1
|
Malerba F. Why Are We Scientists? Drawing Inspiration From Rita Levi-Montalcini. Front Cell Neurosci 2022; 15:741984. [PMID: 35126056 PMCID: PMC8814914 DOI: 10.3389/fncel.2021.741984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/02/2021] [Indexed: 11/15/2022] Open
Abstract
In 2007, drawing inspiration from her previous experiments on chick embryos, Rita Levi-Montalcini, at the age of 98, proposed a new project, and a research group, in which I was included, was formed at the European Brain Research Institute (EBRI). Looking back on this experience, I can say that Professor Levi-Montalcini’s approach and the relationships she formed with my colleagues and me, contributed to my growth as a researcher. With her welcoming and warm-hearted disposition, she taught me how to consider other people’s ideas without prejudice, to reason and not to exclude any hypothesis. I also learned from her how to overcome those difficulties that are so frequent in the research field, always keeping in mind the starting point and looking toward the objective, with a factual optimism. I was just a young researcher and deeply flattered that a Nobel Laureate, with an incredible career and extraordinary life, treated me as her equal. My experience with Professor Levi-Montalcini has also provided me with a reliable path to follow, and when I encounter difficulties and challenges, I ask myself what would she have done. This approach has always helped me to move forward. Indeed, I believe the best way to celebrate Rita Levi-Montalcini as a woman in neuroscience is to recount how her exceptional example is a constant reminder as to why I have chosen to be a scientist. I hope she will always continue to be a source of inspiration for scientists in the future.
Collapse
|
2
|
Myhre O, Låg M, Villanger GD, Oftedal B, Øvrevik J, Holme JA, Aase H, Paulsen RE, Bal-Price A, Dirven H. Early life exposure to air pollution particulate matter (PM) as risk factor for attention deficit/hyperactivity disorder (ADHD): Need for novel strategies for mechanisms and causalities. Toxicol Appl Pharmacol 2018; 354:196-214. [PMID: 29550511 DOI: 10.1016/j.taap.2018.03.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/14/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
Epidemiological studies have demonstrated that air pollution particulate matter (PM) and adsorbed toxicants (organic compounds and trace metals) may affect child development already in utero. Recent studies have also indicated that PM may be a risk factor for neurodevelopmental disorders (NDDs). A pattern of increasing prevalence of attention deficit/hyperactivity disorder (ADHD) has been suggested to partly be linked to environmental pollutants exposure, including PM. Epidemiological studies suggest associations between pre- or postnatal exposure to air pollution components and ADHD symptoms. However, many studies are cross-sectional without possibility to reveal causality. Cohort studies are often small with poor exposure characterization, and confounded by traffic noise and socioeconomic factors, possibly overestimating the study associations. Furthermore, the mechanistic knowledge how exposure to PM during early brain development may contribute to increased risk of ADHD symptoms or cognitive deficits is limited. The closure of this knowledge gap requires the combined use of well-designed longitudinal cohort studies, supported by mechanistic in vitro studies. As ADHD has profound consequences for the children affected and their families, the identification of preventable risk factors such as air pollution exposure should be of high priority.
Collapse
Affiliation(s)
- Oddvar Myhre
- Department of Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway.
| | - Marit Låg
- Department of Air pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Gro D Villanger
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Bente Oftedal
- Department of Air pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Johan Øvrevik
- Department of Air pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Jørn A Holme
- Department of Air pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Heidi Aase
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild E Paulsen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| | - Anna Bal-Price
- European Commission, Joint Research Centre, Ispra, Italy
| | - Hubert Dirven
- Department of Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
3
|
Nerve growth factor regulates axial rotation during early stages of chick embryo development. Proc Natl Acad Sci U S A 2012; 109:2009-14. [PMID: 22308471 DOI: 10.1073/pnas.1121138109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nerve growth factor (NGF) was discovered because of its neurotrophic actions on sympathetic and sensory neurons in the developing chicken embryo. NGF was subsequently found to influence and regulate the function of many neuronal and non neuronal cells in adult organisms. Little is known, however, about the possible actions of NGF during early embryonic stages. However, mRNAs encoding for NGF and its receptors TrkA and p75(NTR) are expressed at very early stages of avian embryo development, before the nervous system is formed. The question, therefore, arises as to what might be the functions of NGF in early chicken embryo development, before its well-established actions on the developing sympathetic and sensory neurons. To investigate possible roles of NGF in the earliest stages of development, stage HH 11-12 chicken embryos were injected with an anti-NGF antibody (mAb αD11) that binds mature NGF with high affinity. Treatment with anti-NGF, but not with a control antibody, led to a dose-dependent inversion of the direction of axial rotation. This effect of altered rotation after anti NGF injection was associated with an increased cell death in somites. Concurrently, a microarray mRNA expression analysis revealed that NGF neutralization affects the expression of genes linked to the regulation of development or cell proliferation. These results reveal a role for NGF in early chicken embryo development and, in particular, in the regulation of somite survival and axial rotation, a crucial developmental process linked to left-right asymmetry specification.
Collapse
|
4
|
Pinho S, Simonsson PR, Trevers KE, Stower MJ, Sherlock WT, Khan M, Streit A, Sheng G, Stern CD. Distinct steps of neural induction revealed by Asterix, Obelix and TrkC, genes induced by different signals from the organizer. PLoS One 2011; 6:e19157. [PMID: 21559472 PMCID: PMC3084772 DOI: 10.1371/journal.pone.0019157] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/21/2011] [Indexed: 01/19/2023] Open
Abstract
The amniote organizer (Hensen's node) can induce a complete nervous system when grafted into a peripheral region of a host embryo. Although BMP inhibition has been implicated in neural induction, non-neural cells cannot respond to BMP antagonists unless previously exposed to a node graft for at least 5 hours before BMP inhibitors. To define signals and responses during the first 5 hours of node signals, a differential screen was conducted. Here we describe three early response genes: two of them, Asterix and Obelix, encode previously undescribed proteins of unknown function but Obelix appears to be a nuclear RNA-binding protein. The third is TrkC, a neurotrophin receptor. All three genes are induced by a node graft within 4-5 hours but they differ in the extent to which they are inducible by FGF: FGF is both necessary and sufficient to induce Asterix, sufficient but not necessary to induce Obelix and neither sufficient nor necessary for induction of TrkC. These genes are also not induced by retinoic acid, Noggin, Chordin, Dkk1, Cerberus, HGF/SF, Somatostatin or ionomycin-mediated Calcium entry. Comparison of the expression and regulation of these genes with other early neural markers reveals three distinct "epochs", or temporal waves, of gene expression accompanying neural induction by a grafted organizer, which are mirrored by specific stages of normal neural plate development. The results are consistent with neural induction being a cascade of responses elicited by different signals, culminating in the formation of a patterned nervous system.
Collapse
Affiliation(s)
- Sonia Pinho
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Pamela R. Simonsson
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Katherine E. Trevers
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Matthew J. Stower
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - William T. Sherlock
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Mohsin Khan
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Andrea Streit
- Department of Craniofacial Development, King's College London, London, United Kingdom
| | - Guojun Sheng
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Claudio D. Stern
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
5
|
Esper RM, Loeb JA. Rapid axoglial signaling mediated by neuregulin and neurotrophic factors. J Neurosci 2004; 24:6218-27. [PMID: 15240814 PMCID: PMC6729661 DOI: 10.1523/jneurosci.1692-04.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 05/27/2004] [Accepted: 05/28/2004] [Indexed: 12/30/2022] Open
Abstract
During peripheral nervous system development, Schwann cells are precisely matched to the axons that they support. This is mediated by axonal neuregulins that are essential for Schwann cell survival and differentiation. Here, we show that sensory and motor axons rapidly release heparin-binding forms of neuregulin in response to Schwann cell-derived neurotrophic factors in a dose-dependent manner. Neuregulin release occurs within minutes, is saturable, and occurs from axons that were isolated using a newly designed chamber slide apparatus. Although NGF and glial cell line-derived neurotrophic factor (GDNF) were the most potent neurotrophic factors to release neuregulin from sensory neurons, GDNF and BDNF were most potent for motor neurons and were the predominant neuregulin-releasing neurotrophic factors produced by cultured Schwann cells. Comparable levels of neuregulin could be released at a similar rate from neurons after protein kinase C activation with the phorbol ester, phorbol 12-myristate 13-acetate, which has also been shown to promote the cleavage and release of neuregulin from its transmembrane precursor. The rapid release of neuregulin from axons in response to Schwann cell-derived neurotrophic factors may be part of a spatially restricted system of communication at the axoglial interface important for proper peripheral nerve development, function, and repair.
Collapse
MESH Headings
- Animals
- Axons/drug effects
- Axons/physiology
- Cells, Cultured
- Chick Embryo
- Culture Media, Conditioned/pharmacology
- Diffusion Chambers, Culture
- Dose-Response Relationship, Drug
- Ganglia, Spinal/cytology
- Ganglia, Spinal/embryology
- Heparin/metabolism
- Motor Neurons/cytology
- Motor Neurons/drug effects
- Motor Neurons/metabolism
- Nerve Growth Factors/biosynthesis
- Nerve Growth Factors/genetics
- Nerve Growth Factors/pharmacology
- Neuregulin-1/metabolism
- Neuregulin-1/pharmacology
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- RNA, Messenger/biosynthesis
- Rats
- Schwann Cells/cytology
- Schwann Cells/drug effects
- Schwann Cells/metabolism
- Sciatic Nerve/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Raymond M Esper
- Department of Neurology, Wayne State University, Detroit, Michigan 48201, USA
| | | |
Collapse
|
6
|
Vega JA, García-Suárez O, Germanà A. Vertebrate thymus and the neurotrophin system. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 237:155-204. [PMID: 15380668 DOI: 10.1016/s0074-7696(04)37004-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An immunomodulary role has been proposed for growth factors included in the family of neurotrophins. This is supported by the presence of both neurotrophins and neurotrophin receptors in the immune organs and some immunocompetent cells, the in vitro and in vivo effects of the neurotrophins on the immune cells, and the structural changes of lymphoid organs in mice deficient in neurotrophins and their receptors. The current data strongly indicate that neurotrophins regulate the biology of thymic stromal cells and T cells, including survival, and are involved in the thymic organogenesis. This review compiles the available data about the occurrence and distribution of neurotrophins and their signaling receptors (Trk proteins and p75(NTR)) in the vertebrate thymus and the possible contribution of these molecules to the thymic microenvironment and, therefore, to the T cells differentiation.
Collapse
Affiliation(s)
- José A Vega
- Departamento de Morfología y Biología Celular Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | |
Collapse
|
7
|
Abstract
The neurotrophins are a family of polypeptide growth factors that are essential for the development and maintenance of the vertebrate nervous system. In recent years, data have emerged indicating that neurotrophins could have a broader role than their name might suggest. In particular, the putative role of NGF and its receptor TrkA in immune system homeostasis has become a much studied topic, whereas information on the other neurotrophins is scarce in this regard. This paper reviews what is known about the expression and possible functions of neurotrophins and their receptors in different immune tissues and cells, as well as recent data obtained from studies of transgenic mice in our laboratory. Results from studies to date support the idea that neurotrophins may regulate some immune functions. They also play an important role in the development of the thymus and in the survival of thymocytes.
Collapse
Affiliation(s)
- José A Vega
- Departamento de Morfología y Biología Celular, Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Oviedo, Spain.
| | | | | | | | | |
Collapse
|
8
|
Jensen T, Johnson AL. Expression and function of brain-derived neurotrophin factor and its receptor, TrkB, in ovarian follicles from the domestic hen (Gallus gallus domesticus). J Exp Biol 2001; 204:2087-95. [PMID: 11441050 DOI: 10.1242/jeb.204.12.2087] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
This report summarizes patterns of mRNA expression for the brain-derived neurotrophic factor (BDNF) together with its high-affinity neurotrophin receptor trkB within the hen ovary during follicle development, describes hormonal mechanisms for the regulation of trkB gene expression and provides preliminary evidence for a novel function for BDNF-mediated TrkB signaling within the granulosa layer. Levels of BDNF mRNA in the thecal layer and of trkB mRNA within the granulosa cell layer increase coincident with entrance of the follicle into the preovulatory hierarchy. Localization of the BDNF mRNA transcript correlates with expression of BDNF protein within the theca interna of preovulatory follicles, while localization of trkB mRNA and protein occurs extensively within the granulosa cell layer of preovulatory follicles. This pattern of expression suggests a paracrine relationship between theca and granulosa cells for BDNF signaling via TrkB. Vasoactive intestinal peptide and gonadotropin treatments stimulate increases in levels of trkB mRNA within cultured granulosa cells derived from both prehierarchal and preovulatory follicles, and this response is increased by co-treatment with 3-isobutyl-1-methylxanthine. Finally, BDNF treatment of cultured granulosa cells from preovulatory follicles results in a modest, but significant, reduction in basal progesterone production, whereas this effect was reversed by k252a, an inhibitor of Trk kinase activity. These results support the proposals that BDNF functions as a paracrine signal in hen granulosa cells and that its physiological functions may include the modulation of steroidogenesis.
Collapse
Affiliation(s)
- T Jensen
- Department of Biological Sciences, PO Box 369, The University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
9
|
Cahoon-Metzger SM, Wang G, Scott SA. Contribution of BDNF-mediated inhibition in patterning avian skin innervation. Dev Biol 2001; 232:246-54. [PMID: 11254361 DOI: 10.1006/dbio.2001.0172] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple factors are involved in the development and regulation of sensory innervation in skin. The findings we report here suggest that brain-derived neurotrophic factor (BDNF)-mediated inhibition may play an important role in determining the pattern of sensory innervation in avian skin. In birds, cutaneous innervation is restricted to dermis, where axons form a ring of innervation around the base of each feather. Here we show that both BDNF message and protein are more abundant in avian epidermis than dermis when innervation is being established; the BDNF in dermis is localized to feather buds. In vitro, BDNF caused growth cones of NGF-dependent dorsal root ganglion neurons to collapse. Similarly, outgrowth of neurites toward BDNF-secreting fibroblasts was inhibited. The inhibitory effects of BDNF appear to be mediated by the low-affinity p75 neurotrophin receptor, rather than a trk receptor. Thus, the distribution of BDNF in embryonic avian skin and the inhibitory effects of BDNF on cutaneous neurites in vitro suggest that BDNF may be important in restricting axons from entering the epidermis and the core of feather buds during development in vivo.
Collapse
Affiliation(s)
- S M Cahoon-Metzger
- Department of Neurobiology and Anatomy, Program in Neuroscience, University of Utah School of Medicine, 50 North Medical Drive, Salt Lake City, Utah, 84132, USA
| | | | | |
Collapse
|
10
|
Affiliation(s)
- G Heinrich
- VA Northern California Health Care System and EBIRE, 150 Muir Road, Martinez, CA 94553, USA.
| | | |
Collapse
|
11
|
Hannestad J, Germanà A, Catania S, Laurà R, Ciriaco E, Vega JA. Neurotrophins and their receptors in the pigeon caecal tonsil. An immunohistochemical study. Vet Immunol Immunopathol 1998; 61:359-67. [PMID: 9613447 DOI: 10.1016/s0165-2427(97)00145-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurotrophins are growth factors which bind to signal-transducing receptors called Trk proteins. The neurotrophins and their receptor proteins are present in the mammalian and avian lymphoid organs, thus suggesting that these factors could act upon cells of the immune system. Nevertheless, little is known about the cellular distribution of neurotrophins and their receptor proteins in avian lymphoid tissues. In this study we use immunohistochemistry to detect the cellular localisation of neurotrophins and their receptor proteins in the pigeon caecal tonsil, used as a model for avian secondary lymphoid organs. Rabbit polyclonal antibodies against neurotrophins (nerve growth factor -NGF-, brain-derived neurotrophic factor -BDNF- and neurotrophin -3 NT-3-) and against specific epitopes of TrkA, TrkB and TrkC proteins were used. Cytokeratins, vimentin, S-100 protein and chromogranin A were studied in parallel to identify cells which seemed to express neurotrophins and Trk proteins. TrkA-like protein was seen in the intestinal epithelium, whereas TrkB-like and TrkC-like proteins was found in cells which we identified as dendritic cells and macrophages. BDNF-like and NT-3-like reactivity was localised in intestinal epithelial cells, especially endocrine cells. Present results add further evidence to the presumptive immune role of neurotrophins and their receptors and the possible functions of these peptides in the caecal tonsil are discussed.
Collapse
Affiliation(s)
- J Hannestad
- Istituto di Anatomia degli Animali Domestici con Istologia e Embriologia, Facoltà di Medicina Veterinaria, Università di Messina, Italy
| | | | | | | | | | | |
Collapse
|