1
|
Gawel K, Labuz K, Gibula-Bruzda E, Jenda M, Marszalek-Grabska M, Filarowska J, Silberring J, Kotlinska JH. Cholinesterase inhibitors, donepezil and rivastigmine, attenuate spatial memory and cognitive flexibility impairment induced by acute ethanol in the Barnes maze task in rats. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1059-71. [PMID: 27376896 PMCID: PMC5021718 DOI: 10.1007/s00210-016-1269-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/20/2016] [Indexed: 12/11/2022]
Abstract
Central cholinergic dysfunction contributes to acute spatial memory deficits produced by ethanol administration. Donepezil and rivastigmine elevate acetylcholine levels in the synaptic cleft through the inhibition of cholinesterases—enzymes involved in acetylcholine degradation. The aim of our study was to reveal whether donepezil (acetylcholinesterase inhibitor) and rivastigmine (also butyrylcholinesterase inhibitor) attenuate spatial memory impairment as induced by acute ethanol administration in the Barnes maze task (primary latency and number of errors in finding the escape box) in rats. Additionally, we compared the influence of these drugs on ethanol-disturbed memory. In the first experiment, the dose of ethanol (1.75 g/kg, i.p.) was selected that impaired spatial memory, but did not induce motor impairment. Next, we studied the influence of donepezil (1 and 3 mg/kg, i.p.), as well as rivastigmine (0.5 and 1 mg/kg, i.p.), given either before the probe trial or the reversal learning on ethanol-induced memory impairment. Our study demonstrated that these drugs, when given before the probe trial, were equally effective in attenuating ethanol-induced impairment in both test situations, whereas rivastigmine, at both doses (0.5 and 1 mg/kg, i.p.), and donepezil only at a higher dose (3 mg/kg, i.p.) given prior the reversal learning, attenuated the ethanol-induced impairment in cognitive flexibility. Thus, rivastigmine appears to exert more beneficial effect than donepezil in reversing ethanol-induced cognitive impairments—probably due to its wider spectrum of activity. In conclusion, the ethanol-induced spatial memory impairment may be attenuated by pharmacological manipulation of central cholinergic neurotransmission.
Collapse
Affiliation(s)
- Kinga Gawel
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093, Lublin, Poland
| | | | - Ewa Gibula-Bruzda
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093, Lublin, Poland
| | - Malgorzata Jenda
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093, Lublin, Poland
| | - Marta Marszalek-Grabska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093, Lublin, Poland
| | - Joanna Filarowska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093, Lublin, Poland
| | - Jerzy Silberring
- Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
| | - Jolanta H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093, Lublin, Poland.
| |
Collapse
|
2
|
Subbanna S, Basavarajappa BS. Pre-administration of G9a/GLP inhibitor during synaptogenesis prevents postnatal ethanol-induced LTP deficits and neurobehavioral abnormalities in adult mice. Exp Neurol 2014; 261:34-43. [PMID: 25017367 DOI: 10.1016/j.expneurol.2014.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/10/2014] [Accepted: 07/02/2014] [Indexed: 01/01/2023]
Abstract
It has been widely accepted that deficits in neuronal plasticity underlie the cognitive abnormalities observed in fetal alcohol spectrum disorder (FASD). Exposure of rodents to acute ethanol on postnatal day 7 (P7), which is equivalent to the third trimester of fetal development in human, induces long-term potentiation (LTP) and memory deficits in adult animals. However, the molecular mechanisms underlying these deficits are not well understood. Recently, we found that histone H3 dimethylation (H3K9me2), which is mediated by G9a (lysine dimethyltransferase), is responsible for the neurodegeneration caused by ethanol exposure in P7 mice. In addition, pharmacological inhibition of G9a prior to ethanol treatment at P7 normalized H3K9me2 proteins to basal levels and prevented neurodegeneration in neonatal mice. Here, we tested the hypothesis that pre-administration of G9a/GLP inhibitor (Bix-01294, Bix) in conditions in which ethanol induces neurodegeneration would be neuroprotective against P7 ethanol-induced deficits in LTP, memory and social recognition behavior in adult mice. Ethanol treatment at P7 induces deficits in LTP, memory and social recognition in adult mice and these deficits were prevented by Bix pretreatment at P7. Together, these findings provide physiological and behavioral evidence that the long-term harmful consequences on brain function after ethanol exposure with a third trimester equivalent have an epigenetic origin.
Collapse
Affiliation(s)
- Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
3
|
Poletaeva II, Perepelkina OV, Boyarshinova OS, Lil’p IG, Markina NV, Timoshenko TB, Revishchin AV. Neonatal injections of pharmacological agents and their remote genotype-dependent effects in mice and rats. Russ J Dev Biol 2012. [DOI: 10.1134/s1062360412060045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Dobson CC, Mongillo DL, Poklewska-Koziell M, Winterborn A, Brien JF, Reynolds JN. Sensitivity of modified Biel-maze task, compared with Y-maze task, to measure spatial learning and memory deficits of ethanol teratogenicity in the guinea pig. Behav Brain Res 2012; 233:162-8. [PMID: 22562040 DOI: 10.1016/j.bbr.2012.04.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/18/2012] [Accepted: 04/23/2012] [Indexed: 01/27/2023]
Abstract
Ethanol consumption during pregnancy can produce a variety of teratogenic effects in offspring, termed Fetal Alcohol Spectrum Disorders (FASD). The most debilitating and permanent consequence of chronic prenatal ethanol exposure (CPEE) is neurobehavioral teratogenicity, which often manifests as cognitive and behavioral impairments, including deficits in spatial learning and memory. This study tested the hypothesis that a modified dry-land version of the multi-choice Biel-maze task is more sensitive than the rewarded-alternation Y-maze task for the determination of spatial learning and memory deficits of ethanol teratogenicity. Pregnant guinea pigs received ethanol (4 g/kg maternal body weight/day) or isocaloric-sucrose/pair-feeding (control) for 5days/week throughout gestation. CPEE resulted in ethanol neurobehavioral teratogenicity in offspring, as demonstrated by increased spontaneous locomotor activity at postnatal day (PD) 10 and decreased brain weight at euthanasia (PD 150-200). On PD 21, offspring were randomly assigned to one of two tasks to assess spatial learning and memory performance: a dry-land version of the Biel maze or a rewarded-alternation Y-maze. Animals were habituated to the environment of their assigned task and performance of each CPEE or control offspring was measured. In the modified Biel maze, CPEE and control offspring were not different for percent completed trials or time to complete a trial. However, CPEE offspring made more errors (reversals and entering dead ends) in the Biel maze, demonstrating impaired spatial learning and memory. In contrast, CPEE offspring did not have impaired performance of the rewarded-alternation Y-maze task. Therefore, the modified dry-land version of the Biel-maze task, which measures cognitive performance using a complex multi-choice design, is more sensitive in demonstrating CPEE-induced spatial learning and memory deficits compared with a simple, rewarded-alternation Y-maze task.
Collapse
Affiliation(s)
- Christine C Dobson
- Department of Biomedical and Molecular Sciences, Pharmacology and Toxicology Graduate Program, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
5
|
Downing C, Balderrama-Durbin C, Hayes J, Johnson TE, Gilliam D. No effect of prenatal alcohol exposure on activity in three inbred strains of mice. Alcohol Alcohol 2008; 44:25-33. [PMID: 18854366 DOI: 10.1093/alcalc/agn082] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Prenatal exposure to alcohol can have adverse effects on the developing fetus. Two of the hallmarks of children exposed to alcohol prenatally are attention deficits and hyperactivity. While hyperactivity has been observed in rats following prenatal ethanol exposure, few studies have examined these effects in mice. The present study investigated the effects of prenatal ethanol exposure on activity in mice from three inbred strains: C57BL/6 (B6), Inbred Long Sleep (ILS) and Inbred Short Sleep (ISS). METHODS On Days 7 through 18 of gestation, mice were intragastrically intubated twice daily with either 3.0 g/kg ethanol (E) or an isocaloric amount of maltose-dextrin (MD); non-intubated control (NIC) litters were also generated. Offspring activity was monitored at 30, 60, 90 and 150 days of age. RESULTS While results showed no effects of prenatal ethanol exposure on any measures of activity, we did observe differences in baseline activity among the strains. ISS mice were more active than B6 and ILS for all activity measures except stereotypy; B6 mice had higher measures of stereotypy than ILS and ISS. Younger mice were more active than older mice. The only sex effects were on measures of stereotypy, where males had higher scores. CONCLUSIONS Mice are an excellent organism to study genetic influences on many phenotypes. However, our study and others have shown few effects of prenatal ethanol exposure on behavior in mice. It appears as if the prenatal period in mice, corresponding to organogenesis, is not a sensitive period for producing behavioral deficits following ethanol exposure. It is likely that the first 2 weeks postnatally, corresponding to the brain growth spurt, are more sensitive for producing behavioral effects.
Collapse
Affiliation(s)
- Chris Downing
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA.
| | | | | | | | | |
Collapse
|
6
|
Medina AE, Krahe TE. Neocortical plasticity deficits in fetal alcohol spectrum disorders: lessons from barrel and visual cortex. J Neurosci Res 2008; 86:256-63. [PMID: 17671993 DOI: 10.1002/jnr.21447] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fetal Alcohol Spectrum Disorder (FASD) is characterized by a constellation of behavioral and physiological abnormalities, including learning and sensory deficits. There is growing evidence that abnormalities of neuronal plasticity underlie these deficits. However, the cellular and molecular mechanisms by which prenatal alcohol exposure disrupts neuronal plasticity remain elusive. Recently, studies with the barrel and the visual cortex as models to study the effects of early alcohol exposure on neuronal plasticity shed light on this subject. In this Mini-Review, we discuss the effects of ethanol exposure during development on neuronal plasticity and suggest environmental and pharmacological approaches to ameliorate these problems.
Collapse
Affiliation(s)
- Alexandre E Medina
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298-0709, USA.
| | | |
Collapse
|
7
|
Rezayof A, Alijanpour S, Zarrindast MR, Rassouli Y. Ethanol state-dependent memory: Involvement of dorsal hippocampal muscarinic and nicotinic receptors. Neurobiol Learn Mem 2008; 89:441-7. [DOI: 10.1016/j.nlm.2007.10.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2007] [Revised: 10/14/2007] [Accepted: 10/31/2007] [Indexed: 11/17/2022]
|
8
|
Wagner AF, Hunt PS. Impaired trace fear conditioning following neonatal ethanol: reversal by choline. Behav Neurosci 2006; 120:482-7. [PMID: 16719711 DOI: 10.1037/0735-7044.120.2.482] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neonatal ethanol exposure in animals results in performance deficits on tests of hippocampus-dependent spatial memory, and recent studies have shown that extra dietary choline can ameliorate some of these impairments. In this experiment, rats were administered 5.25 g/kg ig ethanol per day or sham intubations on Postnatal Days (PD) 4-9 and choline (0.1 ml of an 18.8 mg/ml solution) or saline subcutaneously on PD 4-20. On PD 30, rats were given delay or trace fear conditioning trials and were tested for conditioned stimulus-elicited freezing 24 hr later. Neonatal ethanol produced a profound impairment in trace conditioning that was reversed by choline. Groups did not differ in delay conditioned responding, indicating that neonatal ethanol produces a relatively selective cognitive deficit that can be alleviated with supplemental choline.
Collapse
Affiliation(s)
- Alison F Wagner
- Department of Psychology, College of William and Mary, Williamsburg, VA 23187-8795, USA
| | | |
Collapse
|
9
|
Thomas JD, O'Neill TM, Dominguez HD. Perinatal choline supplementation does not mitigate motor coordination deficits associated with neonatal alcohol exposure in rats. Neurotoxicol Teratol 2004; 26:223-9. [PMID: 15019955 DOI: 10.1016/j.ntt.2003.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Revised: 10/02/2003] [Accepted: 10/03/2003] [Indexed: 11/17/2022]
Abstract
Prenatal alcohol exposure can disrupt brain development, leading to a variety of behavioral alterations including learning deficits, hyperactivity, and motor dysfunction. We have been investigating the possibility that perinatal choline supplementation may effectively reduce the severity of alcohol's adverse effects on behavioral development. We previously reported that perinatal choline supplementation can ameliorate alcohol-induced learning deficits and hyperactivity in rats exposed to alcohol during development. The present study examined whether perinatal choline supplementation could also reduce the severity of motor deficits induced by alcohol exposure during the third trimester equivalent brain growth spurt. Male neonatal rats were assigned to one of three treatment groups. One group was exposed to alcohol (6.6 g/kg/day) from postnatal days (PD) 4 to 9 via an artificial rearing procedure. Artificially and normally reared control groups were included. One half of subjects from each treatment received daily subcutaneous injections of a choline chloride solution from PD 4 to 30, whereas the other half received saline vehicle injections. On PD 35-37, subjects were tested on a parallel bar motor task, which requires both balance and fine motor coordination. Ethanol-exposed subjects exhibited significant motor impairments compared to both control groups whose performance did not differ significantly from one another. Perinatal choline treatment did not affect motor performance in either ethanol or control subjects. These data indicate that the beneficial effects of perinatal choline supplementation in ethanol-treated subjects are task specific and suggest that choline is more effective in mitigating cognitive deficits compared to motor deficits associated with developmental alcohol exposure.
Collapse
Affiliation(s)
- Jennifer D Thomas
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6363 Alvarado Ct. Ste 209, San Diego, CA 92120, USA.
| | | | | |
Collapse
|
10
|
Yanai J, Vatury O, Slotkin TA. Cell signaling as a target and underlying mechanism for neurobehavioral teratogenesis. Ann N Y Acad Sci 2002; 965:473-8. [PMID: 12105122 DOI: 10.1111/j.1749-6632.2002.tb04188.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A wide variety of drugs and chemicals elicit neurobehavioral teratogenesis. Surprisingly, however, despite the obvious differences among unrelated compounds, the behavioral outcomes often display striking similarities, such as cognitive and attentional deficits. Recent studies of drugs of abuse (heroin, nicotine, barbiturates) and environmental toxins (environmental tobacco smoke, pesticides, metals) suggest that, regardless of the originating mechanism for perturbation of brain development, disparate neuroteratogens converge downstream on common families of alterations, characterized by changes in the expression and/or activity of the cell-signaling molecules that are essential to neuronal differentiation and synaptic communication. Identification of these common targets may help in the design of pharmacologic interventions that, administered in adulthood, can reverse the impact of exposure to neurobehavioral teratogens.
Collapse
Affiliation(s)
- Joseph Yanai
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
11
|
|
12
|
Abstract
Prenatal exposure to alcohol can result in fetal alcohol syndrome (FAS), characterized by growth retardation, facial dysmorphologies, and a host of neurobehavioral impairments. Neurobehavioral effects in FAS, and in alcohol-related neurodevelopmental disorder, include poor learning and memory, attentional deficits, and motor dysfunction. Many of these behavioral deficits can be modeled in rodents. This paper reviews the literature suggesting that many fetal alcohol effects result, at least in part, from teratogenic effects of alcohol on the hippocampus. Neurobehavioral studies show that animals exposed prenatally to alcohol are impaired in many of the same spatial learning and memory tasks sensitive to hippocampal damage, including T-mazes, the Morris water maze, and the radial arm maze. Direct evidence for hippocampal involvement is provided by neuroanatomical studies of the hippocampus documenting reduced numbers of neurons, lower dendritic spine density on pyramidal neurons, and decreased morphological plasticity after environmental enrichment in rats exposed prenatally to alcohol. Electrophysiological studies also demonstrate changes in synaptic activity in in vitro hippocampal brain slices isolated from prenatal alcohol-exposed animals. Considered together, these observations demonstrate that prenatal exposure to alcohol can result in abnormal hippocampal development and function. Such studies provide a better understanding of neurological deficits associated with FAS in humans, and may also contribute to the development of strategies to ameliorate the effects of prenatal alcohol exposure on behavior.
Collapse
Affiliation(s)
- R F Berman
- Department of Neurological Surgery, Center for Neuroscience, University of California at Davis, 95616, USA.
| | | |
Collapse
|
13
|
Girard TA, Xing HC, Ward GR, Wainwright PE. Early Postnatal Ethanol Exposure Has Long-Term Effects on the Performance of Male Rats in a Delayed Matching-to-Place Task in the Morris Water Maze. Alcohol Clin Exp Res 2000. [DOI: 10.1111/j.1530-0277.2000.tb04611.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Abstract
The substantial advances in understanding fetal alcohol syndrome over the past 20 years were made in large part because of research with animals. This review illustrates recent progress in animal research by focusing primarily on the central nervous system effects of prenatal alcohol exposure. Current findings suggest further progress in understanding consequences, risk factors, mechanisms, prevention and treatment will depend on continued research with animals.
Collapse
Affiliation(s)
- J H Hannigan
- Wayne State University School of Medicine, C.S. Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Detroit, MI 48201, USA
| |
Collapse
|