showed a decrease in size. Ultrastructural alterations and retarded development in macroglial cells, optic axons, and myelin sheath were also observed. The most prominent abnormalities were: damage of cytoplasmic organelles and disorganization of cytoskeleton in astrocytes; a decrease in free ribosome density and nuclear membrane inclusions in oligodendrocytes; and fragmentation of lamellae, aberrant myelin sheaths and intralamellar inclusions in myelin. These findings suggest that alcohol abuse during pregnancy is teratogenic to the optic nerve and closely related to the altered visual function.
Collapse
Affiliation(s)
- M D Pinazo-Duran
- Institute of Cytological Research, University Hospital, La Fe, Valencia, Spain
| | | | | |
Collapse
|
41
|
Phillips DE, Krueger SK. Effects of combined pre- and postnatal ethanol exposure (three trimester equivalency) on glial cell development in rat optic nerve. Int J Dev Neurosci 1992; 10:197-206. [PMID: 1442168 DOI: 10.1016/0736-5748(92)90059-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This study evaluated the effects of a combined gestational and 10 day postnatal alcohol exposure (human three trimester equivalency) on the development of glial cells in the rat optic nerve. Pregnant rats were exposed to alcohol via a liquid diet, then their pups were artificially reared and further exposed to alcohol for 10 postnatal days via a gastrostomy fed liquid diet. Control animals, born of pair fed dams, were artificially reared on pair fed isocaloric diets. Optic nerve tissues were prepared for light and electron microscopic studies from animals on gestational days (G) 15 and 20 and postnatal days (P) 5, 10, 15, 20 and 90. There were fewer glial cells per cross-section on day 15 and the cross-sectional areas of optic nerves were smaller on days G20, P15 and P90 in the ethanol exposed animals. There was an alcohol-induced delay in the appearance of immature cells within the oligodendroglia lineage and a decrease in the number of oligodendroglia present at 15 and 20 days, indicating a delay in the maturation of oligodendroglial cells. These effects were compensated for by 90 days. Maturation of the astrocytic cell lineage was generally unaffected by the alcohol although there was evidence of increased numbers of cells in the lineage. There was no consistent indication of alcohol-induced degeneration of glial cells or their organelles. Thus, alcohol exposure for all of gestation and 10 postnatal days in the rat causes a delay in oligodendrocyte maturation but appears to have no long-term effects on the glial cell population of the optic nerve. Such a delay, by contributing to delays in myelin development, could help to explain some of the neurological dysfunctions associated with developmental alcohol exposures.
Collapse
Affiliation(s)
- D E Phillips
- Department of Biology, Montana State University, Bozeman 59717-0346
| | | |
Collapse
|