1
|
Dator RP, Murray KJ, Luedtke MW, Jacobs FC, Kassie F, Nguyen HD, Villalta PW, Balbo S. Identification of Formaldehyde-Induced DNA-RNA Cross-Links in the A/J Mouse Lung Tumorigenesis Model. Chem Res Toxicol 2022; 35:2025-2036. [PMID: 36356054 PMCID: PMC10336729 DOI: 10.1021/acs.chemrestox.2c00206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent lung carcinogen present in tobacco products, and exposure to it is likely one of the factors contributing to the development of lung cancer in cigarette smokers. To exert its carcinogenic effects, NNK must be metabolically activated into highly reactive species generating a wide spectrum of DNA damage. We have identified a new class of DNA adducts, DNA-RNA cross-links found for the first time in NNK-treated mice lung DNA using our improved high-resolution accurate mass segmented full scan data-dependent neutral loss MS3 screening strategy. The levels of these DNA-RNA cross-links were found to be significantly higher in NNK-treated mice compared to the corresponding controls, which is consistent with higher levels of formaldehyde due to NNK metabolism as compared to endogenous levels. We hypothesize that this DNA-RNA cross-linking occurs through reaction with NNK-generated formaldehyde and speculate that this phenomenon has broad implications for NNK-induced carcinogenesis. The structures of these cross-links were characterized using high-resolution LC-MS2 and LC-MS3 accurate mass spectral analysis and comparison to a newly synthesized standard. Taken together, our data demonstrate a previously unknown link between DNA-RNA cross-link adducts and NNK and provide a unique opportunity to further investigate how these novel NNK-derived DNA-RNA cross-links contribute to carcinogenesis in the future.
Collapse
Affiliation(s)
- Romel P. Dator
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Kevin J. Murray
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108
- Center for Mass Spectrometry and Proteomics, University of Minnesota, St. Paul, MN 55108
| | | | - Foster C. Jacobs
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455
| | - Fekadu Kassie
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Hai Dang Nguyen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Pharmacology, College of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
2
|
Tyroller S, Zwickenpflug W, Thalheim C, Richter E. Acute and subacute effects of tobacco alkaloids, tobacco-specific nitrosamines and phenethyl isothiocyanate on N'-nitrosonornicotine metabolism in rats. Toxicology 2005; 215:245-53. [PMID: 16118032 DOI: 10.1016/j.tox.2005.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 07/14/2005] [Accepted: 07/14/2005] [Indexed: 10/25/2022]
Abstract
N'-Nitrosonornicotine (NNN) was the first tobacco-specific nitrosamine (TSNA) identified as carcinogen in tobacco smoke, but no data exist on in vivo interactions between NNN and other tobacco alkaloids, TSNA or phenethyl isothiocyanate (PEITC) which have been demonstrated in various studies on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Acute effects on NNN metabolism were tested in male Fischer F344 rats injected s.c. with 30nmol/kg body weight (bw) [5-(3)H]NNN either alone or simultaneously with 15mumol/kg bw nicotine, nornicotine, anatabine, or anabasine, 150mumol/kg bw cotinine, 3mumol/kg bw myosmine, or 300nmol/kg bw of either N'-nitrosoanatabine or N'-nitrosoanabasine. Another group of rats was fed a diet supplemented with PEITC at 1mumol/g diet starting 24h before NNN treatment. Within 24h more than 80% and about 10% of the radioactivity was excreted with urine and feces, respectively. Urinary metabolites were separated by reversed-phase radio-HPLC and identified by co-chromatography with UV standards. In two sets of experiments with control rats treated with NNN only, 4-hydroxy-4-(3-pyridyl)butanoic acid (hydroxy acid, 44.4/44.8%), 4-oxo-4-(3-pyridyl)butanoic acid (keto acid, 32.4/31.5%), NNN-N-oxide (5.0/3.8%), 4-(3-pyridyl)butane-1,4-diol (diol, 1.1/1.0%) and norcotinine (2.3/1.0%) were consistently detected besides unmetabolised NNN (4.7/3.3%). Co-treatment with nicotine, cotinine, nornicotine and PEITC shifted the contribution of the two major metabolites significantly in favor of hydroxy acid (108-113% of control) as compared to keto acid (86-90% of control). The same treatments also increased norcotinine (135-170% of control). These changes are consistent with a decreased metabolic activation of NNN. In subacute studies rats received NNN in drinking water for 4 weeks at a daily dose of 30 nmol/kg bw with or without nornicotine at 15 micromol/kg bw or myosmine at 3 micromol/kg bw. On the last day of the experiment all rats received [5-(3)H]NNN at 30 nmol/kg bw with a contaminated apple bite followed by collection of urine and feces for 18h. Most of the radioactivity, 87-96% of the dose, was recovered in urine and only minor amounts have been excreted in feces or persisted in blood. In urine of the NNN-control group keto acid (32.2%) and unmetabolised NNN (3.9%) were present in identical amounts as in the acute experiment whereas hydroxy acid (41.4% of total radioactivity in urine, 93% of acute NNN control) was reduced in expense of the minor NNN metabolites. Co-administration of nornicotine resulted in a small but significant rise of keto acid (107% of control) and a significant decrease in NNN-N-oxide (76% of control). After co-treatment with myosmine the increase of keto acid (104% of control) was even less but still significant whereas NNN-N-oxide and diol were significantly reduced to 72% and 79% of control, respectively. Our experiments with rats indicate significant mutual effects of some of the major tobacco alkaloids and most relevant TSNA. Further studies on the impact on smokers and the inhibitory effects of isothiocyanates are needed for a final risk assessment.
Collapse
Affiliation(s)
- Stefan Tyroller
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians University, Goethestrasse 33, D-80336 Munich, Germany.
| | | | | | | |
Collapse
|
3
|
Brown BG, Borschke AJ, Doolittle DJ. An analysis of the role of tobacco-specific nitrosamines in the carcinogenicity of tobacco smoke. NONLINEARITY IN BIOLOGY, TOXICOLOGY, MEDICINE 2003; 1:179-98. [PMID: 19330121 PMCID: PMC2651603 DOI: 10.1080/15401420391434324] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cigarette smoke is a complex mixture consisting of more than 4500 chemicals, including several tobacco-specific nitrosamines (TSNA). TSNA typically form in tobacco during the post-harvest period, with some fraction being transferred into mainstream smoke when a cigarette is burned during use. The most studied of the TSNA is 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). NNK has been shown to be carcinogenic in laboratory animals. Studies examining the carcinogenicity of NNK frequently are conducted by injecting rodents with a single dose of 2.5 to 10 mumol of pure NNK; the amount of NNK contained in all of the mainstream smoke from about 3700 to 14,800 typical U.S. cigarettes. Extrapolated to a 70-kg smoker, the carcinogenic dose of pure NNK administered to rodents would be equivalent to the amount of NNK in all of the mainstream smoke of 22 to 87 million typical U.S. cigarettes. Furthermore, extrapolating results from rodent studies based on a single injection of pure NNK to establish a causative role for NNK in the carcinogenicity of chronic tobacco smoke exposure in humans is not consistent with basic pharmacological and toxicological principles. For example, such an approach fails to consider the effect of other smoke constituents upon the toxicity of NNK. In vitro studies demonstrate that nicotine, cotinine, and aqueous cigarette "tar" extract (ACTE) all inhibit the mutagenic activity of NNK. In vivo studies reveal that the formation of pulmonary DNA adducts in mice injected with NNK is inhibited by the administration of cotinine and mainstream cigarette smoke. Cigarette smoke has been shown to modulate the metabolism of NNK, providing a mechanism for the inhibitory effects of cigarette smoke and cigarette smoke constituents on NNK-induced tumorigenesis. NNK-related pulmonary DNA adducts have not been detected in rodents exposed to cigarette smoke, nor has the toxicity of tobacco smoke or tobacco smoke condensate containing marked reductions in TSNA concentrations been shown to be reduced in any biological assay. In summary, there is no experimental evidence to suggest that reduction of TSNA will reduce the mutagenic, cytotoxic, or carcinogenic potential of tobacco smoke.
Collapse
Affiliation(s)
- Buddy G. Brown
- Research and Development, R. J. Reynolds Tobacco Company, PO Box 1487, Winston-Salem, NC 27102
| | - August J. Borschke
- Research and Development, R. J. Reynolds Tobacco Company, PO Box 1487, Winston-Salem, NC 27102
| | - David J. Doolittle
- Research and Development, R. J. Reynolds Tobacco Company, PO Box 1487, Winston-Salem, NC 27102
| |
Collapse
|
4
|
Richter E, Tricker AR. Effect of nicotine, cotinine and phenethyl isothiocyanate on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism in the Syrian golden hamster. Toxicology 2002; 179:95-103. [PMID: 12204546 DOI: 10.1016/s0300-483x(02)00321-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of nicotine, cotinine and phenethyl isothiocyanate (PEITC) on metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) was studied in the Syrian golden hamster. Urinary metabolite profiles were determined in 24 h urine after a single subcutaneous (s.c.) administration of [5-(3)H]NNK (80 nmol/kg, s.c.). Co-administration of either a 500-fold higher dose of nicotine (40 micromol/kg, s.c.) or a 5000-fold higher dose of cotinine (400 micromol/kg, s.c.) significantly (P<0.001) reduced metabolic activation of NNK by alpha-hydroxylation to 85 and 71% of control, respectively. Co-administration of a 300-fold higher dose of PEITC (1 micromol/g diet) slightly reduced alpha-hydroxylation of NNK (94% of control). Metabolism of NNK by reduction to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) was increased by nicotine (155%), and significantly increased by cotinine (670%, P<0.001) and PEITC (219%, P<0.01). Detoxification of NNAL by glucuronidation was also increased by all three test agents. Detoxification of NNK and NNAL by N-oxidation was marginally increased by nicotine, reduced by PEITC, and significantly reduced by cotinine. The urinary metabolite profiles suggest that nicotine, which occurs in concentrations up to 30000-fold higher than NNK in mainstream cigarette smoke, and cotinine, its proximal metabolite, may have a significant protective effect against in vivo metabolic activation of NNK.
Collapse
Affiliation(s)
- Elmar Richter
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians University of Munich, Nussbaumstrasse 26, D-80336, Munich, Germany.
| | | |
Collapse
|
5
|
Brown BG, Richter E, Tricker AR, Ayres PH, Doolittle DJ. The effect of a 2-h exposure to cigarette smoke on the metabolic activation of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in A/J mice. Chem Biol Interact 2001; 138:125-35. [PMID: 11672696 DOI: 10.1016/s0009-2797(01)00265-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific nitrosamine, induces lung adenomas in A/J mice following a single intraperitoneal (i.p.) injection. However, inhalation of mainstream cigarette smoke does not induce or promote NNK-induced lung tumors in this mouse strain purported to be sensitive to chemically-induced lung tumorigenesis. The critical events for NNK-induced lung tumorigenesis in A/J mice is thought to involve O(6)-methylguanine (O(6)MeG) adduct formation, GC-->AT transitional mispairing, and activation of the K-ras proto-oncogene. The objective of this study was to test the hypothesis that a smoke-induced shift in NNK metabolism led to the observed decrease in O(6)MeG adducts in the lung and liver of A/J mice co-administered NNK with a concomitant 2-h exposure to cigarette smoke as observed in previous studies. Following 2 h nose-only exposure to mainstream cigarette smoke (600 mg total suspended particulates/m(3) of air), mice (n=12) were administered 7.5 micromol NNK (10 microCi [5-3H]NNK) by i.p. injection. A control group of 12 mice was sham-exposed to HEPA-filtered air for 2 h prior to i.p. administration of 7.5 micromol NNK (10 microCi [5-3H]NNK). Exposure to mainstream cigarette smoke had no effect on total excretion of NNK metabolites in 24 h urine; however, the metabolite pattern was significantly changed. Mice exposed to mainstream cigarette smoke excreted 25% more 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) than control mice, a statistically significant increase (P<0.0001). Cigarette smoke exposure significantly reduced alpha-hydroxylation of NNK to potential methylating species; this is based on the 15% reduction in excretion of the 4-(3-pyridyl)-4-hydroxybutanoic acid and 42% reduction in excretion of 4-(3-pyridyl)-4-oxobutanoic acid versus control. Detoxication of NNK and NNAL by pyridine-N-oxidation, and glucuronidation of NNAL were not significantly different in the two groups of mice. The observed reduction in alpha-hydroxylation of NNK to potential methylating species in mainstream cigarette smoke-exposed A/J mice provides further mechanistic support for earlier studies demonstrating that concurrent inhalation of mainstream cigarette smoke results in a significant reduction of NNK-induced O(6)MeG adduct formation in lung and liver of A/J mice compared to mice treated only with NNK.
Collapse
Affiliation(s)
- B G Brown
- R.J. Reynolds Tobacco Company, PO Box 1236, Winston-Salem, NC 27102, USA.
| | | | | | | | | |
Collapse
|
6
|
Maser E. Stress, hormonal changes, alcohol, food constituents and drugs: factors that advance the incidence of tobacco smoke-related cancer? Trends Pharmacol Sci 1997; 18:270-5. [PMID: 9277130 DOI: 10.1016/s0165-6147(97)01090-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The genotoxicity of the most potent carcinogen in cigarette smoke [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)] is dependent on the relationship between its activation by cytochrome P450 enzymes and its detoxification by carbonyl reduction to NNK alcohol (NNAL) followed by glucuronidation. Recently, '11 beta-hydroxysteroid dehydrogenase' (11 beta-HSD 1) was identified to be responsible for NNK carbonyl reduction. It is now speculated that differences in tissue expression of 11 beta-HSD 1, as well as genetic polymorphisms, may have profound influences on the organospecificity and potency of NNK-induced cancerogenesis. Moreover, endogenous and exogenous substrates or inhibitors of 11 beta-HSD 1 may shift the NNK/NNAL equilibrium and favour NNK toxification in a variety of physiological and therapeutic situations. These issues are discussed here by Edmund Maser, who also describes how recent observations could provide the experimental base for epidemiological or clinical studies, which focus on polymorphisms in 11 beta-HSD 1 enzyme expression, as well as on implications of exposure to 11 beta-HSD 1 modulators and concurrent smoking.
Collapse
Affiliation(s)
- E Maser
- Department of Pharmacology and Toxicology, School of Medicine, Philipps-University of Marburg, Marburg/Lahn, Germany
| |
Collapse
|
7
|
Maser E. Stress, hormonal changes, alcohol, food constituents and drugs: factors that advance the incidence of tobacco smoke-related cancer? Trends Pharmacol Sci 1997. [DOI: 10.1016/s0165-6147(97)90642-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Jorquera R, Castonguay A, Schuller HM. Effects of age and ethanol on DNA single-strand breaks and toxicity induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone or n-nitrosodimethylamine in hamster and rat liver. Cancer Lett 1993; 74:175-81. [PMID: 8174101 DOI: 10.1016/0304-3835(93)90240-a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effects of age and ethanol exposure on liver DNA single-strand breaks (SSB) and liver cell injury induced in hamsters and rats by a single equimolar dose (0.39 mmol/kg) of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) or N-nitrosodimethylamine (NDMA) were investigated. NNK induced more DNA SSB (by 10-50%) than NDMA in the liver of adult hamsters and rats, but similar differences were not observed in newborn animals. Nitrosamine-induced hepatic DNA damages was compared in newborn and adult animals. While newborn hamsters were less sensitive to NNK-induced DNA damage than adult hamsters, newborn rats were more sensitive to NDMA-induced DNA damage than adult rats. In utero ethanol exposure did not alter significantly the induction of hepatic DNA SSB by NNK or NDMA compared to newborn hamsters and rats. Interestingly, species differences in the extents of NNK-induced hepatic DNA SSB and toxicity were observed in ethanol-consuming adult hamsters and rats. Ethanol treatment of hamsters caused a significant reduction (by 35%) of the frequency of hepatic DNA SSB and a 3.5-fold enhancement of hepatotoxicity induced by NNK.
Collapse
Affiliation(s)
- R Jorquera
- Laboratory of Cancer Etiology and Chemoprevention, School of Pharmacy, Laval University, QC, Canada
| | | | | |
Collapse
|