1
|
Darbinian N, Darbinyan A, Sinard J, Tatevosian G, Merabova N, D’Amico F, Khader T, Bajwa A, Martirosyan D, Gawlinski AK, Pursnani R, Zhao H, Amini S, Morrison M, Goetzl L, Selzer ME. Molecular Markers in Maternal Blood Exosomes Allow Early Detection of Fetal Alcohol Spectrum Disorders. Int J Mol Sci 2022; 24:ijms24010135. [PMID: 36613580 PMCID: PMC9820501 DOI: 10.3390/ijms24010135] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Prenatal alcohol exposure can cause developmental abnormalities (fetal alcohol spectrum disorders; FASD), including small eyes, face and brain, and neurobehavioral deficits. These cannot be detected early in pregnancy with available imaging techniques. Early diagnosis could facilitate development of therapeutic interventions. Banked human fetal brains and eyes at 9−22 weeks’ gestation were paired with maternal blood samples, analyzed for morphometry, protein, and RNA expression, and apoptotic signaling. Alcohol (EtOH)-exposed (maternal self-report) fetuses were compared with unexposed controls matched for fetal age, sex, and maternal race. Fetal brain-derived exosomes (FB-E) were isolated from maternal blood and analyzed for protein, RNA, and apoptotic markers. EtOH use by mothers, assessed by self-report, was associated with reduced fetal eye diameter, brain size, and markers of synaptogenesis. Brain caspase-3 activity was increased. The reduction in eye and brain sizes were highly correlated with amount of EtOH intake and caspase-3 activity. Levels of several biomarkers in FB-E, most strikingly myelin basic protein (MBP; r > 0.9), correlated highly with morphological abnormalities. Reduction in FB-E MBP levels was highly correlated with EtOH exposure (p < 1.0 × 10−10). Although the morphological features of FAS appear long before they can be detected by live imaging, FB-E in the mother’s blood may contain markers, particularly MBP, that predict FASD.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Correspondence: (N.D.); (M.E.S.); Tel.: +1-215-926-9318 (M.E.S.)
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - John Sinard
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Faith D’Amico
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Tarek Khader
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ahsun Bajwa
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Diana Martirosyan
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Alina K. Gawlinski
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Richa Pursnani
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Mary Morrison
- Department of Psychiatry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA
| | - Michael E. Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Correspondence: (N.D.); (M.E.S.); Tel.: +1-215-926-9318 (M.E.S.)
| |
Collapse
|
2
|
Niedzwiedz-Massey VM, Douglas JC, Rafferty T, Kane CJ, Drew PD. Ethanol effects on cerebellar myelination in a postnatal mouse model of fetal alcohol spectrum disorders. Alcohol 2021; 96:43-53. [PMID: 34358666 DOI: 10.1016/j.alcohol.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/12/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) are alarmingly common, result in significant personal and societal loss, and there are no effective treatments for these disorders. Cerebellar neuropathology is common in FASD and can cause impaired cognitive and motor function. The current study evaluates the effects of ethanol on oligodendrocyte-lineage cells, as well as molecules that modulate oligodendrocyte differentiation and function in the cerebellum in a postnatal mouse model of FASD. Neonatal mice were treated with ethanol from P4-P9 (postnatal day), the cerebellum was isolated at P10, and mRNAs encoding oligodendrocyte-associated molecules were quantitated by qRT-PCR. Our studies demonstrated that ethanol significantly reduced the expression of markers for multiple stages of oligodendrocyte maturation, including oligodendrocyte precursor cells, pre-myelinating oligodendrocytes, and mature myelinating oligodendrocytes. Additionally, we determined that ethanol significantly decreased the expression of molecules that play critical roles in oligodendrocyte differentiation. Interestingly, we also observed that ethanol significantly reduced the expression of myelin-associated inhibitors, which may act as a compensatory mechanism to ethanol toxicity. Furthermore, we demonstrate that ethanol alters the expression of a variety of molecules important in oligodendrocyte function and myelination. Collectively, our studies increase our understanding of specific mechanisms by which ethanol modulates myelination in the developing cerebellum, and potentially identify novel targets for FASD therapy.
Collapse
|
3
|
Niedzwiedz-Massey VM, Douglas JC, Rafferty T, Wight PA, Kane CJM, Drew PD. Ethanol modulation of hippocampal neuroinflammation, myelination, and neurodevelopment in a postnatal mouse model of fetal alcohol spectrum disorders. Neurotoxicol Teratol 2021; 87:107015. [PMID: 34256161 PMCID: PMC8440486 DOI: 10.1016/j.ntt.2021.107015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are alarmingly common and result in significant personal and societal loss. Neuropathology of the hippocampus is common in FASD leading to aberrant cognitive function. In the current study, we evaluated the effects of ethanol on the expression of a targeted set of molecules involved in neuroinflammation, myelination, neurotransmission, and neuron function in the developing hippocampus in a postnatal model of FASD. Mice were treated with ethanol from P4-P9, hippocampi were isolated 24 h after the final treatment at P10, and mRNA levels were quantitated by qRT-PCR. We evaluated the effects of ethanol on both pro-inflammatory and anti-inflammatory molecules in the hippocampus and identified novel mechanisms by which ethanol induces neuroinflammation. We further demonstrated that ethanol decreased expression of molecules associated with mature oligodendrocytes and greatly diminished expression of a lacZ reporter driven by the first half of the myelin proteolipid protein (PLP) gene (PLP1). In addition, ethanol caused a decrease in genes expressed in oligodendrocyte progenitor cells (OPCs). Together, these studies suggest ethanol may modulate pathogenesis in the developing hippocampus through effects on cells of the oligodendrocyte lineage, resulting in altered oligodendrogenesis and myelination. We also observed differential expression of molecules important in synaptic plasticity, neurogenesis, and neurotransmission. Collectively, the molecules evaluated in these studies may play a role in ethanol-induced pathology in the developing hippocampus and contribute to cognitive impairment associated with FASD. A better understanding of these molecules and their effects on the developing hippocampus may lead to novel treatment strategies for FASD.
Collapse
Affiliation(s)
- Victoria M Niedzwiedz-Massey
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - James C Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tonya Rafferty
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Patricia A Wight
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
4
|
Ghazi Sherbaf F, Aarabi MH, Hosein Yazdi M, Haghshomar M. White matter microstructure in fetal alcohol spectrum disorders: A systematic review of diffusion tensor imaging studies. Hum Brain Mapp 2019; 40:1017-1036. [PMID: 30289588 PMCID: PMC6865781 DOI: 10.1002/hbm.24409] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022] Open
Abstract
Diffusion tensor imaging (DTI) has revolutionized our understanding of the neural underpinnings of alcohol teratogenesis. This technique can detect alterations in white matter in neurodevelopmental disorders, such as fetal alcohol spectrum disorder (FASD). Using Prisma guidelines, we identified 23 DTI studies conducted on individuals with prenatal alcohol exposure (PAE). These studies confirm the widespread nature of brain damage in PAE by reporting diffusivity alterations in commissural, association, and projection fibers; and in relation to increasing cognitive impairment. Reduced integrity in terms of lower fractional anisotropy (FA) and higher mean diffusivity (MD) and radial diffusivity (RD) is reported more consistently in the corpus callosum, cerebellar peduncles, cingulum, and longitudinal fasciculi connecting frontal and temporoparietal regions. Although these interesting results provide insight into FASD neuropathology, it is important to investigate the clinical diversity of this disorder for better treatment options and prediction of progression. The aim of this review is to provide a summary of different patterns of neural structure between PAE and typically developed individuals. We further discuss the association of alterations in diffusivity with demographic features and symptomatology of PAE. With the accumulated knowledge of the neural correlates of FASD presenting symptoms, a comprehensive understanding of the heterogeneity in FASD will potentially improve the disease management and will highlight the diagnostic challenges and potential areas of future research avenues, where neural markers may be beneficial.
Collapse
Affiliation(s)
| | | | - Meisam Hosein Yazdi
- Namazee Hospital, Imaging Research Center, Department of RadiologyShiraz University of Medical SciencesShirazIran
| | | |
Collapse
|
5
|
Cakan P, Yildiz S, Ozgocer T, Yildiz A, Vardi N. Maternal viral mimetic administration at the beginning of fetal hypothalamic nuclei development accelerates puberty in female rat offspring. Can J Physiol Pharmacol 2018; 96:506-514. [DOI: 10.1139/cjpp-2016-0535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study aimed to investigate the effects of maternal viral infection during a critical time window of fetal hypothalamic development on timing of puberty in the female offspring. For that purpose, a viral mimetic (i.e., synthetic double-strand RNA, namely, polyinosinic–polycytidylic acid, poly (I:C)) or saline was injected (i.p.) to the pregnant rats during the beginning (day 12 of pregnancy, n = 5 for each group) or at the end of this time window (day 14 of pregnancy, n = 5 for each group). Four study groups were formed from the female pups (n = 9–10 pups/group). Following weaning of pups, vaginal opening and vaginal smearing was studied daily until 2 sequential estrous cycles were observed. During the second diestrus phase, blood samples were taken for progesterone, leptin, corticosterone, follicle-stimulating hormone, and luteinizing hormone. Maternal poly (I:C) injection on day 12 of pregnancy increased body mass and reduced the time to puberty in the female offspring. Neither poly (I:C) nor timing of injection affected other parameters studied (p > 0.05). It has been shown for the first time that maternal viral infection during the beginning of fetal hypothalamic development might hasten puberty by increasing body mass in rat offspring.
Collapse
Affiliation(s)
- Pinar Cakan
- Department of Physiology, Faculty of Medicine, University of Inonu, 44280 Malatya, Turkey
| | - Sedat Yildiz
- Department of Physiology, Faculty of Medicine, University of Inonu, 44280 Malatya, Turkey
| | - Tuba Ozgocer
- Department of Physiology, Faculty of Medicine, University of Inonu, 44280 Malatya, Turkey
| | - Azibe Yildiz
- Department of Histology, Faculty of Medicine, University of Inonu, 44280 Malatya, Turkey
| | - Nigar Vardi
- Department of Histology, Faculty of Medicine, University of Inonu, 44280 Malatya, Turkey
| |
Collapse
|
6
|
Fan J, Jacobson SW, Taylor PA, Molteno CD, Dodge NC, Stanton ME, Jacobson JL, Meintjes EM. White matter deficits mediate effects of prenatal alcohol exposure on cognitive development in childhood. Hum Brain Mapp 2016; 37:2943-58. [PMID: 27219850 DOI: 10.1002/hbm.23218] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 11/09/2022] Open
Abstract
Fetal alcohol spectrum disorders comprise the spectrum of cognitive, behavioral, and neurological impairments caused by prenatal alcohol exposure (PAE). Diffusion tensor imaging (DTI) was performed on 54 children (age 10.1 ± 1.0 years) from the Cape Town Longitudinal Cohort, for whom detailed drinking histories obtained during pregnancy are available: 26 with full fetal alcohol syndrome (FAS) or partial FAS (PFAS), 15 nonsyndromal heavily exposed (HE), and 13 controls. Using voxelwise analyses, children with FAS/PFAS showed significantly lower fractional anisotropy (FA) in four white matter (WM) regions and higher mean diffusivity (MD) in seven; three regions of FA and MD differences (left inferior longitudinal fasciculus (ILF), splenium, and isthmus) overlapped, and the fourth FA cluster was located in the same WM bundle (right ILF) as an MD cluster. HE children showed lower FA and higher MD in a subset of these regions. Significant correlations were observed between three continuous alcohol measures and DTI values at cluster peaks, indicating that WM damage in several regions is dose dependent. Lower FA in the regions of interest was attributable primarily to increased radial diffusivity rather than decreased axonal diffusivity, suggesting poorer axon packing density and/or myelination. Multiple regression models indicated that this cortical WM impairment partially mediated adverse effects of PAE on information processing speed and eyeblink conditioning. Hum Brain Mapp 37:2943-2958, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jia Fan
- MRC/UCT Medical Imaging Research Unit, University of Cape Town, Cape Town, South Africa.,Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Sandra W Jacobson
- Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Paul A Taylor
- MRC/UCT Medical Imaging Research Unit, University of Cape Town, Cape Town, South Africa.,Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa.,African Institute for Mathematical Sciences, Muizenberg, Western Cape, South Africa
| | - Christopher D Molteno
- Department of Psychiatry and Mental Health, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Neil C Dodge
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Mark E Stanton
- Department of Psychology, University of Delaware, Newark, Delaware
| | - Joseph L Jacobson
- Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Ernesta M Meintjes
- MRC/UCT Medical Imaging Research Unit, University of Cape Town, Cape Town, South Africa.,Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| |
Collapse
|
7
|
Wilhelm CJ, Guizzetti M. Fetal Alcohol Spectrum Disorders: An Overview from the Glia Perspective. Front Integr Neurosci 2016; 9:65. [PMID: 26793073 PMCID: PMC4707276 DOI: 10.3389/fnint.2015.00065] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/10/2015] [Indexed: 01/30/2023] Open
Abstract
Alcohol consumption during pregnancy can produce a variety of central nervous system (CNS) abnormalities in the offspring resulting in a broad spectrum of cognitive and behavioral impairments that constitute the most severe and long-lasting effects observed in fetal alcohol spectrum disorders (FASD). Alcohol-induced abnormalities in glial cells have been suspected of contributing to the adverse effects of alcohol on the developing brain for several years, although much research still needs to be done to causally link the effects of alcohol on specific brain structures and behavior to alterations in glial cell development and function. Damage to radial glia due to prenatal alcohol exposure may underlie observations of abnormal neuronal and glial migration in humans with Fetal Alcohol Syndrome (FAS), as well as primate and rodent models of FAS. A reduction in cell number and altered development has been reported for several glial cell types in animal models of FAS. In utero alcohol exposure can cause microencephaly when alcohol exposure occurs during the brain growth spurt a period characterized by rapid astrocyte proliferation and maturation; since astrocytes are the most abundant cells in the brain, microenchephaly may be caused by reduced astrocyte proliferation or survival, as observed in in vitro and in vivo studies. Delayed oligodendrocyte development and increased oligodendrocyte precursor apoptosis has also been reported in experimental models of FASD, which may be linked to altered myelination/white matter integrity found in FASD children. Children with FAS exhibit hypoplasia of the corpus callosum and anterior commissure, two areas requiring guidance from glial cells and proper maturation of oligodendrocytes. Finally, developmental alcohol exposure disrupts microglial function and induces microglial apoptosis; given the role of microglia in synaptic pruning during brain development, the effects of alcohol on microglia may be involved in the abnormal brain plasticity reported in FASD. The consequences of prenatal alcohol exposure on glial cells, including radial glia and other transient glial structures present in the developing brain, astrocytes, oligodendrocytes and their precursors, and microglia contributes to abnormal neuronal development, reduced neuron survival and disrupted brain architecture and connectivity. This review highlights the CNS structural abnormalities caused by in utero alcohol exposure and outlines which abnormalities are likely mediated by alcohol effects on glial cell development and function.
Collapse
Affiliation(s)
- Clare J Wilhelm
- Research Service, VA Portland Health Care SystemPortland, OR, USA; Department of Psychiatry, Oregon Health and Science UniversityPortland, OR, USA
| | - Marina Guizzetti
- Research Service, VA Portland Health Care SystemPortland, OR, USA; Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortland, OR, USA
| |
Collapse
|
8
|
Fan J, Meintjes EM, Molteno CD, Spottiswoode BS, Dodge NC, Alhamud AA, Stanton ME, Peterson BS, Jacobson JL, Jacobson SW. White matter integrity of the cerebellar peduncles as a mediator of effects of prenatal alcohol exposure on eyeblink conditioning. Hum Brain Mapp 2015; 36:2470-82. [PMID: 25783559 DOI: 10.1002/hbm.22785] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 11/06/2022] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are characterized by a range of neurodevelopmental deficits that result from prenatal exposure to alcohol. These can include cognitive, behavioural, and neurological impairment, as well as structural and functional brain damage. Eyeblink conditioning (EBC) is among the most sensitive endpoints affected in FASD. The cerebellar peduncles, large bundles of myelinated nerve fibers that connect the cerebellum to the brainstem, constitute the principal white matter element of the EBC circuit. Diffusion tensor imaging (DTI) is used to assess white matter integrity in fibre pathways linking brain regions. DTI scans of 54 children with FASD and 23 healthy controls, mean age 10.1 ± 1.0 years, from the Cape Town Longitudinal Cohort were processed using voxelwise group comparisons. Prenatal alcohol exposure was related to lower fractional anisotropy (FA) bilaterally in the superior cerebellar peduncles and higher mean diffusivity (MD) in the left middle peduncle, effects that remained significant after controlling for potential confounding variables. Lower FA and higher MD in these regions were associated with poorer EBC performance. Moreover, effects of alcohol exposure on EBC decreased significantly after inclusion of these DTI measures in regression models, suggesting that these white matter deficits partially mediate the relation of prenatal alcohol exposure to EBC. The associations of greater alcohol consumption with these DTI measures are largely attributable to greater radial diffusivity, possibly indicating poorer myelination. Thus, these data suggest that fetal alcohol-related deficits in EBC are attributable, in part, to poorer myelination in key regions of the cerebellar peduncles.
Collapse
Affiliation(s)
- Jia Fan
- MRC/UCT Medical Imaging Research Unit, University of Cape Town, Cape Town, South Africa.,Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Ernesta M Meintjes
- MRC/UCT Medical Imaging Research Unit, University of Cape Town, Cape Town, South Africa.,Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Christopher D Molteno
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | | | - Neil C Dodge
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Alkathafi A Alhamud
- MRC/UCT Medical Imaging Research Unit, University of Cape Town, Cape Town, South Africa.,Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Mark E Stanton
- Department of Psychology, University of Delaware, Delaware, Maryland
| | - Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles and the Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Joseph L Jacobson
- Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Sandra W Jacobson
- Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
9
|
Morton RA, Diaz MR, Topper LA, Valenzuela CF. Construction of vapor chambers used to expose mice to alcohol during the equivalent of all three trimesters of human development. J Vis Exp 2014. [PMID: 25046568 DOI: 10.3791/51839] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Exposure to alcohol during development can result in a constellation of morphological and behavioral abnormalities that are collectively known as Fetal Alcohol Spectrum Disorders (FASDs). At the most severe end of the spectrum is Fetal Alcohol Syndrome (FAS), characterized by growth retardation, craniofacial dysmorphology, and neurobehavioral deficits. Studies with animal models, including rodents, have elucidated many molecular and cellular mechanisms involved in the pathophysiology of FASDs. Ethanol administration to pregnant rodents has been used to model human exposure during the first and second trimesters of pregnancy. Third trimester ethanol consumption in humans has been modeled using neonatal rodents. However, few rodent studies have characterized the effect of ethanol exposure during the equivalent to all three trimesters of human pregnancy, a pattern of exposure that is common in pregnant women. Here, we show how to build vapor chambers from readily obtainable materials that can each accommodate up to six standard mouse cages. We describe a vapor chamber paradigm that can be used to model exposure to ethanol, with minimal handling, during all three trimesters. Our studies demonstrate that pregnant dams developed significant metabolic tolerance to ethanol. However, neonatal mice did not develop metabolic tolerance and the number of fetuses, fetus weight, placenta weight, number of pups/litter, number of dead pups/litter, and pup weight were not significantly affected by ethanol exposure. An important advantage of this paradigm is its applicability to studies with genetically-modified mice. Additionally, this paradigm minimizes handling of animals, a major confound in fetal alcohol research.
Collapse
Affiliation(s)
- Russell A Morton
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center;
| | - Marvin R Diaz
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center
| | - Lauren A Topper
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center
| |
Collapse
|
10
|
Guizzetti M, Zhang X, Goeke C, Gavin DP. Glia and neurodevelopment: focus on fetal alcohol spectrum disorders. Front Pediatr 2014; 2:123. [PMID: 25426477 PMCID: PMC4227495 DOI: 10.3389/fped.2014.00123] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/24/2014] [Indexed: 12/03/2022] Open
Abstract
During the last 20 years, new and exciting roles for glial cells in brain development have been described. Moreover, several recent studies implicated glial cells in the pathogenesis of neurodevelopmental disorders including Down syndrome, Fragile X syndrome, Rett Syndrome, Autism Spectrum Disorders, and Fetal Alcohol Spectrum Disorders (FASD). Abnormalities in glial cell development and proliferation and increased glial cell apoptosis contribute to the adverse effects of ethanol on the developing brain and it is becoming apparent that the effects of fetal alcohol are due, at least in part, to effects on glial cells affecting their ability to modulate neuronal development and function. The three major classes of glial cells, astrocytes, oligodendrocytes, and microglia as well as their precursors are affected by ethanol during brain development. Alterations in glial cell functions by ethanol dramatically affect neuronal development, survival, and function and ultimately impair the development of the proper brain architecture and connectivity. For instance, ethanol inhibits astrocyte-mediated neuritogenesis and oligodendrocyte development, survival and myelination; furthermore, ethanol induces microglia activation and oxidative stress leading to the exacerbation of ethanol-induced neuronal cell death. This review article describes the most significant recent findings pertaining the effects of ethanol on glial cells and their significance in the pathophysiology of FASD and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marina Guizzetti
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA ; Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, WA , USA
| | - Xiaolu Zhang
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA
| | - Calla Goeke
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA
| | - David P Gavin
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA
| |
Collapse
|
11
|
Spottiswoode BS, Meintjes EM, Anderson AW, Molteno CD, Stanton ME, Dodge NC, Gore JC, Peterson BS, Jacobson JL, Jacobson SW. Diffusion tensor imaging of the cerebellum and eyeblink conditioning in fetal alcohol spectrum disorder. Alcohol Clin Exp Res 2011; 35:2174-83. [PMID: 21790667 DOI: 10.1111/j.1530-0277.2011.01566.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prenatal alcohol exposure is related to a wide range of neurocognitive effects. Eyeblink conditioning (EBC), which involves temporal pairing of a conditioned with an unconditioned stimulus, has been shown to be a potential biomarker of fetal alcohol exposure. A growing body of evidence suggests that white matter may be a specific target of alcohol teratogenesis, and the neural circuitry underlying EBC is known to involve the cerebellar peduncles. Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique that has proven useful for assessing central nervous system white matter integrity. This study used DTI to examine the degree to which the fetal alcohol-related deficit in EBC may be mediated by structural impairment in the cerebellar peduncles. METHODS Thirteen children with fetal alcohol spectrum disorder (FASD) and 12 matched controls were scanned using DTI and structural MRI sequences. The DTI data were processed using a voxelwise technique, and the structural data were used for volumetric analyses. Prenatal alcohol exposure group and EBC performance were examined in relation to brain volumes and outputs from the DTI analysis. RESULTS Fractional anisotropy (FA) and perpendicular diffusivity group differences between alcohol-exposed and nonexposed children were identified in the left middle cerebellar peduncle. Alcohol exposure correlated with lower FA and greater perpendicular diffusivity in this region, and these correlations remained significant even after controlling for total brain and cerebellar volumes. Conversely, trace conditioning performance was related to higher FA and lower perpendicular diffusivity in the left middle peduncle. The effect of prenatal alcohol exposure on trace conditioning was partially mediated by lower FA in this region. CONCLUSIONS This study extends recent findings that have used DTI to reveal microstructural deficits in white matter in children with FASD. This is the first DTI study to demonstrate mediation of a fetal alcohol-related effect on neuropsychological function by deficits in white matter integrity.
Collapse
Affiliation(s)
- Bruce S Spottiswoode
- Department of Human Biology, University of Cape Town Faculty of Health Sciences, South Africa. bspotty@gmail
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pons-Vázquez S, Gallego-Pinazo R, Galbis-Estrada C, Zanon-Moreno V, Garcia-Medina JJ, Vila-Bou V, Sanz-Solana P, Pinazo-Durán MD. Combined Pre- and Postnatal Ethanol Exposure in Rats Disturbs the Myelination of Optic Axons†. Alcohol Alcohol 2011; 46:514-22. [DOI: 10.1093/alcalc/agr063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
13
|
Boehme F, Gil-Mohapel J, Cox A, Patten A, Giles E, Brocardo PS, Christie BR. Voluntary exercise induces adult hippocampal neurogenesis and BDNF expression in a rodent model of fetal alcohol spectrum disorders. Eur J Neurosci 2011; 33:1799-811. [PMID: 21535455 DOI: 10.1111/j.1460-9568.2011.07676.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alcohol consumption during pregnancy can result in a myriad of health problems in the affected offspring ranging from growth deficiencies to central nervous system impairments that result in cognitive deficits. Adult hippocampal neurogenesis is thought to play a role in cognition (i.e. learning and memory) and can be modulated by extrinsic factors such as alcohol consumption and physical exercise. We examined the impact of voluntary physical exercise on adult hippocampal neurogenesis in a rat model of fetal alcohol spectrum disorders (FASD). Intragastric intubation was used to deliver ethanol to rats in a highly controlled fashion through all three trimester equivalents (i.e. throughout gestation and during the first 10 days of postnatal life). Ethanol-exposed animals and their pair-fed and ad libitum controls were left undisturbed until they reached a young adult stage at which point they had free access to a running wheel for 12 days. Prenatal and early postnatal ethanol exposure altered cell proliferation in young adult female rats and increased early neuronal maturation without affecting cell survival in the dentate gyrus (DG) of the hippocampus. Voluntary wheel running increased cell proliferation, neuronal maturation and cell survival as well as levels of brain-derived neurotrophic factor in the DG of both ethanol-exposed female rats and their pair-fed and ad libitum controls. These results indicate that the capacity of the brain to respond to exercise is not impaired in this model of FASD, highlighting the potential therapeutic value of physical exercise for this developmental disorder.
Collapse
Affiliation(s)
- Fanny Boehme
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Lebel C, Rasmussen C, Wyper K, Walker L, Andrew G, Yager J, Beaulieu C. Brain diffusion abnormalities in children with fetal alcohol spectrum disorder. Alcohol Clin Exp Res 2008; 32:1732-40. [PMID: 18671811 DOI: 10.1111/j.1530-0277.2008.00750.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Children with fetal alcohol spectrum disorder (FASD) have a variety of cognitive, behavioral, and neurological impairments, including structural brain damage. Despite the importance of white matter connections for proper brain function, little is known about how these connections, and the deep gray matter structures that act as relay stations, are affected in children with FASD. The purpose of this study was to use diffusion tensor imaging, an advanced magnetic resonance imaging technique, to examine microstructural differences of white and deep gray matter in children with FASD. METHODS Subjects were 24 children aged 5-13 years previously diagnosed with FASD and 95 healthy children over the same age range. Diffusion tractography was used to delineate 10 major white matter tracts in each individual, and region-of-interest analysis was used to assess 4 deep gray matter structures. Fractional anisotropy, an indicator of white matter integrity, and mean diffusivity, a measure of the average water diffusion, were assessed in all 14 brain structures. RESULTS Diffusion tensor imaging revealed significant differences of diffusion parameters in several areas of the brain, including the genu and splenium of the corpus callosum, cingulum, corticospinal tracts, inferior fronto-occipital fasciculus, inferior and superior longitudinal fasciculi, globus pallidus, putamen, and thalamus. Reduced white and gray matter volumes, as well as total brain volume, were observed in the FASD group. CONCLUSIONS These results demonstrate diffusion abnormalities in FASD beyond the corpus callosum and suggest that several specific white matter regions, particularly commissural and temporal connections, and deep gray matter areas of the brain are sensitive to prenatal alcohol exposure.
Collapse
Affiliation(s)
- Catherine Lebel
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Tufan AC, Abban G, Akdogan I, Erdogan D, Ozogul C. The effect of in ovo ethanol exposure on retina and optic nerve in a chick embryo model system. Reprod Toxicol 2006; 23:75-82. [PMID: 17074462 DOI: 10.1016/j.reprotox.2006.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 09/06/2006] [Accepted: 09/19/2006] [Indexed: 11/17/2022]
Abstract
Ocular anomalies seen in children with fetal alcohol syndrome (FAS) suggest that ocular structures are sensitive to alcohol exposure during their development. This study was designed to investigate the effect of in ovo ethanol (EtOH) exposure on retinal development and myelinization of optic nerve fibers at an ultra structural level in a chick embryo model system. Prior to incubation, fertilized chicken eggs were injected once with 100 microl of either 0.9% NaCl (vehicle control), or EtOH solutions at different doses (10, 30, or 50%, v:v in 0.9% NaCl) into their air sacs and incubated at 37.5 degrees C and saturation humidity. On day 20 embryos were analyzed in terms of their viability and growth and the optic cups including the optic nerves were dissected out. Specimens were processed for electron microscopy (EM). Results showed that, EtOH significantly decreased the viability of chick embryos (P < 0.045), and caused significant prenatal growth retardation (P < 0.004) in a dose-dependant manner. Light microscopy of semi thin sections revealed that prenatal exposure to EtOH resulted in both retinal degeneration and optic nerve hypoplasia (P < 0.001) in a dose-dependant manner. EM revealed that a dose-dependant decrease in the number of myelinated nerve fibers was profound in groups exposed to EtOH (P < 0.001). Furthermore, the myelin coats observed were thinner than those seen in control embryos. In groups exposed to EtOH myelin sheets were unorganized and contained vacuolar structures in between them. The tissue in between the cells and optic nerve fibers, on the other hand, lost its intact appearance with vacuolar and vesicular structures in between them. In addition, the optic nerve fibers contained granular accumulations in EtOH exposed groups. A dose dependent degeneration was also observed in retinas of EtOH exposed groups. The effect of EtOH was profound in pigment epithelium (PE), inner plexiform layer (IPL), and ganglion cell layer (GC). Mitochondrial deficiencies, and alterations in melanin granule number and distribution dominated the defects seen in PE. On the other hand, EM findings of all the affected layers were suggestive of induced cell death in EtOH exposed groups. Thus, this study suggests retinal development with the emphasis on melanin pigmentation in PE and optic nerve myelinization as potential targets of prenatal EtOH exposure and discusses potential mechanisms of EtOH action on these tissues.
Collapse
Affiliation(s)
- A Cevik Tufan
- Department of Histology and Embryology, Pamukkale University, School of Medicine, Denizli, Turkey.
| | | | | | | | | |
Collapse
|
16
|
Miki T, Harris SJ, Wilce PA, Takeuchi Y, Bedi KS. Effects of alcohol exposure during early life on neuron numbers in the rat hippocampus. I. Hilus neurons and granule cells. Hippocampus 2003; 13:388-98. [PMID: 12722979 DOI: 10.1002/hipo.10072] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We previously showed that 16-day-old rats exposed to a relatively high dose of ethanol at 10-15 postnatal days of age have fewer neurons in the hilus region of the hippocampus compared with controls. Dentate gyrus granule cell numbers, however, showed no statistically significant changes attributable to the ethanol treatment. It is possible that some of the changes in brain morphology, brought about as a result of the exposure to ethanol during early life, may not be manifested until later in life. This question has been further addressed in an extension to our previous study. Wistar rats were exposed to a relatively high daily dose of ethanol on postnatal days 10-15 by placement in a chamber containing ethanol vapour, for 3 h/day. The blood ethanol concentration was found to be approximately 430 mg/dl at the end of the period of exposure. Groups of ethanol-treated (ET), separation control (SC), and mother-reared control (MRC) rats were anaesthetised and killed either at 16 or 30 days of age by perfusion with phosphate-buffered 2.5% glutaraldehyde. The Cavalieri principle and the physical disector methods were used to estimate, respectively, the regional volumes and neuron cell numerical densities in the hilus and granule cell regions of the dentate gyrus. The total numbers of neurons in the hilus region and granule cell layer were computed from these estimates. It was found that 16-day-old animals had 398,000-441,000 granule cells, irrespective of group. The numbers of granule cells increased such that by 30 days of age, rats had 487,000-525,500 granule cells. However, there were no significant differences between ethanol-treated rats and their age-matched controls in granule cell numbers. In contrast, ethanol-treated rats had slightly but significantly fewer neurons in the hilus region than did control animals at 16 days of age, but not at 30 days of age. Therefore, it appears that a short period of ethanol exposure during early life can have effects on neuron numbers of some hippocampal neurons, but not others. The effects on hilar neuron numbers, observed as a result of such short periods of ethanol treatment, appeared to be transitory.
Collapse
Affiliation(s)
- Takanori Miki
- Department of Anatomy, Faculty of Medicine, Kagawa Medical University, Kagawa, Japan
| | | | | | | | | |
Collapse
|
17
|
Abstract
Pregnant ICR mice were given 20% ethanol intraperitoneally twice on day 13 of gestation and allowed to give birth to offspring. The offspring were killed at 56 days of age and the motor root of their facial nerve was examined histologically and morphometrically. The cross-sectional area of the facial nerve of mice prenatally exposed to ethanol was significantly smaller than that of the control mice. There was no significant difference in the total number of myelinated axons or the mean axonal diameter between control and ethanol-exposed mice, but the mean diameter of myelinated fibers (axon + myelin sheath) and the thickness of myelin sheath were significantly decreased in the treated group. These results suggest that prenatal exposure to ethanol disturbs myelination of the motor root of the facial nerve and may cause permanent neurological effects.
Collapse
Affiliation(s)
- Suguru Komatsu
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
18
|
Komatsu S, Sasaki Y, Shiota K. A quantitative study of the facial nerve in mice prenatally exposed to ethanol. Clin Genet 2003. [DOI: 10.1111/j.1399-0004.2003.tb02305.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Bichenkov E, Ellingson JS. Effects of transient ethanol exposure on the incorporation of [(3)H]ethanolamine into plasmalogen in the differentiating CG-4 oligodendrocyte cell line. Biochem Pharmacol 2000; 60:1703-11. [PMID: 11077053 DOI: 10.1016/s0006-2952(00)00473-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We investigated the potential teratogenic effects of ethanol (EtOH) on myelination by monitoring its effects on the labeling of the myelin-typical lipid, ethanolamine plasmalogen (EPl), in the CG-4 cell line of differentiating oligodendrocytes (OLGs). On 5 different days during the first 8 days of OLG development, cells were labeled for 24 hr with [(3)H]ethanolamine to label EPl and diacyl-ethanolamine phosphoglycerols (diacyl-EPG), and the amount of labeled lipid expressed on each day was determined in the presence and absence of 25-120 mM EtOH. At early stages of development, a lower amount of [(3)H]EPl per cell was found in cells exposed to EtOH. The ratio of [(3)H]EPl to [(3)H]diacyl-EPG in cells exposed to 25, 50, or 120 mM EtOH was decreased by 50% after 4 days of differentiation compared with that in control cells. By adding or withdrawing EtOH at specific days of differentiation, we showed that EtOH inhibited the increased labeling of EPl if it was present for the first 48 hr of differentiation, and subsequent withdrawal failed to relieve the inhibition. Addition of EtOH anytime after the first day of differentiation did not inhibit the increased labeling of EPl. The results show that the increased labeling of EPl in differentiating OLGs resulted from an EtOH-sensitive, developmentally programmed, transient process active only during the first 2 days of differentiation.
Collapse
Affiliation(s)
- E Bichenkov
- Department of Pathology, Anatomy, and Cell Biology, Medical College of Thomas Jefferson University, 19107, USA, Philadelphia, PA, USA
| | | |
Collapse
|
20
|
HARRIS SIMONJ, WILCE PETER, BEDI KULDIPS. Exposure of rats to a high but not low dose of ethanol during early postnatal life increases the rate of loss of optic nerve axons and decreases the rate of myelination. J Anat 2000; 197 Pt 3:477-85. [PMID: 11117631 PMCID: PMC1468146 DOI: 10.1046/j.1469-7580.2000.19730477.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Visual system abnormalities are commonly encountered in the fetal alcohol syndrome although the level of exposure at which they become manifest is uncertain. In this study we have examined the effects of either low (ETLD) or high dose (ETHD) ethanol, given between postnatal days 4-9, on the axons of the rat optic nerve. Rats were exposed to ethanol vapour in a special chamber for a period of 3 h per day during the treatment period. The blood alcohol concentration in the ETLD animals averaged approximately 171 mg/dl and in the ETHD animals approximately 430 mg/dl at the end of the treatment on any given day. Groups of 10 and 30-d-old mother-reared control (MRC), separation control (SC), ETLD and ETHD rats were anaesthetised with an intraperitoneal injection of ketamine and xylazine, and killed by intracardiac perfusion with phosphate-buffered glutaraldehyde. In the 10-d-old rat optic nerves there was a total of approximately 145,000-165,000 axons in MRC, SC and ETLD animals. About 4% of these fibres were myelinated. The differences between these groups were not statistically significant. However, the 10-d-old ETHD animals had only about 75,000 optic nerve axons (P < 0.05) of which about 2.8 % were myelinated. By 30 d of age there was a total of between 75,000-90,000 optic nerve axons, irrespective of the group examined. The proportion of axons which were myelinated at this age was still significantly lower (P < 0.001) in the ETHD animals (approximately 77 %) than in the other groups (about 98 %). It is concluded that the normal stages of development and maturation of the rat optic nerve axons, as assessed in this study, can be severely compromised by exposure to a relatively high (but not low) dose of ethanol between postnatal d 4 and 9.
Collapse
Affiliation(s)
- SIMON J.
HARRIS
- Department of Anatomical Sciences, University of Queensland, St Lucia, Brisbane, Australia
| | - PETER WILCE
- Department of Biochemistry, University of Queensland, St Lucia, Brisbane, Australia
| | - KULDIP S.
BEDI
- Department of Anatomical Sciences, University of Queensland, St Lucia, Brisbane, Australia
- Correspondence to Dr Kuldip S. Bedi. Department of Anatomical Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. Tel: +61-7-3365-3058; fax: +61-7-3365-1299; e-mail:
| |
Collapse
|
21
|
Haghighat N, McCandless DW, Geraminejad P. Effect of alcohol on energy storage of primary astrocytes and C6-glioma cells in vitro. Metab Brain Dis 1999; 14:149-56. [PMID: 10646690 DOI: 10.1023/a:1020606607729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The present experiments were conducted to investigate the direct effects of ethanol on the energy metabolism of astrocytes and C6-glioma cells. Primary astrocytes were prepared from cerebral cortices of neonatal rats, and C6-glioma cells were purchased from American Type Culture Collection (ATCC). These cells were exposed to different concentrations of alcohol (100 mM, 200 mM, and 300 mM) for 15 minutes and 24 hours. The amount of ATP and PCr was measured by the method of Lowry and Passonneau (1972). Following 15 minutes treatment with different doses of ethanol the amount of ATP and PCr increased, in both cell types. Only the increase of ATP concentration with varying doses of ethanol (100 mM, 200 mM, and 300 mM) was statistically significant. Following 24 hours treatment of astrocytes with different doses of ethanol the concentration of ATP and PCr decreased. The decrease in concentration of ATP was significant with all three doses of ethanol, but the decrease of PCr concentration was only statistically significant with 300 mM ethanol. Following 24 hours treatment of C6-glioma cells to varying doses of ethanol, the concentration of PCr and ATP decreased. The decrease of PCr was statistically significant with all three doses of ethanol and the decrease of ATP concentration was only significant with 300 mM ethanol.
Collapse
Affiliation(s)
- N Haghighat
- Department of Cell Biology and Anatomy, Finch University of Health Sciences/The Chicago Medical School, Illinois 60064, USA.
| | | | | |
Collapse
|
22
|
Sampson PD, Streissguth AP, Bookstein FL, Little RE, Clarren SK, Dehaene P, Hanson JW, Graham JM. Incidence of fetal alcohol syndrome and prevalence of alcohol-related neurodevelopmental disorder. TERATOLOGY 1997; 56:317-26. [PMID: 9451756 DOI: 10.1002/(sici)1096-9926(199711)56:5<317::aid-tera5>3.0.co;2-u] [Citation(s) in RCA: 498] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We critique published incidences for fetal alcohol syndrome (FAS) and present new estimates of the incidence of FAS and the prevalence of alcohol-related neurodevelopmental disorder (ARND). We first review criteria necessary for valid estimation of FAS incidence. Estimates for three population-based studies that best meet these criteria are reported with adjustment for underascertainment of highly exposed cases. As a result, in 1975 in Seattle, the incidence of FAS can be estimated as at least 2.8/1000 live births, and for 1979-81 in Cleveland, approximately 4.6/1,000. In Roubaix, France (for data covering periods from 1977-1990), the rate is between 1.3 and 4.8/1,000, depending on the severity of effects used as diagnostic criteria. Utilizing the longitudinal neurobehavioral database of the Seattle study, we propose an operationalization of the Institute of Medicine's recent definition of ARND and estimate its prevalence in Seattle for the period 1975-1981. The combined rate of FAS and ARND is thus estimated to be at least 9.1/1,000. This conservative rate--nearly one in every 100 live births--confirms the perception of many health professionals that fetal alcohol exposure is a serious problem.
Collapse
Affiliation(s)
- P D Sampson
- Department of Statistics, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Dangata YY, Kaufman MH. Morphometric analysis of the postnatal mouse optic nerve following prenatal exposure to alcohol. J Anat 1997; 191 ( Pt 1):49-56. [PMID: 9279658 PMCID: PMC1467658 DOI: 10.1046/j.1469-7580.1997.19110049.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pregnant female mice were divided on day 12 post coitum into a control and an experimental group. The experimental group was given a single intraperitoneal dose of 0.015 ml/g body weight of 25% solution of alcohol in distilled water while the control group was exposed to a similar weight related dose of normal saline. The optic nerves were isolated from the offspring of both control and experimental groups at wk 2, 3 and 5 (i.e. during the juvenile period of postnatal development) and analysed by light and electron microscopy. Although in both groups the optic nerve grew in size rapidly during the period studied, the rate of growth in the experimental groups lagged behind that of the controls. The difference was initially significant but tailed off, so that by wk 5 it was no longer significant. The time of initial onset and progression of myelinogenesis in the optic nerve of alcohol exposed mice also lagged behind that of controls. In both groups the size distribution of the myelinated nerve fibres in the optic nerve was unimodal with a positive skewing for all ages. The spectrum of size distribution of the nerve fibres was, however, broader in controls than in the corresponding experimental groups. With increasing age the proportion of small and medium size fibres was greater in the experimental group than in the controls, while for the large diameter fibres the reverse was observed. It is suggested that this study may shed light on the teratogenic effect of 'binge' drinking during pregnancy and that it is the critical period when exposure occurs that is more important than the duration of administration.
Collapse
Affiliation(s)
- Y Y Dangata
- Department of Anatomy, University Medical School, Edinburgh, UK
| | | |
Collapse
|
24
|
Phillips DE, Krueger SK, Wall KA, Smoyer-Dearing LH, Sikora AK. The development of the blood-brain barrier in alcohol-exposed rats. Alcohol 1997; 14:333-43. [PMID: 9209548 DOI: 10.1016/s0741-8329(96)00180-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Circulating horseradish peroxidase (HRP) was used as a tracer to determine if the blood-brain barrier to protein was altered by dietary prenatal alcohol exposure. Animals were prepared for light microscopic visualization of HRP after HRP infusion on gestational days 16, 18, 20, 22 and postnatal day 4. There was no consistent evidence of HRP leakage through the BBB in the alcohol-exposed animals compared to control animals. Capillary endothelial cells and perivascular astrocytic endfeet were morphologically characterized by electron microscopy in rat optic nerve and cerebellum following dietary prenatal and postnatal ethanol exposure. Photomontages of optic nerve capillaries from G20 and P5 animals and cerebellar capillaries from P15 animals were examined for evidences of effects of alcohol on the development of the capillaries and adjacent astroglial endfeet. There was no consistent evidence of any alcohol-induced effect that could indicate a disruption of the vessel, the endothelial tight junctions, the perivascular glial limiting membranes, or the extent of vascular ensheathment by astrocytic endfeet.
Collapse
Affiliation(s)
- D E Phillips
- Biology Department, Montana State University, Bozeman 59717, USA.
| | | | | | | | | |
Collapse
|
25
|
Abstract
The substantial advances in understanding fetal alcohol syndrome over the past 20 years were made in large part because of research with animals. This review illustrates recent progress in animal research by focusing primarily on the central nervous system effects of prenatal alcohol exposure. Current findings suggest further progress in understanding consequences, risk factors, mechanisms, prevention and treatment will depend on continued research with animals.
Collapse
Affiliation(s)
- J H Hannigan
- Wayne State University School of Medicine, C.S. Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Detroit, MI 48201, USA
| |
Collapse
|
26
|
Burrows RC, Shetty AK, Phillips DE. Effects of prenatal alcohol exposure on the postnatal morphology of the rat oculomotor nucleus. TERATOLOGY 1995; 51:318-28. [PMID: 7482353 DOI: 10.1002/tera.1420510508] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Morphological development of the rat oculomotor nucleus was investigated on postnatal day 15 following a prenatal ethanol exposure. Analysis of toluidine blue stained plastic sections showed that the prenatal alcohol exposure caused a decrease in the density of neurons and an increase in the density of astrocytes in the center of the nucleus. There was an alcohol-induced reduction in the overall size of the cross-sectional region of the oculomotor nucleus, but no effect on the number of neurons per unit area of that total oculomotor region, indicating a delay or alteration of the migration of neurons to their normal clustered position in the center of the nucleus. The areas of the neuronal cell nucleus and nucleolus were not affected by the alcohol exposure. Analysis of Golgi-Cox-impregnated multipolar neurons showed that the alcohol exposure caused a reduction in area of the cell soma; a reduction in the number of dendritic branches; and a reduction in the complexity of the dendritic arbor relative to distance from the soma, based on concentric ring analysis. The results of this study demonstrate that gestational alcohol exposure can retard the maturation of the oculomotor nucleus.
Collapse
Affiliation(s)
- R C Burrows
- Biology Department, Montana State University, Bozeman 59717-0346, USA
| | | | | |
Collapse
|
27
|
Shetty AK, Burrows RC, Wall KA, Phillips DE. Combined pre- and postnatal ethanol exposure alters the development of Bergmann glia in rat cerebellum. Int J Dev Neurosci 1994; 12:641-9. [PMID: 7900546 DOI: 10.1016/0736-5748(94)90016-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The development and maturation of Bergmann glial cells in the rat cerebellum was evaluated on postnatal day 15 by glial fibrillary acidic protein (GFAP) immunocytochemistry, following combined gestational and 10-day postnatal ethanol exposure (a full three trimester human equivalency). GFAP-positive Bergmann glial fibers of lobules I, III, VIb, VII and X of the cerebellar vermis were examined and counted in the molecular layer (ML), the external granular layer (EGL) and the external limiting membrane (ELM). Ethanol exposure reduced: (1) the number of GFAP-positive fibers (per unit length of folia surface) at all three levels; (2) the percentage of mature fibers; and (3) the cross-sectional area in all lobules examined. When data from the five lobules were pooled, there were 7% fewer GFAP-positive fibers in the ML, 15% fewer in the EGL and 20% fewer in the ELM; the percentage of mature fibers was reduced by 16%; and the cross-sectional areas of lobules were reduced by 16%. The altered development of Bergmann glia could be one of the factors causing delayed migration of granular neurons and reductions in the number of granule cells reported in other studies following developmental ethanol exposures and could help to explain some of the motor dysfunctions reported in FAS victims.
Collapse
Affiliation(s)
- A K Shetty
- Department of Biology, Montana State University 59717-0346
| | | | | | | |
Collapse
|
28
|
Strömland K, Pinazo-Durán MD. Optic nerve hypoplasia: comparative effects in children and rats exposed to alcohol during pregnancy. TERATOLOGY 1994; 50:100-11. [PMID: 7801297 DOI: 10.1002/tera.1420500204] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Children with the fetal alcohol syndrome often have ocular anomalies. These include abnormalities of the eyes and adnexa (strabismus, blepharoptosis, epicanthus), as well as intraocular defects (cataract, glaucoma, persistent hyperplastic primary vitreous, retinal and optic nerve anomalies). Based on the clinical results in an ophthalmological study of a group of Swedish children with the fetal alcohol syndrome, in which optic nerve hypoplasia was found in up to one-half of the group, an experimental study was designed in rats pre- and perinatally exposed to alcohol by means of a liquid diet. The optic nerve was seriously affected. Macroglial cells and optic axons were ultrastructurally damaged. The diameter of the optic nerve cross section, glial cell nuclear area, axonal diameter, and the total number of optic axons showed significantly lower values in the alcohol-exposed group than in the controls. In addition, the retina from the alcohol-exposed animals displayed significantly lower values of the retinal thickness and ganglion cell nuclear volume, as compared to the controls. Thus, rats exposed to alcohol in utero developed hypoplasia of the optic nerve similar to the findings in children born to alcoholic mothers. This strongly supports the hypothesis that prenatal alcohol exposure may adversely affect the development of the optic nerve.
Collapse
Affiliation(s)
- K Strömland
- Department of Clinical Neuroscience, University of Gothenburg, Sweden
| | | |
Collapse
|
29
|
Abstract
This is a review of the literature on the effects of alcohol on white matter development. For many years, human and animal studies have reported the vulnerability of developing white matter to the effects of alcohol. However, until recently, studies on alcohol and white matter were limited by existing technology. New technology documenting the presence of neurotransmitter receptors and ion channels on glial cells now provides a new focus for research on alcohol and white matter development. New research using new technology should enlarge our knowledge of the role of glial cells in brain damage associated with alcohol exposure during development.
Collapse
Affiliation(s)
- F E Lancaster
- Department of Biology, Texas Woman's University, Denton 76204
| |
Collapse
|
30
|
Miller MW, al-Rabiai S. Effects of prenatal exposure to ethanol on the number of axons in the pyramidal tract of the rat. Alcohol Clin Exp Res 1994; 18:346-54. [PMID: 8048737 DOI: 10.1111/j.1530-0277.1994.tb00024.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We examined the effect of gestational ethanol exposure on the number of axons in the caudal pyramidal tract. Between gestational day (G) 6 and G21, inclusive, pregnant rats were fed a liquid ethanol-containing diet (Et), an isocaloric liquid control diet (Ct), or a diet of chow and water (Ch). On postnatal day 30, the offspring of these rats were killed and their caudal medullas were processed for electron microscopy. The overall size of the pyramidal tract and the space occupied by the axons was smaller in the Et-treated rats than in the Ct-treated rats. The myelinated axons were smaller and the myelin was thinner in the Et-treated rats than in the Ct-treated rats. These decreases produced an ethanol-induced increase in the density of axons in the pyramidal tract. In particular, the density of myelinated axons (but not nonmyelinated axons) was greater in Et-treated rats. The net result was that the estimated number of axons in the pyramidal tracts of the Et-treated rats was not significantly different than the number in the Ch- and Ct-treated rats. The present data demonstrate that ethanol does not affect the absolute number of axons in the pyramidal tract. As a result of the ethanol-induced microencephaly, however, the data translate into a relative increase in the number of pyramidal tract axons. This relative increase matches the ethanol-induced increase in the density of corticospinal projection neurons that may result from the retention of a developmentally exuberant projection.
Collapse
Affiliation(s)
- M W Miller
- Research Service, Veterans Affairs Medical Center, University of Iowa College of Medicine, Iowa City
| | | |
Collapse
|
31
|
Streissguth AP, Sampson PD, Olson HC, Bookstein FL, Barr HM, Scott M, Feldman J, Mirsky AF. Maternal drinking during pregnancy: attention and short-term memory in 14-year-old offspring--a longitudinal prospective study. Alcohol Clin Exp Res 1994; 18:202-18. [PMID: 8198221 DOI: 10.1111/j.1530-0277.1994.tb00904.x] [Citation(s) in RCA: 263] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A large and compelling experimental literature has documented the adverse impact of prenatal alcohol exposure on the developing brain of the offspring. This is the first report of adolescent attention/memory performance and its relationship with prenatal alcohol exposure in a population-based, longitudinal, prospective study (n = 462) involving substantial covariate control and "blind" examiners. Prenatal alcohol exposure was significantly related to attention/memory deficits in a dose-dependent fashion. A latent variable reflecting 13 measures of maternal drinking was correlated 0.26 with a latent variable representing 52 scores from 6 tests measuring various components of attention and short-term memory performance. The number of drinks/occasion was the strongest alcohol predictor. Fluctuating attentional states, problems with response inhibition, and spatial learning showed the strongest association with prenatal alcohol exposure. A latent variable reflecting the pattern of attention/memory deficits observed at 14 years correlated 0.67 with a composite pattern of deficits previously detected on neurobehavioral tests administered during the first 7 years of life. The 14-year attention/memory deficits observed in the present study appear to be the adolescent sequelae of deficits observed earlier in development. As is usual in such studies, not all exposed offspring showed deficits.
Collapse
|
32
|
Pinazo-Duran MD, Renau-Piqueras J, Guerri C. Developmental changes in the optic nerve related to ethanol consumption in pregnant rats: analysis of the ethanol-exposed optic nerve. TERATOLOGY 1993; 48:305-22. [PMID: 8278930 DOI: 10.1002/tera.1420480404] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Visual impairment is one of the most common ophthalmic abnormalities in fetal alcohol syndrome. Pathologic changes in optic nerve development related to alcohol consumption could be involved in this dysfunction. In order to assess the consequences of pre- and postnatal exposure to alcohol on the developing optic nerve, we administered an ethanol-containing liquid diet (5% w/v) before and during gestation and throughout lactation to rats and their offspring. A group of control animals were kept on a pair-fed isocaloric diet. The optic nerves were obtained at key stages from fetuses (21 days of gestation) and pups (4, 7, 14, 21 and 28 postnatal days). Samples of the optic nerve cross-section, behind the eyeball, were processed for analysis of gliogenesis, myelinogenesis, axonal growth, and remodelling events, using light and electron microscopy. Qualitative, morphometric, and immunocytochemical analyses, alternatively using anti-GFAP and anti-MBP antibodies, were carried out. Optic nerve cross-sections from prenatal and postnatal alcohol-exposed rats showed a decrease in size. Ultrastructural alterations and retarded development in macroglial cells, optic axons, and myelin sheath were also observed. The most prominent abnormalities were: damage of cytoplasmic organelles and disorganization of cytoskeleton in astrocytes; a decrease in free ribosome density and nuclear membrane inclusions in oligodendrocytes; and fragmentation of lamellae, aberrant myelin sheaths and intralamellar inclusions in myelin. These findings suggest that alcohol abuse during pregnancy is teratogenic to the optic nerve and closely related to the altered visual function.
Collapse
Affiliation(s)
- M D Pinazo-Duran
- Institute of Cytological Research, University Hospital, La Fe, Valencia, Spain
| | | | | |
Collapse
|