2
|
Api AM, Belsito D, Biserta S, Botelho D, Bruze M, Burton GA, Buschmann J, Cancellieri MA, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Gadhia S, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler DC, Moustakas H, Na M, Penning TM, Ritacco G, Romine J, Sadekar N, Schultz TW, Selechnik D, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, phenol, CAS Registry Number 108-95-2. Food Chem Toxicol 2020; 149 Suppl 1:111909. [PMID: 33307118 DOI: 10.1016/j.fct.2020.111909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/02/2020] [Indexed: 11/25/2022]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - S Biserta
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE, 20502, Sweden
| | - G A Burton
- Member Expert Panel, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - J Buschmann
- Member Expert Panel, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- Member Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - S Gadhia
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Kumar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Na
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - D Selechnik
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel, The Journal of Dermatological Science (JDS), Editor-in-Chief, Professor and Chairman, Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
3
|
Vijayan SM, Göen T, Dennerlein K, Horch RE, Ludolph I, Drexler H, Kilo S. Calcium, magnesium and aluminium ions as decontaminating agents against dermal fluoride absorption following hydrofluoric acid exposure. Toxicol In Vitro 2020; 71:105055. [PMID: 33227357 DOI: 10.1016/j.tiv.2020.105055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 10/23/2022]
Abstract
The fluoride ions of the industrially largely irreplaceable, locally corrosive hydrofluoric acid (HF) can scavenge cations in biological tissues, which explains their high toxic potential, and also leads to local acidification through proton release. The influence of three complexing agents, calcium (Ca2+) gluconate (as 2.5% Ca2+gel and individually (2.84%) or commercially (10%) formulated Ca2+solution), magnesium (Mg2+) gluconate (2.84%) solution and aluminium (Al3+) solution (Hexafluorine®, pure and diluted) on the absorption of fluoride following HF exposure (1-3 min, 100 μl, 30%/0.64 cm2) through human skin was investigated in an ex-vivo diffusion cell model. Fluoride absorption was assessed over 6-24 h and analysed with a fluoride electrode. Decreasing the contamination time reduced the fluoride absorption distinctly which was further reduced by the application of fluoride-binding decontamination agents (Ca2+, Mg2+, Al3+) or water alone without being significantly different. Ca2+ appeared slightly more effective than Mg2+ in reducing fluoride absorption. Moreover, the addition of pH adjusting buffer promoted the decontamination efficacy. Fluoride-binding agents can facilitate the decontamination of dermal HF exposure. However, prompt decontamination appeared to be the key to successful limitation of fluoride absorption and pushes the choice of decontamination agent almost into the background.
Collapse
Affiliation(s)
- Suvarna Mini Vijayan
- Institute and Out- Patient Clinic of Occupational, Social and Environmental Medicine, Friedrich Alexander University Erlangen- Nürnberg (FAU), Germany
| | - Thomas Göen
- Institute and Out- Patient Clinic of Occupational, Social and Environmental Medicine, Friedrich Alexander University Erlangen- Nürnberg (FAU), Germany
| | - Kathrin Dennerlein
- Institute and Out- Patient Clinic of Occupational, Social and Environmental Medicine, Friedrich Alexander University Erlangen- Nürnberg (FAU), Germany
| | - R E Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Germany
| | - I Ludolph
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Germany
| | - Hans Drexler
- Institute and Out- Patient Clinic of Occupational, Social and Environmental Medicine, Friedrich Alexander University Erlangen- Nürnberg (FAU), Germany
| | - Sonja Kilo
- Institute and Out- Patient Clinic of Occupational, Social and Environmental Medicine, Friedrich Alexander University Erlangen- Nürnberg (FAU), Germany.
| |
Collapse
|
4
|
Kilo S, Wick J, Mini Vijayan S, Göen T, Horch RE, Ludolph I, Drexler H. Impact of physiologically relevant temperatures on dermal absorption of active substances - an ex-vivo study in human skin. Toxicol In Vitro 2020; 68:104954. [PMID: 32738276 DOI: 10.1016/j.tiv.2020.104954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/08/2020] [Accepted: 07/27/2020] [Indexed: 11/18/2022]
Abstract
Skin temperature plays a certain role in the dermal absorption of substances, but the extent and mechanisms of skin temperatures-induced modulation in ranges caused by physiological thermoregulation or environmental conditions are largely unknown. The influence of dermal temperature on the absorption of the model lipophilic compound (anisole) and the model hydrophilic compounds (1,4-dioxane, ethanol) through human skin was investigated at three dermal temperatures (25, 32 and 39 °C) in an ex-vivo diffusion cell model. The substances were applied to the skin and transdermal penetration was monitored. All substances showed temperature dependent variations in their penetration behavior (3 h: 25-39 °C: 202-275% increase in cumulative, transdermally penetrated amounts). The relative differences in absorption in relation to temperature were greatest within 45 min after exposure (25-39 °C: 347-653% rise in cumulated penetration), although absolute amounts absorbed were small (45 min vs. 3 h: 4.5-14.5%). Regardless of blood circulation, skin temperature significantly influences the amount and kinetics of dermal absorption. Substance-dependent, temperature-related changes of the lipid layer order or the porous pathway may facilitate penetration. The early-stage modulation of transdermal penetration indicates transappendageal absorption, which may be relevant for short-term exposures. For both, toxicological evaluation and perfusion cell studies, it is important to consider the thermal influence on absorption or to perform the latter at a standardized temperature (32±1 °C).
Collapse
Affiliation(s)
- S Kilo
- Institute and Out-Patient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Germany.
| | - J Wick
- Institute and Out-Patient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Germany
| | - S Mini Vijayan
- Institute and Out-Patient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Germany
| | - T Göen
- Institute and Out-Patient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Germany
| | - R E Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Germany
| | - I Ludolph
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Germany
| | - H Drexler
- Institute and Out-Patient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Germany
| |
Collapse
|
5
|
Desai PR, Cormier AR, Shah PP, Patlolla RR, Paravastu AK, Singh M. (31)P solid-state NMR based monitoring of permeation of cell penetrating peptides into skin. Eur J Pharm Biopharm 2013; 86:190-9. [PMID: 23702274 DOI: 10.1016/j.ejpb.2013.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 03/19/2013] [Accepted: 05/06/2013] [Indexed: 11/18/2022]
Abstract
The main objective of the current study was to investigate penetration of cell penetrating peptides (CPPs: TAT, R8, R11, and YKA) through skin intercellular lipids using (31)P magic angle spinning (MAS) solid-state NMR. In vitro skin permeation studies were performed on rat skin, and sections (0-60, 61-120, and 121-180μm) were collected and analyzed for (31)P NMR signal. The concentration-dependent shift of 0, 25, 50, 100, and 200mg/ml of TAT on skin layers, diffusion of TAT, R8, R11, and YKA in the skin and time dependent permeation of R11 was measured on various skin sections using (31)P solid-state NMR. Further, CPPs and CPP-tagged fluorescent dye encapsulate liposomes (FLip) in skin layers were tagged using confocal microscopy. The change in (31)P NMR chemical shift was found to depend monotonically on the amount of CPP applied on skin, with saturation behavior above 100mg/ml CPP concentration. R11 and TAT caused more shift in solid-state NMR peaks compared to other peptides. Furthermore, NMR spectra showed R11 penetration up to 180μm within 30min. The results of the solid-state NMR study were in agreement with confocal microscopy studies. Thus, (31)P solid-state NMR can be used to track CPP penetration into different skin layers.
Collapse
Affiliation(s)
- Pinaki R Desai
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, USA
| | - Ashley R Cormier
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, USA; National High Magnetic Field Laboratory, Tallahassee, USA
| | - Punit P Shah
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, USA
| | - Ram R Patlolla
- Dr. Reddys Laboratories, Integrated Product Development, Hyderabad, India
| | - Anant K Paravastu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, USA; National High Magnetic Field Laboratory, Tallahassee, USA.
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, USA.
| |
Collapse
|