1
|
Kappen C. Modeling anterior development in mice: diet as modulator of risk for neural tube defects. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2013; 163C:333-56. [PMID: 24124024 PMCID: PMC4149464 DOI: 10.1002/ajmg.c.31380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Head morphogenesis is a complex process that is controlled by multiple signaling centers. The most common defects of cranial development are craniofacial defects, such as cleft lip and cleft palate, and neural tube defects, such as anencephaly and encephalocoele in humans. More than 400 genes that contribute to proper neural tube closure have been identified in experimental animals, but only very few causative gene mutations have been identified in humans, supporting the notion that environmental influences are critical. The intrauterine environment is influenced by maternal nutrition, and hence, maternal diet can modulate the risk for cranial and neural tube defects. This article reviews recent progress toward a better understanding of nutrients during pregnancy, with particular focus on mouse models for defective neural tube closure. At least four major patterns of nutrient responses are apparent, suggesting that multiple pathways are involved in the response, and likely in the underlying pathogenesis of the defects. Folic acid has been the most widely studied nutrient, and the diverse responses of the mouse models to folic acid supplementation indicate that folic acid is not universally beneficial, but that the effect is dependent on genetic configuration. If this is the case for other nutrients as well, efforts to prevent neural tube defects with nutritional supplementation may need to become more specifically targeted than previously appreciated. Mouse models are indispensable for a better understanding of nutrient-gene interactions in normal pregnancies, as well as in those affected by metabolic diseases, such as diabetes and obesity.
Collapse
|
2
|
Jurczyk A, Roy N, Bajwa R, Gut P, Lipson K, Yang C, Covassin L, Racki WJ, Rossini AA, Phillips N, Stainier DYR, Greiner DL, Brehm MA, Bortell R, diIorio P. Dynamic glucoregulation and mammalian-like responses to metabolic and developmental disruption in zebrafish. Gen Comp Endocrinol 2011; 170:334-45. [PMID: 20965191 PMCID: PMC3014420 DOI: 10.1016/j.ygcen.2010.10.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 10/05/2010] [Accepted: 10/12/2010] [Indexed: 11/20/2022]
Abstract
Zebrafish embryos are emerging as models of glucose metabolism. However, patterns of endogenous glucose levels, and the role of the islet in glucoregulation, are unknown. We measured absolute glucose levels in zebrafish and mouse embryos, and demonstrate similar, dynamic glucose fluctuations in both species. Further, we show that chemical and genetic perturbations elicit mammalian-like glycemic responses in zebrafish embryos. We show that glucose is undetectable in early zebrafish and mouse embryos, but increases in parallel with pancreatic islet formation in both species. In zebrafish, increasing glucose is associated with activation of gluconeogenic phosphoenolpyruvate carboxykinase1 (pck1) transcription. Non-hepatic Pck1 protein is expressed in mouse embryos. We show using RNA in situ hybridization, that zebrafish pck1 mRNA is similarly expressed in multiple cell types prior to hepatogenesis. Further, we demonstrate that the Pck1 inhibitor 3-mercaptopicolinic acid suppresses normal glucose accumulation in early zebrafish embryos. This shows that pre- and extra-hepatic pck1 is functional, and provides glucose locally to rapidly developing tissues. To determine if the primary islet is glucoregulatory in early fish embryos, we injected pdx1-specific morpholinos into transgenic embryos expressing GFP in beta cells. Most morphant islets were hypomorphic, not a genetic, but embryos still exhibited persistent hyperglycemia. We conclude from these data that the early zebrafish islet is functional, and regulates endogenous glucose. In summary, we identify mechanisms of glucoregulation in zebrafish embryos that are conserved with embryonic and adult mammals. These observations justify use of this model in mechanistic studies of human metabolic disease.
Collapse
Affiliation(s)
- Agata Jurczyk
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Nicole Roy
- Sacred Heart University, Department of Biology, 5151 Park Ave, Fairfield, CT 06825 USA
| | - Rabia Bajwa
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Philipp Gut
- University of California, San Francisco, Department of Biochemistry & Biophysics, 1550 Fourth St., Room 318A, San Francisco, CA 94158-2324
| | - Kathryn Lipson
- Western New England College, Department of Physical and Biological Sciences, Springfield, MA 01119
| | - Chaoxing Yang
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Laurence Covassin
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Waldemar J. Racki
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Aldo A. Rossini
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Nancy Phillips
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Didier Y. R. Stainier
- University of California, San Francisco, Department of Biochemistry & Biophysics, 1550 Fourth St., Room 318A, San Francisco, CA 94158-2324
| | - Dale L. Greiner
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Michael A. Brehm
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Rita Bortell
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Philip diIorio
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
- Corresponding author. Address: University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, Worcester, MA 01605, United States. Fax: 508-856-4093. Phone: 508-856-3679
| |
Collapse
|
3
|
Li WWY, Lu G, Pang CP, Lam DSC, Yew DT. The eyes of anencephalic babies: a morphological and immunohistochemical evaluation. Int J Neurosci 2007; 117:121-34. [PMID: 17365103 DOI: 10.1080/00207450500534175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study studied the eyes of three anencephalic stillborns to evaluate whether brain degeneration affected eye development and/or survival. The study encompassed histology, scanning electronmicroscopy, and immunocytochemistry. The corneae were otherwise normal except for the presence of blood vessels in the stroma and the posterior surface of the cornea demonstrated wrinkles. Synaechia was present and the lens had occasional vacuolated cells. The retinae had normal layers in most regions except the center where fibroblasts infiltration was observed. The optic nerve was atypical and composed of aggregates of disoriented fibroblasts and disoriented nerve fibers. Anti-cleaved caspase 3 immunocytochemistry revealed only few positive dying cells in the visual cell layer. Antineurofilament 200 reactions demonstrated positive ganglion cells even in the anencephalic eyes. The choroids in anencephaly had more VEGF positive sites, indicating vascularization in both control and anencephalic eyes. If the brains degenerate before retinal maturation, then such degenerations may not have an effect on subsequent retinal development except for the degeneration of the nerve fiber layer. If the brains degenerate after retinal maturation, then the survival of the retinae does not appear to rely on its linkage with the brain at birth, again apart from the degeneration of nerve fibers.
Collapse
Affiliation(s)
- Winnie Wai-Ying Li
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | | | | | | | | |
Collapse
|