1
|
Wall BJ, Will MF, Yawson GK, Bothwell PJ, Platt DC, Apuzzo CF, Jones MA, Ferrence GM, Webb MI. Importance of Hydrogen Bonding: Structure-Activity Relationships of Ruthenium(III) Complexes with Pyridine-Based Ligands for Alzheimer's Disease Therapy. J Med Chem 2021; 64:10124-10138. [PMID: 34197109 DOI: 10.1021/acs.jmedchem.1c00360] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, where one of the pathological hallmarks of AD is extracellular protein deposits, the primary component of which is the peptide amyloid-β (Aβ). Recently, the soluble form of Aβ has been recognized as the primary neurotoxic species, making it an important target for therapeutic development. Metal-based drugs are promising candidates to target Aβ, as the interactions with the peptide can be tuned by ligand design. In the current study, 11 ruthenium complexes containing pyridine-based ligands were prepared, where the functional groups at the para position on the coordinated pyridine ligand were varied to determine structure-activity relationships. Overall, the complexes with terminal primary amines had the greatest impact on modulating the aggregation of Aβ and diminishing its cytotoxicity. These results identify the importance of specific intermolecular interactions and are critical in the advancement of metal-based drugs for AD therapy.
Collapse
Affiliation(s)
- Brendan J Wall
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Mark F Will
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Gideon K Yawson
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Paige J Bothwell
- Core Microscope Facility, Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - David C Platt
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - C Fiore Apuzzo
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Gregory M Ferrence
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Michael I Webb
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| |
Collapse
|
2
|
Teran MDM, de Moreno de LeBlanc A, Savoy de Giori G, LeBlanc JG. Thiamine-producing lactic acid bacteria and their potential use in the prevention of neurodegenerative diseases. Appl Microbiol Biotechnol 2021; 105:2097-2107. [PMID: 33547923 DOI: 10.1007/s00253-021-11148-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/01/2021] [Accepted: 01/26/2021] [Indexed: 12/24/2022]
Abstract
Thiamine or vitamin B1, an essential micronutrient mainly involved in energy production, has a beneficial impact on the nervous system, and its deficiency can be associated with the development and progression of neurodegenerative diseases. The aim of this work was to select thiamine-producing lactic acid bacteria (LAB) and study their physiological effects using neuron cell cultures. In this study, 23 LAB able to produce thiamine were identified by growth in thiamine-free synthetic medium. Intra- and extracellular thiamine concentrations were determined using a microbiological method and results confirmed by HPLC techniques. A wide variation in vitamin production was found showing that this property was not only species specific but also a strain-dependent trait. Five of these strains were pre-selected for their capacity to produce higher concentrations of thiamine. Only the pre-treatment with the intracellular extract of Lactiplantibacillus (L.) plantarum CRL 1905 increased significantly neuronal survival in N2a cells' model of neurotoxicity (MPP+) with thiamine deficiency conditions (amprolium). Furthermore, amprolium-resistant variants of CRL 1905 were isolated by exposition of the strain to increasing concentrations of this toxic thiamine analogue. The variant A9 was able to increase more than 2 times the intracellular thiamine production of the original strain. A9 bacterial extract significantly prevented neuronal cell death and the increase of IL-6. The amprolium-resistant strain A9 showed a modulating and neuroprotective effect in an in vitro model of neurotoxicity constituting a potential bio-strategy to counteract thiamine deficiencies and thus prevent or treat neurodegenerative diseases. KEY POINTS: • LAB can produce thiamine in a species- and strain-dependant manner. • L. plantarum CRL 1905 significantly reduce MPP+-induced neurotoxicity in N2a cells. • Amprolium-resistant strain A9 has neuroprotective effect and prevents IL-6 increase.
Collapse
Affiliation(s)
- María Del Milagro Teran
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Alejandra de Moreno de LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Graciela Savoy de Giori
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina.,Cátedra de Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
3
|
Yawson GK, Huffman SE, Fisher SS, Bothwell PJ, Platt DC, Jones MA, Ferrence GM, Hamaker CG, Webb MI. Ruthenium(III) complexes with imidazole ligands that modulate the aggregation of the amyloid-β peptide via hydrophobic interactions. J Inorg Biochem 2020; 214:111303. [PMID: 33166864 DOI: 10.1016/j.jinorgbio.2020.111303] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by extracellular protein deposits, comprised primarily of the peptide amyloid-beta (Aβ), are a pathological indicator of the disease. Commonly known as Aβ plaques, these deposits contain a relatively high concentration of metals, making metallotherapeutics uniquely suited to target soluble Aβ, thereby limiting its aggregation and cytotoxicity. Ruthenium-based complexes are promising candidates for advancement, as the complex PMRU20 (2-aminothiazolium [trans-RuCl4(2-aminothiazole)2]) and several thiazole-based derivatives were found to prevent the aggregation of Aβ, with hydrogen-bonding functional groups improving their performance. Further investigation into the impact of the heteroatom in the azole ring on the activity of Ru complexes was achieved through the synthesis and evaluation of a small set of imidazole-based compounds. The ability of the complexes to prevent the aggregation of Aβ was determined where the same sample was subjected to analysis by three complementary methods: ThT fluorescence, dynamic light scattering (DLS), and transmission electron microscopy (TEM). It was found that hydrophobic interactions, along with hydrogen-bonding via the imidazole nitrogen heteroatom, promoted interactions with the Aβ peptide, thereby limiting its aggregation. Furthermore, it was found that having rapid and sequential exchange proved detrimental as it resulted in a decreased association with Aβ. These results highlight important considerations between a balance of intermolecular interactions and ligand exchange kinetics in the design of further therapeutic candidates.
Collapse
Affiliation(s)
- Gideon K Yawson
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, United States of America
| | - Samantha E Huffman
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, United States of America
| | - Samuel S Fisher
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, United States of America
| | - Paige J Bothwell
- Core Microscope Facility, Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, United States of America
| | - David C Platt
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, United States of America
| | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, United States of America
| | - Gregory M Ferrence
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, United States of America
| | - Christopher G Hamaker
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, United States of America
| | - Michael I Webb
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, United States of America.
| |
Collapse
|
4
|
Slamon ND, Pentreath VW. A Comparison of the Acute and Chronic Effects of Antidepressants in Cultured C6 and 1321N1 Cells. Altern Lab Anim 2020. [DOI: 10.1177/026119299802600306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cytotoxicities of the antidepressants amitriptyline, imipramine (both tricyclic), fluoxetine (a selective serotonin re-uptake inhibitor) and tranylcypromine (a monoamine oxidase inhibitor) were compared in vitro in rat (C6) glioma and human (1321N1) astrocytoma cell lines. Differences in toxicity were determined after acute (24-hour) and chronic (7-day) administration and assessed by using the neutral red uptake (NRU) assay, the MTT assay, increased expression of glial fibrillary acidic protein (GFAp), and reactive morphology criteria. The relative toxicities (EC50 [concentration causing an effect in 50% of cells] value range) were fluoxetine > amitriptyline > imipramine > tranylcypromine for all the tests employed, in both cell lines and at both exposure times. There was a high and significant positive correlation between the different cell types, at both exposure times, with both the NRU and MTT assays. Increases in MTT reduction, NRU, and GFAp expression associated with cell activation were noted in C6 cells after exposure for 24 hours, but decreased after exposure for 7 days. For 1321N1 cells, increases in NRU were only observed after exposure for 24 hours. Reactive-type changes in morphology were seen after exposure to all the antidepressants, in both the C6 and 1321N1 cell lines. The data show that low concentrations of antidepressants induce metabolic changes in the astrocyte cell lines, with some significant differences in the patterns of toxicity of the tested substances.
Collapse
Affiliation(s)
- N. Debbie Slamon
- Department of Biological Sciences, University of Salford, Salford M5 4WT, UK
| | - Vic W. Pentreath
- Department of Biological Sciences, University of Salford, Salford M5 4WT, UK
| |
Collapse
|
5
|
Huffman SE, Yawson GK, Fisher SS, Bothwell PJ, Platt DC, Jones MA, Hamaker CG, Webb MI. Ruthenium(iii) complexes containing thiazole-based ligands that modulate amyloid-β aggregation. Metallomics 2020; 12:491-503. [PMID: 32239079 DOI: 10.1039/d0mt00054j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disorder where one of the commonly observed pathological hallmarks is extracellular deposits of the peptide amyloid-β (Aβ). These deposits contain a high concentration of metals and initially presented a promising target for therapy; however it has become increasingly evident that the soluble form of the peptide is neurotoxic, not the amyloidogenic species. Metal-based therapeutics are uniquely suited to target soluble Aβ and have shown considerable promise to prevent the aggregation and induced cytotoxicity of the peptide in vitro. Herein, we have prepared a small series of derivatives of two promising Ru(iii) complexes NAMI-A (imidazolium [trans-RuCl4(1H-imidazole)(dimethyl sulfoxide-S)]) and PMRU20 (2-aminothiazolium [trans-RuCl4(2-aminothiazole)2]), to determine structure-activity relationships (SAR) for Ru(iii) therapeutics for AD. Using the three complementary methods of Thioflavin T fluorescence, dynamic light scattering (DLS), and transmission electron microscopy (TEM), it was determined that the symmetry around the metal center did not significantly impact the activity of the complexes, but rather the attached thiazole ligand(s) mitigated Aβ aggregation. Across both families of Ru(iii) complexes the determined SAR for the functional groups on the thiazole ligands to modulate Aβ aggregation were NH2 > CH3 > H. These results highlight the importance of secondary interactions between the metallotherapeutic and the Aβ peptide where hydrogen-bonding has the greatest impact on modulating Aβ aggregation.
Collapse
Affiliation(s)
- Samantha E Huffman
- Department of Chemistry, Illinois State University, Normal, IL, 61790-4160, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Vallejo R, Platt DC, Rink JA, Jones MA, Kelley CA, Gupta A, Cass CL, Eichenberg K, Vallejo A, Smith WJ, Benyamin R, Cedeño DL. Electrical Stimulation of C6 Glia-Precursor Cells In Vitro Differentially Modulates Gene Expression Related to Chronic Pain Pathways. Brain Sci 2019; 9:brainsci9110303. [PMID: 31683631 PMCID: PMC6896182 DOI: 10.3390/brainsci9110303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Glial cells comprise the majority of cells in the central nervous system and exhibit diverse functions including the development of persistent neuropathic pain. While earlier theories have proposed that the applied electric field specifically affects neurons, it has been demonstrated that electrical stimulation (ES) of neural tissue modulates gene expression of the glial cells. This study examines the effect of ES on the expression of eight genes related to oxidative stress and neuroprotection in cultured rodent glioma cells. Concentric bipolar electrodes under seven different ES types were used to stimulate cells for 30 min in the presence and absence of extracellular glutamate. ES consisted of rectangular pulses at 50 Hz in varying proportions of anodic and cathodic phases. Real-time reverse-transcribed quantitative polymerase chain reaction was used to determine gene expression using the ∆∆Cq method. The results demonstrate that glutamate has a significant effect on gene expression in both stimulated and non-stimulated groups. Furthermore, stimulation parameters have differential effects on gene expression, both in the presence and absence of glutamate. ES has an effect on glial cell gene expression that is dependent on waveform composition. Optimization of ES therapy for chronic pain applications can be enhanced by this understanding.
Collapse
Affiliation(s)
- Ricardo Vallejo
- Millennium Pain Center, Bloomington, IL 61704, USA.
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL 61701, USA.
| | - David C Platt
- Department of Chemistry, Illinois State University, Normal, IL 61790, USA.
| | - Jonathan A Rink
- Department of Biology, Illinois Wesleyan University, Bloomington, IL 61701, USA.
| | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, IL 61790, USA.
| | - Courtney A Kelley
- Millennium Pain Center, Bloomington, IL 61704, USA.
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL 61701, USA.
| | - Ashim Gupta
- Millennium Pain Center, Bloomington, IL 61704, USA.
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL 61701, USA.
- South Texas Orthopaedic Research Institute, Laredo, TX 78045, USA.
| | - Cynthia L Cass
- Millennium Pain Center, Bloomington, IL 61704, USA.
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL 61701, USA.
| | - Kirk Eichenberg
- Department of Chemistry, Illinois State University, Normal, IL 61790, USA.
| | | | - William J Smith
- Millennium Pain Center, Bloomington, IL 61704, USA.
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA.
| | - Ramsin Benyamin
- Millennium Pain Center, Bloomington, IL 61704, USA.
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL 61701, USA.
- College of Medicine, Department of Surgery, University of Illinois at Urbana-Champaign, Champaign-Urbana, IL 61801, USA.
| | - David L Cedeño
- Millennium Pain Center, Bloomington, IL 61704, USA.
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL 61701, USA.
| |
Collapse
|
7
|
Romero DM, Berardino BG, Wolansky MJ, Kotler ML. From the Cover: Vulnerability of C6 Astrocytoma Cells After Single-Compound and Joint Exposure to Type I and Type II Pyrethroid Insecticides. Toxicol Sci 2016; 155:196-212. [PMID: 27815491 DOI: 10.1093/toxsci/kfw188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A primary mode-of-action of all pyrethroid insecticides (PYRs) is the disruption of the voltage-gated sodium channel electrophysiology in neurons of target pests and nontarget species. The neurological actions of PYRs on non-neuronal cells of the nervous system remain poorly investigated. In the present work, we used C6 astrocytoma cells to study PYR actions (0.1-50 μM) under the hypothesis that glial cells may be targeted by and vulnerable to PYRs. To this end, we characterized the effects of bifenthrin (BF), tefluthrin (TF), α-cypermethrin (α-CYP), and deltamethrin (DM) on the integrity of nuclear, mitochondrial, and lysosomal compartments. In general, 24- to 48-h exposures produced concentration-related impairment of cell viability. In single-compound, 24-h exposure experiments, effective concentration (EC)15s 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT assay) were computed as follows (in μM): BF, 16.1; TF, 37.3; α-CYP, 7.8; DM, 5.0. We found concentration-related damage in several C6-cell subcellular compartments (mitochondria, nuclei, and lysosomes) at ≥ 10-1 μM levels. Last, we examined a mixture of all PYRs (ie, Σ individual EC15) using MTT assays and subcellular analyses. Our findings indicate that C6 cells are responsive to nM levels of PYRs, suggesting that astroglial susceptibility may contribute to the low-dose neurological effects caused by these insecticides. This research further suggests that C6 cells may provide relevant information as a screening platform for pesticide mixtures targeting nervous system cells by expected and unexpected toxicogenic pathways potentially contributing to clinical neurotoxicity.
Collapse
Affiliation(s)
- Delfina M Romero
- Laboratorio de Toxicología de Mezclas Químicas.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.,IQUIBICEN-Argentina National Research Council (CONICET)
| | - Bruno G Berardino
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.,Laboratorio de Neuroepigenética
| | - Marcelo J Wolansky
- Laboratorio de Toxicología de Mezclas Químicas; .,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.,IQUIBICEN-Argentina National Research Council (CONICET)
| | - Mónica L Kotler
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.,IQUIBICEN-Argentina National Research Council (CONICET).,Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina
| |
Collapse
|
8
|
Wang Z, Chen Q. β-catenin knockdown inhibits the proliferation of human glioma cells in vitro and in vivo. Exp Ther Med 2016; 11:1059-1064. [PMID: 26998037 DOI: 10.3892/etm.2016.2998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/18/2015] [Indexed: 12/20/2022] Open
Abstract
β-catenin is a crucial oncogene that is capable of regulating cancer progression. The aim of the present study was to clarify whether β-catenin was associated with the proliferation and progress of glioma. In order to knockdown the expression of β-catenin in human U251 glioma cells, three pairs of small interfering (si)RNA were designed and synthesized and the most effective siRNA was selected and used for silencing the endogenous β-catenin, which was detected by western blot analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Proliferation was subsequently detected using a methylthiazolyl-tetrazolium bromide assay and the results demonstrated that knockdown of β-catenin significantly inhibited the proliferation of U251 cells in a time- and dose-dependent manner (P<0.01). Cell apoptosis rate was analyzed using flow cytometry and Annexin V-fluorescein isothiocyanate/propidium iodide staining demonstrated that β-catenin siRNA significantly increased the apoptosis of U251 cells (P<0.01). Furthermore, the results of an in vitro scratch assay demonstrated that β-catenin silencing suppressed the proliferation of U251 cells, as compared with the control group (P<0.01). In vivo, β-catenin expression levels in U251 cells were significantly inhibited (P<0.01) following β-catenin short hairpin (sh)RNA lentiviral-vector transfection, as detected by western blot analysis and RT-qPCR. Tumorigenicity experiments demonstrated that β-catenin inhibition significantly increased the survival rate of nude mice. The results of the present study demonstrated that knockdown of β-catenin expression significantly inhibited the progression of human glioma cancer cells, in vitro and in vivo; thus suggesting that β-catenin silencing may be a novel therapy for the treatment of human glioma.
Collapse
Affiliation(s)
- Zhong Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
9
|
Jo HY, Kim Y, Park HW, Moon HE, Bae S, Kim J, Kim DG, Paek SH. The Unreliability of MTT Assay in the Cytotoxic Test of Primary Cultured Glioblastoma Cells. Exp Neurobiol 2015; 24:235-45. [PMID: 26412973 PMCID: PMC4580751 DOI: 10.5607/en.2015.24.3.235] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 08/30/2015] [Accepted: 08/31/2015] [Indexed: 11/19/2022] Open
Abstract
MTT assay is commonly used to assess the cellular cytotoxicity caused by anticancer drugs in glioblastomas. However, there have been some reports insisting that MTT assay exhibited non-specific intracellular reduction of tetrazolium which led to underestimated results of cytotoxicity. Here, we examine whether or not MTT assay can lead to incorrect information regarding alcohol-induced cytotoxicity on immortalized and primary glioblastoma cells. MTT assay was applied to assess the ethanol-induced cytotoxicity at various ethanol concentrations. The cellular cytotoxicity induced by different doses of ethanol was analyzed and compared through several cytotoxic assays. Ethanol-induced cytotoxicity observed through MTT assay on both cell types was shown to be ethanol dose-dependent below a 3% concentration. However, the cytotoxicity was shown to be markedly underestimated only in primary cells at a 5% concentration. RT-PCR and Western Blot showed increased expressions of pro-apoptotic proteins and decreased expressions of anti-apoptotic proteins in an ethanol dose-dependent manner in both cell types. Furthermore, we present a possible mechanism for the unreliable result of MTT assay. A high concentration of ethanol induces more severe membrane damage and increased intracellular concentration of NADH in primary cells which enhances the nonspecific reduction of tetrazolium salt. Together, our findings demonstrate that the cytotoxicity on primary cells could inaccurately be assessed when detected through MTT assay. Therefore, a careful interpretation is needed when one would analyze the cytotoxic results of MTT assay, and it is suggested that other assays must be accompanied to produce more reliable and accurate cytotoxic results on primary glioblastoma cells.
Collapse
Affiliation(s)
- Hwa Yeon Jo
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03082, Korea. ; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03082, Korea. ; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03082, Korea
| | - Yona Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03082, Korea. ; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03082, Korea. ; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03082, Korea
| | - Hyung Woo Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03082, Korea. ; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03082, Korea. ; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03082, Korea
| | - Hyo Eun Moon
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03082, Korea. ; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03082, Korea. ; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03082, Korea
| | - Seongtae Bae
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03082, Korea. ; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03082, Korea. ; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03082, Korea
| | - JinWook Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03082, Korea. ; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03082, Korea. ; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03082, Korea
| | - Dong Gyu Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03082, Korea. ; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03082, Korea. ; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03082, Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03082, Korea. ; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03082, Korea. ; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03082, Korea
| |
Collapse
|
10
|
Lü L, Zhang L, Wai MSM, Yew DTW, Xu J. Exocytosis of MTT formazan could exacerbate cell injury. Toxicol In Vitro 2012; 26:636-44. [PMID: 22401948 DOI: 10.1016/j.tiv.2012.02.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 10/29/2011] [Accepted: 02/20/2012] [Indexed: 01/01/2023]
Abstract
MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] method is one of the most widely used methods to analyze cell proliferation and viability. It is taken up through endocytosis and is reduced by mitochondrial enzymes as well as endosomal/lysosomal compartments, then is transported to cell surfaces to form needle-like MTT formazans; however the effect of MTT itself still remains elusive. Our objective was to investigate the direct effects of MTT on in vitro SH-SY5Y cells. Results showed that the endocytosis of MTT did not cause obvious lesion and induce cell death, but the metabolism and exocytosis of MTT could dramatically damage cells. Our results also indicated that MTT could activate apoptosis related factors such as caspase-8, caspase-3 or accelerate the leakage of cell contents after the appearance of MTT formazan crystals. The present data suggest MTT method should be carefully chosen; otherwise the cell viability would be underestimated and incomparable.
Collapse
Affiliation(s)
- Lanhai Lü
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Northern Campus, Guangzhou, Guangdong, China
| | | | | | | | | |
Collapse
|
11
|
Calabrese EJ, Mattson MP. Hormesis provides a generalized quantitative estimate of biological plasticity. J Cell Commun Signal 2011; 5:25-38. [PMID: 21484586 PMCID: PMC3058190 DOI: 10.1007/s12079-011-0119-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 01/10/2010] [Indexed: 02/01/2023] Open
Abstract
Phenotypic plasticity represents an environmentally-based change in an organism's observable properties. Since biological plasticity is a fundamental adaptive feature, it has been extensively assessed with respect to its quantitative features and genetic foundations, especially within an ecological evolutionary framework. Toxicological investigations on the dose-response continuum (i.e., very broad dose range) that include documented evidence of the hormetic dose response zone (i.e., responses to doses below the toxicological threshold) can be employed to provide a quantitative estimate of phenotypic plasticity. The low dose hormetic stimulation is an adaptive response that reflects an environmentally-induced altered phenotype and provides a quantitative estimate of biological plasticity. Analysis of nearly 8,000 dose responses within the hormesis database indicates that quantitative features of phenotypic plasticity are highly generalizable, being independent of biological model, endpoint measured and chemical/physical stress inducing agent. The magnitude of phenotype changes indicative of plasticity is modest with maximum responses typically being approximately 30-60% greater than control values. The present findings provide the first quantitative estimates of biological plasticity and its capacity for generalization. Summary This article provides the first quantitative estimate of biological plasticity that may be generalized across plant, microbial, animal systems, and across all levels of biological organization. The quantitative features of plasticity are described by the hormesis dose response model. These findings have important biological, biomedical and evolutionary implications.
Collapse
Affiliation(s)
- Edward J. Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health Sciences, University of Massachusetts, Morrill I, N344, Amherst, MA 01003 USA
| | - Mark P. Mattson
- National Institute of Aging Intramural Research Program, Biomedical Research Center, 5th Floor, 251 Bayview Boulevard, Baltimore, MD 22124 USA
| |
Collapse
|
12
|
Woehrling EK, Hill EJ, Coleman MD. Evaluation of the importance of astrocytes when screening for acute toxicity in neuronal cell systems. Neurotox Res 2009; 17:103-13. [PMID: 19593679 DOI: 10.1007/s12640-009-9084-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 04/24/2009] [Accepted: 07/01/2009] [Indexed: 12/17/2022]
Abstract
Reliable, high throughput, in vitro preliminary screening batteries have the potential to greatly accelerate the rate at which regulatory neurotoxicity data is generated. This study evaluated the importance of astrocytes when predicting acute toxic potential using a neuronal screening battery of pure neuronal (NT2.N) and astrocytic (NT2.A) and integrated neuronal/astrocytic (NT2.N/A) cell systems derived from the human NT2.D1 cell line, using biochemical endpoints (mitochondrial membrane potential (MMP) depolarisation and ATP and GSH depletion). Following exposure for 72 h, the known acute human neurotoxicants trimethyltin-chloride, chloroquine and 6-hydroxydopamine were frequently capable of disrupting biochemical processes in all of the cell systems at non-cytotoxic concentrations. Astrocytes provide key metabolic and protective support to neurons during toxic challenge in vivo and generally the astrocyte containing cell systems showed increased tolerance to toxicant insult compared with the NT2.N mono-culture in vitro. Whilst there was no consistent relationship between MMP, ATP and GSH log IC(50) values for the NT2.N/A and NT2.A cell systems, these data did provide preliminary evidence of modulation of the acute neuronal toxic response by astrocytes. In conclusion, the suitability of NT2 neurons and astrocytes as cell systems for acute toxicity screening deserves further investigation.
Collapse
Affiliation(s)
- E K Woehrling
- School of Life and Health Sciences, Aston University, Birmingham, UK.
| | | | | |
Collapse
|
13
|
Hormesis and Pharmacology. Pharmacology 2009. [DOI: 10.1016/b978-0-12-369521-5.00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
Calabrese EJ. Dose-Response Features of Neuroprotective Agents: An Integrative Summary. Crit Rev Toxicol 2008; 38:253-348. [DOI: 10.1080/10408440801981965] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Abstract
This article assesses how astrocytes respond to numerous endogenous agonists and a wide variety of chemical stressors, including well-known neurotoxic agents such as lead and methylmercury, and drugs, within the context of dose-response relationships. In general, astrocytes displayed biphasic dose-response relationships from exposure to neurotoxic agents with temporal and quantitative features similar to hormetic dose responses. While the low-dose stimulatory responses have been viewed as a manifestation of a toxic response, this perspective is being broadly reconsidered and in some cases reinterpreted as being an indicator of an adaptive/protective response. These dose-response patterns are likely to have significant implications in a wide range of conditions affecting normal developmental processes, tumor development, adaptive responses to numerous environmental neurotoxins, and strategies for drug development for the treatment of neurodegenerative conditions.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
16
|
Caneda-Ferrón B, De Girolamo LA, Costa T, Beck KE, Layfield R, Billett EE. Assessment of the direct and indirect effects of MPP+ and dopamine on the human proteasome: implications for Parkinson's disease aetiology. J Neurochem 2007; 105:225-38. [PMID: 18021296 DOI: 10.1111/j.1471-4159.2007.05130.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial impairment, glutathione depletion and oxidative stress have been implicated in the pathogenesis of Parkinson's disease (PD), linked recently to proteasomal dysfunction. Our study analysed how these factors influence the various activities of the proteasome in human SH-SY5Y neuroblastoma cells treated with the PD mimetics MPP+ (a complex 1 inhibitor) or dopamine. Treatment with these toxins led to dose- and time-dependent reductions in ATP and glutathione and also chymotrypsin-like and post-acidic like activities; trypsin-like activity was unaffected. Antioxidants blocked the effects of dopamine, but not MPP+, suggesting that oxidative stress was more important in the dopamine-mediated effects. With MPP+, ATP depletion was a prerequisite for loss of proteasomal activity. Thus in a dopaminergic neuron with complex 1 dysfunction both oxidative stress and ATP depletion will contribute independently to loss of proteasomal function. We show for the first time that addition of MPP+ or dopamine to purified samples of the human 20S proteasome also reduced proteasomal activities; with dopamine being most damaging. As with toxin-treated cells, chymotrypsin-like activity was most sensitive and trypsin-like activity the least sensitive. The observed differential sensitivity of the various proteasomal activities to PD mimetics is novel and its significance needs further study in human cells.
Collapse
Affiliation(s)
- Begoña Caneda-Ferrón
- Interdisciplinary Biomedical Research Centre, School of Biomedical and Natural Sciences, Nottingham Trent University, Clifton, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
17
|
Fitzgerald JC, Ufer C, Billett EE. A link between monoamine oxidase-A and apoptosis in serum deprived human SH-SY5Y neuroblastoma cells. J Neural Transm (Vienna) 2007; 114:807-10. [PMID: 17393061 DOI: 10.1007/s00702-007-0692-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022]
Abstract
Increased monoamine oxidase (MAO) activity was recently shown to accompany apoptotic cell death of various neuronal cells following growth factor deprivation. Here we show that in serum deprived SH-SY5Y cells, MAO-A mRNA levels and catalytic activities are increased, linked with activation of the apoptotic executioner caspase-3. Importantly, specific inhibition of MAO-A activity resulted in loss of apoptotic cell morphology. Our study indicates that MAO catalytic activity is involved in apoptotic signalling in response to serum withdrawal in neuronal cells.
Collapse
Affiliation(s)
- J C Fitzgerald
- School of Biomedical and Natural Sciences, Nottingham Trent University, Nottingham, UK
| | | | | |
Collapse
|
18
|
Beck KE, De Girolamo LA, Griffin M, Billett EE. The role of tissue transglutaminase in 1-methyl-4-phenylpyridinium (MPP+)-induced toxicity in differentiated human SH-SY5Y neuroblastoma cells. Neurosci Lett 2006; 405:46-51. [PMID: 16876317 DOI: 10.1016/j.neulet.2006.06.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 06/06/2006] [Accepted: 06/15/2006] [Indexed: 12/21/2022]
Abstract
Tissue transglutaminase (TG2) can induce post-translational modification of proteins, resulting in protein cross-linking or incorporation of polyamines into substrates, and can also function as a signal transducing G protein. The role of TG2 in the formation of insoluble cross-links has led to its implication in some neurodegenerative conditions. Exposure of pre-differentiated SH-SY5Y cells to the Parkinsonian neurotoxin 1-methyl-4-phenylpyridinium ion (MPP(+)) resulted in significant dose-dependent reductions in TG2 protein levels, measured by probing Western blots with a TG2-specific antibody. Transglutaminase (TG) transamidating activity, on the other hand, monitored by incorporation of a polyamine pseudo-substrate into cellular proteins, was increased. Inhibitors of TG (putrescine) and TG2 (R283) exacerbated MPP(+) toxicity, suggesting that activation of TG2 may promote a survival response in this toxicity paradigm.
Collapse
Affiliation(s)
- Katy E Beck
- School of Biomedical and Natural Sciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | | | | | | |
Collapse
|
19
|
Windisch M, Hutter-Paier B, Grygar E, Doppler E, Moessler H. N-PEP-12 – a novel peptide compound that protects cortical neurons in culture against different age and disease associated lesions. J Neural Transm (Vienna) 2005; 112:1331-43. [PMID: 15750682 DOI: 10.1007/s00702-005-0283-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 01/15/2005] [Indexed: 10/25/2022]
Abstract
The neuroprotective potency of N-PEP-12, a novel, proprietary compound consisting of biopeptides and amino acids was investigated. Lesion models have been applied in neuronal cultures of embryonic chicken cortex, pre-treated with N-PEP-12 from the first day onwards. On day 8 in vitro neurons were lesioned and cell viability was measured 24 and 48 hours later. To simulate acute brain ischemia, cytotoxic hypoxia was induced by sodium cyanide or by iodoacetate and excitotoxicity by L-glutamate. Ionomycin for up to 48 hours induced calcium overload. The cytoskeleton was disrupted by addition of colchicine. N-PEP-12 shows dose-dependent neuroprotection in all different models. The effect size depends on the recovery time but also on the extent of the lesion. In cases of mild to moderate lesion pronounced dose-dependent effects could be demonstrated. This indicates that chronic exposure to N-PEP-12 is able to prevent neuronal cell death associated to conditions occurring during normal aging and neurological disorders like ischemic stroke, hypoxia, brain trauma, or AD.
Collapse
Affiliation(s)
- M Windisch
- JSW-Research Forschungslabor GmbH, Graz, Austria.
| | | | | | | | | |
Collapse
|
20
|
Slamon ND, Mead C, Morgan C, Mitchell A, Pentreath VW. The involvement of calcium in the protective and toxic (nonlinear) responses of rodent and human astroglial cells. NONLINEARITY IN BIOLOGY, TOXICOLOGY, MEDICINE 2005; 3:79-95. [PMID: 19330156 PMCID: PMC2657843 DOI: 10.2201/nonlin.003.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The involvement of [Ca(2+)](i) in the reactive changes of astrocytes which accompany exposure to different chemicals were studied in cultures of C6 and 1321N1 cells. Cells were exposed to up to three serial pulses of the differentiating agent dBcAMP, which induces activation-type changes in the cells. Other cells, with or without the dBcAMP treatments, were treated with a range of concentrations of the antidepressants amitriptyline and fluoxetine and the glial toxicants acrylamide and chloroquine. In some experiments the L-type voltage calcium channel blocker Nifedipine was employed. [Ca(2+)](i) was measured in populations of the cells using Fura-2AM and a charge coupled device (CCD) camera attached to a fluorescence microscope. dBcAMP induced both dose- and time-dependent changes in [ Ca(2+)](i) with increases in both the [Ca(2+)](i) oscillations and mean [Ca(2+)](i) (e.g. in C6 cells at 18 min mean [Ca(2+)](i) was 318 +/- 20nM following the single differentiating dBcAMP pulses, 489 +/- 17nM (p < 0.001) following two serial pulses, and 275 +/- 30nM (not significant) following three pulses). Therapeutic doses of fluoxetine and amitriptyline caused increases in the calcium oscillations and the mean calcium concentrations ( maximum recorded mean increase was in the C6 cells at 10min by 0.02 muM fluoxetine when [Ca(2+)](i) was 411 +/- 35nM c.f. control 254 +/- 25nM, p = 0.01). Higher (non-therapeutic) doses of both antidepressants caused significant reductions. Chloroquine and acrylamide also caused dose-dependent bi-phasic types of alterations in [Ca(2+)](i), with significant reductions at lower, sub-cytotoxic doses followed by significant increases at higher concentrations, approaching those which cause cell damage. Nifedipine treatment caused some reductions in the dBcAMP, antidepressant or toxicant-induced calcium changes, but this substance also initiated cytotoxic alterations. The findings show that both the activation-type changes (which are frequently associated with increased protective capacities) and toxic responses of C6 and 1321N1 cells to different chemical agents are associated with dose-dependent alterations in [Ca(2+)](i).
Collapse
Affiliation(s)
- N Debbie Slamon
- Division of Biosciences, University of Salford, Salford, U.K
| | | | | | | | | |
Collapse
|
21
|
Cristòfol RM, Gassó S, Vílchez D, Pertusa M, Rodríguez-Farré E, Sanfeliu C. Neurotoxic effects of trimethyltin and triethyltin on human fetal neuron and astrocyte cultures: a comparative study with rat neuronal cultures and human cell lines. Toxicol Lett 2004; 152:35-46. [PMID: 15294345 DOI: 10.1016/j.toxlet.2004.03.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/25/2004] [Accepted: 03/26/2004] [Indexed: 11/24/2022]
Abstract
Trimethyltin (TMT) and triethyltin (TET) caused cell death in cultures of primary human neurons and astrocytes, rat neurons and human neuroblastoma cell lines. Human neurons and astrocytes showed a delayed response to TMT cytotoxicity. After 24h of TMT exposure, LC50 values were 148.1, 335.5 and 609.7 microM for SK-N-MC neuroblastoma cell line, neurons and astrocytes, respectively. Over 5 days of exposure, the cytotoxic potency of TMT increased about 70-fold in human cortical neurons. Rat hippocampal neurons were the most vulnerable cells to TMT cytotoxicity, exhibiting an LC50 value 30-fold lower (1.4 microM) than that of rat cerebellar granule cells (44.28 microM). With the exception of rat hippocampal neurons, TET was more potent than TMT in inducing cell death (LC50 values of 3.5-16.9 microM). Moreover, TET was more effective than TMT in increasing intracellular free Ca2+ concentration in human and rat neurons. This work shows that human fetal neuron and astrocyte cultures are a useful model for studying the neurotoxic effects of these environmental contaminants and, thus, predicting their impact on human health.
Collapse
Affiliation(s)
- Rosa M Cristòfol
- Department of Pharmacology and Toxicology, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, Rosselló 161, Barcelona E-08034, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Seibert H, Mörchel S, Gülden M. Cytotoxic potency of trialkyltins to C6 glioma cells in vitro: impact of exposure conditions. Cell Biol Toxicol 2004; 20:273-83. [PMID: 15685930 DOI: 10.1007/s10565-004-3859-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Because of a possible role of astrocytes in trialkyltin-induced neurotoxicity in vivo various studies have been performed using cultures of astrocytes or glioma cells in vitro. With respect to cytotoxic potencies of trialkyltins these studies gave rather divergent results. Therefore the aim of the present study was to clarify whether variations of experimental conditions could be responsible for the differences of the cytotoxic activities of trimethyltin (TMT), triethyltin (TET) and tributyltin (TBT). Experiments were performed with rat C6 glioma cells. Toxicity was determined by measuring the reduction of the cell protein content. Cultures of proliferating and growth-arrested cells did not differ in their sensitivity. Exposure duration (1-72 h) had a strong but differing influence on the cytotoxic potency of the trialkyltins. After short exposure times the potencies differed largely (TMT < TET < TBT), whereas they became more and more similar with increasing exposure duration. The potency-time relationships for TMT and TET could be described by the equation: EC50 = k x t(-n), while for TBT an incipient value (EC50, infinity) had to be included: EC50 = EC50, infinity + k x t(-n). Addition of serum albumin to the culture medium decreased the cytotoxic potency of the trialkyltins. However, the impact of protein binding on their bioavailability was relatively low. The cytotoxic potency of the alkyltins was not dependent on the concentration of C6 cells. Taken together, neither differences in exposure conditions nor in the proliferative status of the cells are sufficient to account for the discrepancies in published results for trialkyltin cytotoxicity to astrocytes. Instead they may--at least partially--be explained by differing sensitivities of the endpoints used. Furthermore, C6 glioma cells respond considerably more sensitively to trialkytins than primary astrocytes, which questions their applicability as models for astrocyte toxicity.
Collapse
Affiliation(s)
- H Seibert
- Institut für Toxikologie und Pharmakologie für Naturwissenschaftler, Universitätsklinikum Schleswig-Holstein, Kiel, Germany.
| | | | | |
Collapse
|
23
|
Pentreath VW, Mead C. Responses of Cultured Astrocytes, C6 Glioma and 1321NI Astrocytoma Cells to Amyloid beta-Peptide Fragments. NONLINEARITY IN BIOLOGY, TOXICOLOGY, MEDICINE 2004; 2:45-63. [PMID: 19330108 PMCID: PMC2647817 DOI: 10.1080/15401420490426990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The effect of amyloid beta-peptide (betaAP), which can have both neurotrophic or neurotoxic effects on neurons and has been implicated in the pathogenesis of Alzheimer's disease (AD), was studied on astrocytes using primary cultures and astrocyte cell lines (rat C6 glioma, human 1321NI astrocytoma cells). The cultures were exposed to 0.0005-50 mug/ml) betaAP fragments 1-40, 25-35, 31-35, or 40-41 (control) for 24 hr. Some of the fragments were maintained at 37 degrees C for 48 hr to induce aggregation and some of the cell cultures were pretreated with the differentiating agent dBcAMP before the experiments. The astrocyte responses were evaluated for lysosome activity (neutral red assay) and levels of structural proteins, glial fibrillary acidic protein, vimentin, and S-100, which are altered in the dystrophic plaques with associated astrogliosis in AD. The cells frequently responded with biphasic responses, with initial (low-dose) activation-type responses (i.e., increases of indicator compared to controls), before reductions with altered morphology (increased branching of cells) at higher concentrations. However, cell death (with EC(50) values) was not observed, even at the maximum concentrations of betaAP fragments. The findings suggest that the astrocytes have a relatively high resistance against the betaAP toxicity.
Collapse
Affiliation(s)
- V W Pentreath
- Division of Biosciences, University of Salford, Salford, United Kingdom
| | | |
Collapse
|
24
|
Röhl C, Held-Feindt J, Sievers J. Developmental changes of parameters for astrogliosis during cultivation of purified cerebral astrocytes from newborn rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 144:191-9. [PMID: 12935916 DOI: 10.1016/s0165-3806(03)00171-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Astrogliosis is a common phenomenon seen in most neuropathological changes of the central nervous system. Several in vitro models have been used to study the mechanisms and conditions for the induction of astrogliosis, however many do not take into account that the metabolic and structural characteristics of astrocytes change with time in culture. Thus, it appears difficult to attribute changes of, e.g., GFAP to the normal change in vitro as opposed to additional changes due to an astrogliotic reaction. The present study was therefore undertaken to characterize these developmental changes in purified astroglial secondary cultures during cultivation to provide a basis for further investigations of astrogliosis in vitro. During 6 weeks of cultivation (3-43 days) GFAP (ELISA) increased much more (22-fold) than the cell number (2.5-fold) and the total protein (3.5-fold). The GFAP/protein ratio increased during the first 4 weeks of cultivation and reached a plateau thereafter, which was accompanied by a significant increase of GFAP mRNA (Northern blot). At the ultrastructural level (transmission electron microscopy) gliofilaments in the perinuclear region as well as in the cell processes of 4-day-old astrocytes showed a dispersed pattern, whereas an accumulation of gliofilaments was found in 39-day-old cells, which formed large aggregated bundles localized mostly in the cell processes. Our results show that in vitro astrocytes undergo developmental changes in their accumulation of GFAP and intermediate filaments which reach a stable steady state after 4 weeks in culture. These 'normal' developmental changes will have to be taken into account, when experiments with variations of the level of GFAP are performed. Stable culture conditions for experimentation appear to be present after 4 weeks in culture.
Collapse
Affiliation(s)
- Claudia Röhl
- Department of Anatomy, University of Kiel, Olshausenstr 40, D-24098 Kiel, Germany.
| | | | | |
Collapse
|
25
|
Trentin AG, Alvarez-Silva M, Moura Neto V. Thyroid hormone induces cerebellar astrocytes and C6 glioma cells to secrete mitogenic growth factors. Am J Physiol Endocrinol Metab 2001; 281:E1088-94. [PMID: 11595667 DOI: 10.1152/ajpendo.2001.281.5.e1088] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, the effect of thyroid hormone (triiodothyronine, T(3)) on the secretion of mitogenic growth factors in astrocytes and C6 glioma cells was examined. The proliferating activity of T(3) could be due, at least in part, to the astrocyte secretion of acidic and basic fibroblast growth factor (aFGF and bFGF), tumor necrosis factor-beta, and transforming growth factor-beta. In contrast, the conditioned medium (CM) of T(3)-treated C6 cells was mitogenic to this cell line only after hyaluronidase digestion, suggesting the impairment of growth factor mitogenic activity by hyaluronic acid. Furthermore, the presence of bFGF was significantly greater in the CM of both T(3)-treated astrocytes and T(3)-treated C6 cells than in the corresponding control CM. These data show that T(3) induces cerebellar astrocytes to secrete mitogenic growth factors, predominantly bFGF, that could influence astrocyte and neuronal proliferation via autocrine and paracrine pathways.
Collapse
Affiliation(s)
- A G Trentin
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | | | | |
Collapse
|
26
|
Gabryel B, Adamek M, Trzeciak HI. Does trimetazidine exert cytoprotective activity on astrocytes subjected to hypoxia in vitro? Neurotoxicology 2001; 22:455-65. [PMID: 11577804 DOI: 10.1016/s0161-813x(01)00041-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The aim of the present study was to establish whether trimetazidine (TMZ) is capable of protecting astrocytes against hypoxic injury. Using the model of astrocyte cell culture we tried to observe the cells treated with TMZ before, during and after hypoxia simulated in vitro. Cell viability was determined by Live/Dead (viability/cytotoxicity) Assay Kit and MTT conversion test. Apoptotic cell death was distinguished by a method using fluorescence microscopy with Hoechst 33342. The effect of the drug on the DNA synthesis was evaluated by measuring the incorporation of [3H]thymidine into DNA of astrocytes. TMZ stimulates the proliferation of astrocytes most significant one when the astrocytes are exposed to the drug in normoxia, hypoxia and/or re-oxygenation. Adding TMZ into cultures during re-oxygenation and hypoxial re-oxygenation significantly decreases the number of dead and apoptotic cells. Our experiment has proved that TMZ exerts the most significantly cytoprotective effect on astrocytes in vitro when added during hypoxia and/or re-oxygenation. We may conclude that the protective effect of TMZ depends on the sequence of drug adding and hypoxia/ re-oxygenation onset.
Collapse
Affiliation(s)
- B Gabryel
- Department of Pharmacology, Silesian Medical University, Katowice, Poland.
| | | | | |
Collapse
|
27
|
De Girolamo LA, Hargreaves AJ, Billett EE. Protection from MPTP-induced neurotoxicity in differentiating mouse N2a neuroblastoma cells. J Neurochem 2001; 76:650-60. [PMID: 11158235 DOI: 10.1046/j.1471-4159.2001.00066.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have shown previously that subcytotoxic concentrations of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) inhibit axon outgrowth and are associated with increased neurofilament heavy chain (NF-H) phosphorylation in differentiating mouse N2a neuroblastoma cells while higher doses (> 100 microM) cause cell death. In this work we assessed the ability of potential neuroprotective agents to alleviate both MPTP-induced cell death (cytotoxicity) and MPTP-induced NF-H phosphorylation/reduction in axon outgrowth (neurotoxicity) in N2a cells induced to differentiate by dbcAMP. The neurotoxic effects of MPTP occurred in the absence of significant alterations in energy status or mitochondrial membrane potential. The hormone oestradiol (100 microM) reduced the cytotoxic effect of MPTP, but blocked di-butyryl cyclic AMP (dbcAMP)-induced differentiation, i.e. axon outgrowth. Both the cytotoxic and neurotoxic effects of MPTP were reduced by the monoamine oxidase (MAO) inhibitors deprenyl and, to a lesser extent, clorgyline. Alleviation of both neurotoxicity and cytotoxicity was also achieved by conditioned medium derived from rat C6 glioma cells. In contrast, whilst the p38 MAP kinase inhibitor, SB202190, protected cells against MPTP-induced neurotoxicity, it could not maintain cell viability at high MPTP exposures. In each case neuroprotection involved maintenance of the differentiating phenotype linked with attenuation of NF-H hyper-phosphorylation; the latter may represent a mechanism by which neuronal cells can moderate MPTP-induced neurotoxicity. The use of a simplified neuronal cell model, which expresses subtle biochemical changes following neurotoxic insult, could therefore provide a valuable tool for the identification of potential neuroprotective agents.
Collapse
Affiliation(s)
- L A De Girolamo
- Department of Life Sciences, Faculty of Science and Mathematics, Nottingham Trent University, Clifton, Nottingham, UK
| | | | | |
Collapse
|
28
|
Pentreath VW, Slamon ND. Astrocyte phenotype and prevention against oxidative damage in neurotoxicity. Hum Exp Toxicol 2000; 19:641-9. [PMID: 11211243 DOI: 10.1191/096032700676221595] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Astrocytes possess a potent array of protective systems. These are chiefly targeted against oxidised products and radicals, which are frequently present in increased amounts following exposure of nervous tissue to a range of toxic insults. Following exposure to the toxic chemicals astrocytes commonly respond by alteration in phenotype with upregulation of a large number of molecules, including those controlling the protective systems. This article summarizes evidence, largely obtained from in vitro studies, which supports the concept that some of the changes in astrocyte phenotype are associated with increased protection against the cytotoxicity caused by the oxidative damage that results from exposure to range of neurotoxicants.
Collapse
Affiliation(s)
- V W Pentreath
- Department of Biological Sciences, University of Salford, Manchester, UK
| | | |
Collapse
|
29
|
Rakba N, Melhaoui A, Rissel M, Morel I, Loyer P, Lescoat G. Irniine, a pyrrolidine alkaloid, isolated from Arisarum vulgare can induce apoptosis and/or necrosis in rat hepatocyte cultures. Toxicon 2000; 38:1389-402. [PMID: 10758274 DOI: 10.1016/s0041-0101(99)00232-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of irniine, a pyrrolidine alkaloid extracted from the tubers of Arisarum vulgare, on rat hepatocyte primary cultures and rat liver epithelial cell line (RLEC) were studied. Cytotoxicity was first evaluated by LDH release, MTT and NR tests and MDA production, while cellular alterations were visualized by electron microscopy and DNA gel-electrophoresis. In hepatocyte and RLEC cultures, a major toxicity appeared at 40 microM of irniine and was demonstrated by an increase in LDH release and decreases in MTT reduction and NR uptake while concentrations lower than 40 microM did not induce significant changes in these parameters. However, we observed an increase in MDA production at 30 microM. Important alterations of the nuclei and mitochondria were also visualized by electron microscopy in cells treated with 50 microM. Using DNA gel-electrophoresis, we demonstrated that irniine at 40 and 50 microM induced DNA damage. All together these results demonstrate that: (1) Irniine induces a significant hepatotoxicity. (2) Irniine toxicity is not mediated by a metabolic derivative since RLEC, which do not contain a monooxygenase system, were also affected by this compound. (3) Irniine induces a significant DNA damage and oxidative stress which leads to cell death by necrosis and/or by apoptosis. Moreover, our data suggest that the alkaloid irniine contained in A. vulgare may be involved in the toxic symptoms observed after medicinal use or consumption of the plant tubers as food both by humans and animals.
Collapse
Affiliation(s)
- N Rakba
- INSERM U522, Régulations des Equilibres Fonctionnels du Foie Normal et Pathologique, Hôpital Pontchaillou, Rennes, France.
| | | | | | | | | | | |
Collapse
|
30
|
De Girolamo LA, Billett EE, Hargreaves AJ. Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on differentiating mouse N2a neuroblastoma cells. J Neurochem 2000; 75:133-40. [PMID: 10854256 DOI: 10.1046/j.1471-4159.2000.0750133.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of the neurotoxin 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP) was investigated in mouse N2a neuroblastoma cells, induced to differentiate by serum withdrawal and addition of dibutyryl cyclic AMP, over a 24-h period. Addition of MPTP (10 microM) during differentiation caused a change in cell morphology characterised by an inhibition of axon outgrowth, in the absence of cell death. Biochemical characterisation by western blotting revealed that MPTP had no significant effects on the levels of actin, alpha-tubulin, or total heavy-chain neurofilament (NF-H). However, NF-H phosphorylation appeared to increase following MPTP treatment when blots were probed with the phosphorylation state-specific antibodies RMd09 and Ta51. In addition, indirect immunofluorescence analysis revealed an accumulation of phosphorylated NF-H in the cell perikaryon, suggesting that altered NF-H distribution was associated with the observed effects of MPTP on cell morphology. These changes may represent a useful in vitro marker of MPTP neurotoxicity within a simple differentiating neuronal cell model system.
Collapse
Affiliation(s)
- L A De Girolamo
- Department of Life Sciences, Faculty of Science and Mathematics, Nottingham Trent University, Clifton, Nottingham, England.
| | | | | |
Collapse
|
31
|
Yi EY, Lim DK. Effects of chronic lead exposure on glutamate release and uptake in cerebellar cells of rat pups. Arch Pharm Res 1998; 21:113-9. [PMID: 9875417 DOI: 10.1007/bf02974014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Changes in the release and uptake of glutamate in cerebellar granule and glial cells of offspring of lead-exposed mothers were determined. In cultured cerebellar granule cells exposed to lead for 5 days, glutamate release was less influenced upon N-methyl-D-aspartate (NMDA) stimulation than that in the control. Although the NMDA-stimulated release of glutamate in cerebellar granule cells prepared from lead-exposed first generation pups was not different from that of the control group, the S-nitroso-N-acetylpenicillamine (SNAP)-stimulated release of glutamate in cerebellar granule cells obtained from lead-treated pups was less elevated than that in the control. Furthermore, in cerebellar granule cells obtained from lead-exposed second generations pups, glutamate release did not respond to both NMDA and SNAP stimulation. In cerebellar glial cells exposed to lead, the basal glutamate uptake was not changed. However, the L-trans-pyrollidine-2,4-dicarboxylic acid (PDC)-blocking effects was significantly reduced. In glial cells obtained from lead-exposed pups, the glutamate uptake was also less blocked by PDC than that in the control. Further decreases in PDC-blocking effects were observed in cerebellar glial cells obtained from lead-treated second generation pups compared to those from the control group. These results indicate that lead exposure induces the changes in the sensitivities of the glutamate release and uptake transporter. In addition, these results suggest that lead exposure might affect the intracellular signalling pathway and transmission in glutamatergic nervous system.
Collapse
Affiliation(s)
- E Y Yi
- College of Pharmacy, Chonnam National University, Kwangju, Korea
| | | |
Collapse
|
32
|
Harry GJ, Billingsley M, Bruinink A, Campbell IL, Classen W, Dorman DC, Galli C, Ray D, Smith RA, Tilson HA. In vitro techniques for the assessment of neurotoxicity. ENVIRONMENTAL HEALTH PERSPECTIVES 1998; 106 Suppl 1:131-58. [PMID: 9539010 PMCID: PMC1533280 DOI: 10.1289/ehp.98106s1131] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Risk assessment is a process often divided into the following steps: a) hazard identification, b) dose-response assessment, c) exposure assessment, and d) risk characterization. Regulatory toxicity studies usually are aimed at providing data for the first two steps. Human case reports, environmental research, and in vitro studies may also be used to identify or to further characterize a toxic hazard. In this report the strengths and limitations of in vitro techniques are discussed in light of their usefulness to identify neurotoxic hazards, as well as for the subsequent dose-response assessment. Because of the complexity of the nervous system, multiple functions of individual cells, and our limited knowledge of biochemical processes involved in neurotoxicity, it is not known how well any in vitro system would recapitulate the in vivo system. Thus, it would be difficult to design an in vitro test battery to replace in vivo test systems. In vitro systems are well suited to the study of biological processes in a more isolated context and have been most successfully used to elucidate mechanisms of toxicity, identify target cells of neurotoxicity, and delineate the development and intricate cellular changes induced by neurotoxicants. Both biochemical and morphological end points can be used, but many of the end points used can be altered by pharmacological actions as well as toxicity. Therefore, for many of these end points it is difficult or impossible to set a criterion that allows one to differentiate between a pharmacological and a neurotoxic effect. For the process of risk assessment such a discrimination is central. Therefore, end points used to determine potential neurotoxicity of a compound have to be carefully selected and evaluated with respect to their potential to discriminate between an adverse neurotoxic effect and a pharmacologic effect. It is obvious that for in vitro neurotoxicity studies the primary end points that can be used are those affected through specific mechanisms of neurotoxicity. For example, in vitro systems may be useful for certain structurally defined compounds and mechanisms of toxicity, such as organophosphorus compounds and delayed neuropathy, for which target cells and the biochemical processes involved in the neurotoxicity are well known. For other compounds and the different types of neurotoxicity, a mechanism of toxicity needs to be identified first. Once identified, by either in vivo or in vitro methods, a system can be developed to detect and to evaluate predictive ability for the type of in vivo neurotoxicity produced. Therefore, in vitro tests have their greatest potential in providing information on basic mechanistic processes in order to refine specific experimental questions to be addressed in the whole animal.
Collapse
Affiliation(s)
- G J Harry
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Protective roles of glutathione in the toxicity of mercury and cadmium compounds to C6 glioma cells. Toxicol In Vitro 1996; 10:257-64. [DOI: 10.1016/0887-2333(96)00012-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/1996] [Indexed: 11/21/2022]
|