1
|
Lysosomal functions and dysfunctions: Molecular and cellular mechanisms underlying Gaucher disease and its association with Parkinson disease. Adv Drug Deliv Rev 2022; 187:114402. [DOI: 10.1016/j.addr.2022.114402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 01/18/2023]
|
2
|
Hill CH, Cook GM, Spratley SJ, Fawke S, Graham SC, Deane JE. The mechanism of glycosphingolipid degradation revealed by a GALC-SapA complex structure. Nat Commun 2018; 9:151. [PMID: 29323104 PMCID: PMC5764952 DOI: 10.1038/s41467-017-02361-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/23/2017] [Indexed: 11/10/2022] Open
Abstract
Sphingolipids are essential components of cellular membranes and defects in their synthesis or degradation cause severe human diseases. The efficient degradation of sphingolipids in the lysosome requires lipid-binding saposin proteins and hydrolytic enzymes. The glycosphingolipid galactocerebroside is the primary lipid component of the myelin sheath and is degraded by the hydrolase β-galactocerebrosidase (GALC). This enzyme requires the saposin SapA for lipid processing and defects in either of these proteins causes a severe neurodegenerative disorder, Krabbe disease. Here we present the structure of a glycosphingolipid-processing complex, revealing how SapA and GALC form a heterotetramer with an open channel connecting the enzyme active site to the SapA hydrophobic cavity. This structure defines how a soluble hydrolase can cleave the polar glycosyl headgroups of these essential lipids from their hydrophobic ceramide tails. Furthermore, the molecular details of this interaction provide an illustration for how specificity of saposin binding to hydrolases is encoded.
Collapse
Affiliation(s)
- Chris H Hill
- Cambridge Institute for Medical Research, Department of Pathology, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.,MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Georgia M Cook
- Cambridge Institute for Medical Research, Department of Pathology, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Samantha J Spratley
- Cambridge Institute for Medical Research, Department of Pathology, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.,Antibody Discovery and Protein Engineering, MedImmune, Cambridge, CB21 6GH, UK
| | - Stuart Fawke
- Cambridge Institute for Medical Research, Department of Pathology, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Stephen C Graham
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Janet E Deane
- Cambridge Institute for Medical Research, Department of Pathology, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
3
|
Sun H. Deciphering alternative splicing and nonsense-mediated decay modulate expression in primary lymphoid tissues of birds infected with avian pathogenic E. coli (APEC). BMC Genet 2017; 18:21. [PMID: 28270101 PMCID: PMC5341183 DOI: 10.1186/s12863-017-0488-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/03/2017] [Indexed: 01/04/2023] Open
Abstract
Background Avian pathogenic E. coli (APEC) can lead to a loss in millions of dollars in poultry annually because of mortality and produce contamination. Studies have verified that many immune-related genes undergo changes in alternative splicing (AS), along with nonsense mediated decay (NMD), to regulate the immune system under different conditions. Therefore, the splicing profiles of primary lymphoid tissues with systemic APEC infection need to be comprehensively examined. Results Gene expression in RNAseq data were obtained for three different immune tissues (bone marrow, thymus, and bursa) from three phenotype birds (non-challenged, resistant, and susceptible birds) at two time points. Alternative 5′ splice sites and exon skipping/inclusion were identified as the major alternative splicing events in avian primary immune organs under systemic APEC infection. In this study, we detected hundreds of differentially-expressed-transcript-containing genes (DETs) between different phenotype birds at 5 days post-infection (dpi). DETs, PSAP and STT3A, with NMD have important functions under systemic APEC infection. DETs, CDC45, CDK1, RAG2, POLR1B, PSAP, and DNASE1L3, from the same transcription start sites (TSS) indicate that cell death, cell cycle, cellular function, and maintenance were predominant in host under systemic APEC. Conclusions With the use of RNAseq technology and bioinformatics tools, this study provides a portrait of the AS event and NMD in primary lymphoid tissues, which play critical roles in host homeostasis under systemic APEC infection. According to this study, AS plays a pivotal regulatory role in the immune response in chicken under systemic APEC infection via either NMD or alternative TSSs. This study elucidates the regulatory role of AS for the immune complex under systemic APEC infection. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0488-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
4
|
Sun Y, Zamzow M, Ran H, Zhang W, Quinn B, Barnes S, Witte DP, Setchell KDR, Williams MT, Vorhees CV, Grabowski GA. Tissue-specific effects of saposin A and saposin B on glycosphingolipid degradation in mutant mice. Hum Mol Genet 2013; 22:2435-50. [PMID: 23446636 DOI: 10.1093/hmg/ddt096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Individual saposin A (A-/-) and saposin B (B-/-)-deficient mice show unique phenotypes caused by insufficient degradation of myelin-related glycosphingolipids (GSLs): galactosylceramide and galactosylsphingosine and sulfatide, respectively. To gain insight into the interrelated functions of saposins A and B, combined saposin AB-deficient mice (AB-/-) were created by knock-in point mutations into the saposins A and B domains on the prosaposin locus. Saposin A and B proteins were undetectable in AB-/- mice, whereas prosaposin, saposin C and saposin D were expressed near wild-type (WT) levels. AB-/- mice developed neuromotor deterioration at >61 days and exhibited abnormal locomotor activity and enhanced tremor. AB-/- mice (~96 days) lived longer than A-/- mice (~85 days), but shorter than B-/- mice (~644 days). Storage materials were observed in Schwann cells and neuronal processes by electron microscopy. Accumulation of p62 and increased levels of LC3-II were detected in the brainstem suggesting altered autophagy. GSL analyses by (liquid chromatography) LC/MS identified substantial increases in lactosylceramide in AB-/- mouse livers. Sulfatide accumulated, but galactosylceramide remained at WT levels, in the AB-/- mouse brains and kidneys. Brain galactosylsphingosine in AB-/- mice was ~68% of that in A-/- mice. These findings indicate that combined saposins A and B deficiencies attenuated GalCer-β-galactosylceramidase and GM1-β-galactosidase functions in the degradation of lactosylceramide preferentially in the liver. Blocking sulfatide degradation from the saposin B deficiency diminished galactosylceramide accumulation in the brain and kidney and galctosylsphingosine in the brain. These analyses of AB-/- mice continue to delineate the tissue differential interactions of saposins in GSL metabolism.
Collapse
Affiliation(s)
- Ying Sun
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Shimokawa T, Nabeka H, Yamamiya K, Wakisaka H, Takeuchi T, Kobayashi N, Matsuda S. Distribution of prosaposin in rat lymphatic tissues. Cell Tissue Res 2013; 352:685-93. [PMID: 23420452 DOI: 10.1007/s00441-013-1575-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/17/2013] [Indexed: 11/26/2022]
Abstract
Prosaposin (PSAP) is as a trophic factor and an activator protein for sphingolipid hydrolase in lysosomes. We generated a specific antibody to PSAP and examined the spatiotemporal distribution of PSAP-immunoreactive (PSAP-IR) cells in the lymphatic tissues of Wistar rats. Immunoblots of tissue homogenates separated electrophoretically showed a single band for PSAP in brain but two bands in spleen. PSAP-IR cells were distributed in both the red and white pulp of the spleen, in both the cortex and medulla of the thymus and in mesenteric lymph nodes. Many PSAP-IR cells were found in the dome portion of Peyer's patches and the number of PSAP-IR cells increased with the age of the rat. To identify the PSAP-IR cells, double- and triple-immunostainings were performed with antibodies against PSAP, CD68 and CD1d. The large number of double- and triple-positive cells suggested that antigen-presenting cells contained much PSAP in these lymphatic tissues. Intense expression of PSAP mRNA, examined by in situ hybridisation, was observed in the red pulp and corona of the spleen. In rats, the PSAP gene generates two alternative splicing forms of mRNA: Pro+9 containing a 9-base insertion and Pro+0 without the insertion. We examined the expression patterns of the alternative splicing forms of PSAP mRNA in the spleen. The presence of both types of mRNA (Pro+9 and Pro+0) indicated that the spleen contains various types of prosaposin-producing and/or secreting cells. These findings suggest diverse functions for PSAP in the immune system.
Collapse
Affiliation(s)
- Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0212, Japan.
| | | | | | | | | | | | | |
Collapse
|
6
|
Attenuation of MPTP/MPP(+) toxicity in vivo and in vitro by an 18-mer peptide derived from prosaposin. Neuroscience 2013; 236:373-93. [PMID: 23321539 DOI: 10.1016/j.neuroscience.2013.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 12/29/2012] [Accepted: 01/08/2013] [Indexed: 01/23/2023]
Abstract
Parkinson's disease (PD) is a chronic progressive neurological disorder with an increasing incidence in the aging population. Neuroprotective and/or neuroregenerative strategies remain critical in the treatment of this increasingly prevalent disease. Prosaposin is a neurotrophic factor whose neurotrophic activity is attributed to a stretch of 12 amino acids located at the N-terminal region of saposin C. The present study was performed to investigate the protective effect and mechanism of action of a prosaposin-derived 18-mer peptide (PS18: LSELIINNATEELLIKGL) in Parkinson's disease models. We used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 1-methyl-4-phenylpyridinium ion (MPP(+))-induced dopaminergic neurotoxicity in C57BL/6J mice or SH-SY5Y cells and explored the protective effect and mechanisms of action of PS18 on dopaminergic neurons. Treatment with 2.0mg/kg PS18 significantly improved behavioral deficits, enhanced the survival of tyrosine hydroxylase-positive neurons, and decreased the activity of astrocytes in the substantia nigra and striatum in MPTP-induced PD model mice. In vitro, a Cell Counting Kit-8 assay and Hoechst 33258 staining revealed that co-treatment with 300ng/mL PS18 and 5mM MPP(+) protected against MPP(+)-induced nuclear morphological changes and attenuated cell death induced by MPP(+). We also found that PS18-FAM entered the cells, and the retention time of PS18-FAM in the cytoplasm of MPP(+)-treated cells was shorter than that of untreated cells. In addition, PS18 showed protection from MPP(+)/MPTP-induced apoptosis in the SH-SY5Y cells and dopaminergic neurons in the PD model mice via suppression of the c-Jun N-terminal kinase/c-Jun pathway; upregulation of Bcl-2; downregulation of BAX, attenuating mitochondrial damage; and inhibition of caspase-3. These findings suggest that PS18 may provide a valuable therapeutic strategy for the treatment of progressive neurodegenerative diseases such as PD.
Collapse
|
7
|
Bendikov-Bar I, Horowitz M. Gaucher disease paradigm: from ERAD to comorbidity. Hum Mutat 2012; 33:1398-407. [PMID: 22623374 DOI: 10.1002/humu.22124] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/16/2012] [Indexed: 01/28/2023]
Abstract
Mutations in the GBA gene, encoding the lysosomal acid beta-glucocerebrosidase (GCase), lead to deficient activity of the enzyme in the lysosomes, to glucosylceramide accumulation and to development of Gaucher disease (GD). More than 280 mutations in the GBA gene have been directly associated with GD. Mutant GCase variants present variable levels of endoplasmic reticulum (ER) retention, due to their inability to correctly fold, and undergo ER-associated degradation (ERAD) in the proteasomes. The degree of ER retention and proteasomal degradation is one of the factors that determine GD severity. In the present review, we discuss ERAD of mutant GCase variants and its possible consequences in GD patients and in carriers of GD mutations.
Collapse
Affiliation(s)
- Inna Bendikov-Bar
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
8
|
Xue B, Chen J, Gao H, Saito S, Kobayashi N, Shimokawa T, Nabeka H, Sano A, Matsuda S. Chronological changes in prosaposin in the developing rat brain. Neurosci Res 2011; 71:22-34. [PMID: 21684311 DOI: 10.1016/j.neures.2011.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 05/28/2011] [Accepted: 06/01/2011] [Indexed: 11/30/2022]
Abstract
Prosaposin is the precursor protein of four glycoproteins, saposins A, B, C, and D, which activate sphingolipid hydrolases in lysosomes. Besides this role, intact prosaposin is also known as a potent neurotrophic factor that prevents neuronal cell death and stimulates neurite outgrowth in in vivo and in vitro experiments. In the present study, we examined chronological changes in prosaposin immunoreactivity in the rat brain using immunofluorescence staining and Diaminobenzidine (DAB) immunohistochemistry. In the hippocampal regions CA1, CA3, and dentate gyrus, the strongest staining of prosaposin was observed on postnatal day 1. The prosaposin immunoreactivity then decreased gradually until postnatal day 28. But in the cerebral cortex, prosaposin staining intensity increased from postnatal day 1 to 14, then decreased until postnatal day 28. The prosaposin immunoreactivity co-localized with the lysosomal granules labeled by an anti-Cathepsin D antibody, indicating that prosaposin mainly localized in the lysosomes of the neurons. We also examined the chronological changes in prosaposin mRNA and its two alternatively spliced variants using in situ hybridization. We found that both the mRNA forms, especially the one without a nine-base insertion, increased significantly from embryonic day 15 to postnatal day 7, then decreased gradually until postnatal day 28. Abundant prosaposin expression in the perinatal stages indicates a potential role of prosaposin in the early development of the rat brain.
Collapse
Affiliation(s)
- Bing Xue
- Division of Anatomy and Embryology, Department of Integrated Basic Medical Science, Ehime University School of Medicine, Shitsukawa, To-on, Ehime 791-0295, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lu K, Zhao G, Lu H, Zhao S, Song Y, Qi X, Hou Y. Toll-like receptor 4 can recognize SapC-DOPS to stimulate macrophages to express several cytokines. Inflamm Res 2010; 60:153-61. [PMID: 20853174 DOI: 10.1007/s00011-010-0249-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 07/20/2010] [Accepted: 09/06/2010] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE AND DESIGN SapC-DOPS is a newly combined compound consisting of saposin C and dioleoylphosphatidylserine (DOPS). Our recent study showed that SapC-DOPS exhibits anti-tumor activity. However, SapC-DOPS has recognition elements of Toll-like receptor (TLR) 2 and TLR4; therefore, we want to know whether SapC-DOPS can induce abnormal immunoreaction via identification TLRs. METHODS We investigated the capacity of SapC-DOPS to induce cytokines in vivo and in vitro and analyzed the involvement of TLR and NF-kB in these cytokines production. RESULTS SapC-DOPS could activate the cytokine production by peripheral macrophages, enhance the expressions of TLR4 and stimulate the NF-κB nuclear translocation. PDTC, an NF-κB inhibitor, could decrease the SapC-DOPS inducible TNF-α and IL-1β production. CONCLUSIONS SapC-DOPS was similar to LPS in the immune response and may induce the production of cytokines in macrophages via the TLR4 signaling pathway and, at least in part, the alteration of the NF-κB pathway.
Collapse
Affiliation(s)
- Kaihua Lu
- Immunology and Reproductive Biology Lab of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
10
|
Xu YH, Barnes S, Sun Y, Grabowski GA. Multi-system disorders of glycosphingolipid and ganglioside metabolism. J Lipid Res 2010; 51:1643-75. [PMID: 20211931 DOI: 10.1194/jlr.r003996] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Glycosphingolipids (GSLs) and gangliosides are a group of bioactive glycolipids that include cerebrosides, globosides, and gangliosides. These lipids play major roles in signal transduction, cell adhesion, modulating growth factor/hormone receptor, antigen recognition, and protein trafficking. Specific genetic defects in lysosomal hydrolases disrupt normal GSL and ganglioside metabolism leading to their excess accumulation in cellular compartments, particularly in the lysosome, i.e., lysosomal storage diseases (LSDs). The storage diseases of GSLs and gangliosides affect all organ systems, but the central nervous system (CNS) is primarily involved in many. Current treatments can attenuate the visceral disease, but the management of CNS involvement remains an unmet medical need. Early interventions that alter the CNS disease have shown promise in delaying neurologic involvement in several CNS LSDs. Consequently, effective treatment for such devastating inherited diseases requires an understanding of the early developmental and pathological mechanisms of GSL and ganglioside flux (synthesis and degradation) that underlie the CNS diseases. These are the focus of this review.
Collapse
Affiliation(s)
- You-Hai Xu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
11
|
CHU ZHENGTAO, SUN YING, KUAN CHIAYI, GRABOWSKI GREGORYA, QI XIAOYANG. Saposin C: Neuronal Effect and CNS Delivery by Liposomes. Ann N Y Acad Sci 2008. [DOI: 10.1111/j.1749-6632.2005.tb00031.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Hosoda Y, Miyawaki K, Saito S, Chen J, Bing X, Terashita T, Kobayashi N, Araki N, Shimokawa T, Hamada F, Sano A, Tanabe H, Matsuda S. Distribution of prosaposin in the rat nervous system. Cell Tissue Res 2007; 330:197-207. [PMID: 17763872 DOI: 10.1007/s00441-007-0464-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Accepted: 07/04/2007] [Indexed: 10/22/2022]
Abstract
Prosaposin is the precursor of four sphingolipid activator proteins (saposins A, B, C, and D) for lysosomal hydrolases and is abundant in the nervous system and muscle. In addition to its role as a precursor of saposins in lysosomes, intact prosaposin has neurotrophic effects in vivo or in vitro when supplied exogenously. We examined the distribution of prosaposin in the central and peripheral nervous systems and its intracellular distribution. Using a monospecific antisaposin D antibody that crossreacts with prosaposin but not with saposins A, B, or C, immunoblot experiments showed that both the central and peripheral nervous systems express unprocessed prosaposin and little saposin D. Using the antisaposin D antibodies, we demonstrated that prosaposin is abundant in almost all neurons of both the central and peripheral nervous systems, including autonomic nerves, as well as motor and sensory nerves. Immunoelectron microscopy using double staining with antisaposin D and anticathepsin D antibodies showed strong prosaposin immunoreactivity mainly in the lysosomal granules in the neurons in both the central and peripheral nervous systems. The expression of prosaposin mRNA, examined using in situ hybridization, was observed in these same neurons. Our results suggest that prosaposin is synthesized ubiquitously in neurons of both the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Yoshiki Hosoda
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0212, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Grabowski GA. Delivery of lysosomal enzymes for therapeutic use: glucocerebrosidase as an example. Expert Opin Drug Deliv 2006; 3:771-82. [PMID: 17076599 DOI: 10.1517/17425247.3.6.771] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Enzyme therapies for lysosomal storage diseases have developed over the past decade into the standard-of-care for affected patients. Such therapy for Gaucher disease has been the prototype, using natural source or recombinant forms of human acid beta-glucosidase (GCase). In Gaucher disease, macrophages are the repository for the pathological lipid and the target for delivery of GCase. The macrophage mannose receptor provides a Trojan horse for intracellular delivery of intravenously administered GCase (man-GCase) with mannosyl-terminated oligosaccharide chains. Passage through several hostile compartments (e.g., plasma) leads to inefficient delivery of man-GCase to macrophage lysosomes. However, regular infusions of man-GCase re-establishes health in affected patients. Similar results are being obtained in several other lysosomal storage diseases. Evolving gene and chaperone approaches provide alternative treatment strategies.
Collapse
Affiliation(s)
- Gregory A Grabowski
- The Division and Programme in Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
14
|
Abu-Baker S, Qi X, Newstadt J, Lorigan GA. Structural changes in a binary mixed phospholipid bilayer of DOPG and DOPS upon saposin C interaction at acidic pH utilizing 31P and 2H solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1717:58-66. [PMID: 16289479 DOI: 10.1016/j.bbamem.2005.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 09/07/2005] [Accepted: 09/12/2005] [Indexed: 12/15/2022]
Abstract
Saposin C (Sap C) is known to stimulate the catalytic activity of the lysosomal enzyme glucosylceramidase (GCase) that facilitates the hydrolysis of glucosylceramide to ceramide and glucose. Both Sap C and acidic phospholipids are required for full activity of GCase. In order to better understand this interaction, mixed bilayer samples prepared from dioleoylphosphatidylglycerol (DOPG) and dioleoylphosphatidylserine (DOPS) (5:3 ratio) and Sap C were investigated using (2)H and (31)P solid-state NMR spectroscopy at temperatures ranging from 25 to 50 degrees C at pH 4.7. The Sap C concentrations used to carry out these experiments were 0 mol%, 1 mol% and 3 mol% with respect to the phospholipids. The molecular order parameters (S(CD)) were calculated from the dePaked (2)H solid-state NMR spectra of Distearoyl-d70-phosphatidylglycerol (DSPG-d70) incorporated with DOPG and DOPS binary mixed bilayers. The S(CD) profiles indicate that the addition of Sap C to the negatively charged phospholipids is concentration dependent. S(CD) profiles of 1 mol% of the Sap C protein show only a very slight decrease in the acyl chain order. However, the S(CD) profiles of the 3 mol% of Sap C protein indicate that the interaction is predominantly increasing the disorder in the first half of the acyl chain near the head group (C1-C8) indicating that the amino and the carboxyl termini of Sap C are not inserting deep into the DOPG and DOPS mixed bilayers. The (31)P solid-state NMR spectra show that the chemical shift anisotropy (CSA) for both phospholipids decrease and the spectral broadening increases upon addition of Sap C to the mixed bilayers. The data indicate that Sap C interacts similarly with the head groups of both acidic phospholipids and that Sap C has no preference to DOPS over DOPG. Moreover, our solid-state NMR spectroscopic data agree with the structural model previously proposed in the literature [X. Qi, G.A. Grabowski, Differential membrane interactions of saposins A and C. Implication for the functional specificity, J. Biol. Chem. 276 (2001) 27010-27017] [1].
Collapse
Affiliation(s)
- Shadi Abu-Baker
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | | | | |
Collapse
|
15
|
Cohen T, Ravid L, Altman N, Madar-Shapiro L, Fein A, Weil M, Horowitz M. Conservation of expression and alternative splicing in the prosaposin gene. ACTA ACUST UNITED AC 2005; 129:8-19. [PMID: 15469878 DOI: 10.1016/j.molbrainres.2004.06.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2004] [Indexed: 10/26/2022]
Abstract
Prosaposin is the precursor of four lysosomal activator molecules known as saposins A, B, C and D. It is also secreted and was proposed to be a neurotrophic factor. The neurotrophic function was attributed to the amino terminus of saposin C. In man, mouse and rat prosaposin is transcribed to two major isoforms differing in the inclusion of 9 bps of exon 8 within the saposin B domain. In the present study, we show that there is evolutionary conservation of the prosaposin structure and alternative splicing in chick and zebrafish as well. Moreover, there is conservation in prosaposin expression as tested immunohistochemically in the mouse and chick developing brain. We developed a sensitive assay to quantitate the prosaposin alternatively spliced forms. Our results indicate that, in mouse brain, skeletal and cardiac muscle the exon 8-containing RNA is most abundant, while it is almost absent from visceral and smooth muscle-containing organs. We observed temporal and differential expression of the alternatively spliced prosaposin mRNAs in mouse and chick brain as well as during development. The elevation in the abundance of exon 8-containing prosaposin RNA during mouse and chick brain development may suggest a role for the exon 8-containing prosaposin form in this process.
Collapse
Affiliation(s)
- Tsadok Cohen
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
16
|
Chu Z, Witte DP, Qi X. Saposin C-LBPA interaction in late-endosomes/lysosomes. Exp Cell Res 2005; 303:300-7. [PMID: 15652344 DOI: 10.1016/j.yexcr.2004.09.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 09/12/2004] [Accepted: 09/30/2004] [Indexed: 11/27/2022]
Abstract
Acidic phospholipids and saposins associations are involved in the degradation process of glycosphingolipids/sphingolipids in late endosomes/lysosomes. In this report, we showed the colocalization of saposin C and lysobisphosphatidic acid (LBPA) in human fibroblasts by using cytoimmunofluorescence analysis. This colocalization pattern was not seen with other saposins. Large numbers of saposins A, B, and D illustrated the staining patterns that differ from LBPA. In addition, ingested anti-LBPA antibody altered the location of saposin C in human wild-type fibroblasts. In vitro assays demonstrated that saposin C at nM concentrations induced membrane fusion of LBPA containing phospholipid vesicles. Under the same condition, other saposins had no fusion induction on these vesicles. These results suggested a specific interaction between saposin C and LBPA. Total saposin-deficient fibroblasts showed a massive accumulation of multivesicular bodies (MVBs) by electron microscopic analysis. No significant increase of MVBs was found in saposins A and B deficient cells. Interestingly, the accumulated MVBs were significantly reduced by loading saposin C alone into the total saposin-deficient cells. Therefore, we propose that saposin C-LBPA interaction plays a role in the regulation of MVB formation in cells.
Collapse
Affiliation(s)
- Zhengtao Chu
- Division and Program in Human Genetics, Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | |
Collapse
|
17
|
Koochekpour S, Zhuang YJ, Beroukhim R, Hsieh CL, Hofer MD, Zhau HE, Hiraiwa M, Pattan DY, Ware JL, Luftig RB, Sandhoff K, Sawyers CL, Pienta KJ, Rubin MA, Vessella RL, Sellers WR, Sartor O. Amplification and overexpression of prosaposin in prostate cancer. Genes Chromosomes Cancer 2005; 44:351-64. [PMID: 16080200 DOI: 10.1002/gcc.20249] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We identified prosaposin (PSAP) as a secreted protein expressed in androgen-independent (AI) prostate cancer cells by cloning/sequencing, after probing a PC-3 cDNA library expressed in the lambdaTriplEx phagemid expression vector with a polyclonal rabbit antibody generated against pooled human seminal plasma. PSAP is a neurotrophic molecule; its deficiency or inactivation has proved to be lethal in man and mice, and in mice, it leads to abnormal development and atrophy of the prostate gland, despite normal testosterone levels. We used Southern hybridization, quantitative real-time polymerase chain reaction, and/or single nucleotide polymorphism (SNP) array analysis, and we now report the genomic amplification of PSAP in the metastatic AI prostate cancer cell lines, PC-3, DU-145, MDA-PCa 2b, M-12, and NCI-H660. In addition, by using SNP arrays and a set of 25 punch biopsy samples of human prostate cancer xenografts (LAPC3, LuCaP 23.1, 35, 49, 58, 73, 77, 81, 86.2, 92.1, 93, 96, 105, and 115), lymph nodes, and visceral-organ metastases, we detected amplification of the PSAP locus (10q22.1) in LuCaP 58 and 96 xenografts and two lymph node metastases. In addition, AI metastatic prostate cancer cell lines C4-2B and IA8-ARCaP over-expressed PSAP mRNA without evidence of genomic amplification. Taken together with prior data that demonstrated the growth-, migration-, and invasion-promoting activities, the activation of multiple signal transduction pathways, and the antiapoptotic effect of PSAP (or one of its active domains, saposin C) in prostate cancer cells, our current observation of PSAP amplification or overexpression in prostate cancer suggests, for the first time, a role for this molecule in the process of carcinogenesis or cancer progression in the prostate.
Collapse
Affiliation(s)
- Shahriar Koochekpour
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Qi X, Chu Z. Fusogenic domain and lysines in saposin C. Arch Biochem Biophys 2004; 424:210-8. [PMID: 15047193 DOI: 10.1016/j.abb.2004.02.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2003] [Revised: 02/17/2004] [Indexed: 02/07/2023]
Abstract
Saposin C, a sphingolipid activator protein with fusogenic activity, interacts specifically with the membrane containing negatively charged, unsaturated phospholipids. The kinetics and mechanism of saposin C-induced membrane fusion were previously investigated using acidic phospholipid liposomes. A hypothetic clip-on model for such a fusion process was illustrated by the ionic binding between saposin C and lipids, as well as the inter-saposin C hydrophobic interaction. Here, we report the location of the fusogenic domain in a linear sequence at the amino-terminal half of saposin C. This domain consisted of the first and second helical sequences. Selected positively charged lysines in the fusogenic domain were mutated to study the roles of basic residues in the saposin C-induced vesicle fusion. Based on the results, Lys13 and Lys17 were critical for the fusogenic activity, but had no effect on the enzymatic activation of acid beta-glucosidase (GCase). These results clearly indicate the segregation of the fusion and activation function into two different regions of saposin C. Interestingly, all the Lys mutant saposin Cs anchored on the acidic phospholipid membrane. Our data suggest that saposin C's fusogenic and activation functions have different requirements for the orientation and insertion manners of helical peptides in membranes.
Collapse
Affiliation(s)
- Xiaoyang Qi
- The Division and Program in Human Genetics, Cincinnati Children's Hospital Research Foundation, and Department of Pediatrics, The University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| | | |
Collapse
|
19
|
Abstract
PURPOSE The main purpose of this review is to address some concerns regarding the accurate and timely diagnosis of lysosomal storage disorders (LSD). METHODS Using their experience in diagnosing LSD in more than 2500 individuals, the authors highlight several diagnostic difficulties and solutions and review the latest methods for early diagnosis and treatment. RESULTS While "classic" patients can be accurately diagnosed using relatively simple methods in an experienced laboratory, atypical patients require more detailed studies. With a few exceptions, almost all LSD can be diagnosed in leukocytes or plasma. Methods for screening all newborns without a family history of a LSD have been proposed, but such screening may require a large amount of effort for little gain. CONCLUSIONS With effective therapy becoming available for some LSD, early diagnosis is critically important. If the goal is to prevent serious complications related to the nervous and skeletal systems, earlier diagnosis is potentially advantageous. Accurate prognosis and assessing the need for aggressive therapy in newly diagnosed patients are problems that need further study.
Collapse
Affiliation(s)
- David A Wenger
- Department of Neurology, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
20
|
Jin P, Sun Y, Grabowski GA. In vivo roles of RORalpha and Sp4 in the regulation of murine prosaposin gene. DNA Cell Biol 2001; 20:781-9. [PMID: 11879571 DOI: 10.1089/104454901753438598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Prosaposin has a central role in intracellular glycosphingolipid catabolism and also has extracellular functions. This locus is regulated temporally and spatially. The highest mRNA expression occurs in the central nervous system (CNS) and reproductive system. In vitro, the CNS-expressed proteins Sp4 and RORalpha bind to Sp1 and RORE sites within a 310-bp fragment directly upstream of the transcription start site. These transcription factors exhibit negative cooperativity in vitro for prosaposin expression. Mice deficient in RORalpha and Sp4 (Staggerer [Sg(-/-)] and Sp4 knockout [Sp4 KO], respectively) containing selected prosaposin promoter deletion transgenes were used in comparative expression studies to evaluate this negative cooperativity in vivo. Constructs containing the RORE or Sp1/U cluster alone were independently stimulatory. Deletion of the Sp1/U site led to a decrease in reporter activity only in the cerebellum of Sg(-/-) mice. The deletion of RORE and Sp1/U sites did alter the increase of reporter activity in the brain and eye, but not in the spinal cord, of Sg(-/-) mice. These results indicate that Sp4 and RORalpha play minor and major roles, respectively, in regional expression of the prosaposin locus in the brain, whereas expression in the spinal cord is independent of RORalpha.
Collapse
Affiliation(s)
- P Jin
- The Division of Human Genetics, Children's Hospital Research Foundation at Children's Hospital Medical Center, Cincinnati, Ohio 45529-3039, USA
| | | | | |
Collapse
|
21
|
Qi X, Grabowski GA. Differential membrane interactions of saposins A and C: implications for the functional specificity. J Biol Chem 2001; 276:27010-7. [PMID: 11356836 DOI: 10.1074/jbc.m101075200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saposins are small, heat-stable glycoprotein activators of lysosomal glycosphingolipid hydrolases that derive from a single precursor, prosaposin, by proteolytic cleavage. Three of these saposins (B, C, and D) share common structural features including a lack of tryptophan, a single glycosylation sequence, the presence of three conserved disulfide bonds, and a common multiamphipathic helical bundle motif. Saposin A contains an additional glycosylation site and a single tryptophan. The oligosaccharides on saposins are not required for in vitro activation functions. Saposins A and C were produced in Escherichia coli to contain single tryptophans at various locations to serve as intrinsic fluorescence reporters, i.e. as topological probes, for interaction with phospholipid membranes. Maximum emission shifts, aqueous and solid quenching, and resonance energy transfer were quantified by fluorescence spectroscopy. Amphipathic helices at the amino- and carboxyl termini of saposins A and C were shown to insert into the lipid bilayer to about five carbon bond lengths. In comparison, the middle region of saposins A or C were either embedded in the bilayer or solvent-exposed, respectively. Conformational changes of saposin C induced by phosphatidylserine interaction suggested the reorientation of functional helical domains. Differential interaction models are proposed for the membrane-bound saposins A and C. By site-directed mutagenesis of saposin A and C, their membrane topological structures were correlated with their activation effects on acid beta-glucosidase. These findings show that proper orientation of the middle segment of saposin C to the outside of the membrane surface is critical for its specific and multivalent interaction with acid beta-glucosidase. Such membrane interactions and orientations of the saposins determine the proximity of their activation and/or binding sites to lysosomal hydrolases or lipoid substrates.
Collapse
Affiliation(s)
- X Qi
- Division of Human Genetics, Children's Hospital Research Foundation and the Department of Pediatrics, Cincinnati, Ohio 45229-3039, USA
| | | |
Collapse
|
22
|
Qi X, Grabowski GA. Molecular and cell biology of acid beta-glucosidase and prosaposin. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:203-39. [PMID: 11051765 DOI: 10.1016/s0079-6603(00)66030-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- X Qi
- Children's Hospital Research Foundation, Cincinnati, Ohio 45229-3039, USA
| | | |
Collapse
|
23
|
Faull KF, Higginson J, Waring AJ, To T, Whitelegge JP, Stevens RL, Fluharty CB, Fluharty AL. Hydrogen-deuterium exchange signature of porcine cerebroside sulfate activator protein. JOURNAL OF MASS SPECTROMETRY : JMS 2000; 35:392-401. [PMID: 10767769 DOI: 10.1002/(sici)1096-9888(200003)35:3<392::aid-jms948>3.0.co;2-t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Hydrogen-deuterium exchange can be a sensitive indicator of protein structural integrity. Comparisons were made between cerebroside sulfate activator protein (CSAct) in the native state and after treatment with guanidine hydrochloride plus dithiothreitol. Native protein has three internal disulfide bonds and treated protein has no internal disulfide bonds. The comparisons were made using hydrogen-deuterium exchange measured by electrospray ionization mass spectrometry, percentage alpha-helical content measured by circular dichroism and biological activity measured by the ability to support arylsulfatase A-catalyzed sulfate hydrolysis from cerebroside sulfate. In acidic solvent native protein has 59 exchange refractory protons and treated protein has 20 exchange refractory protons (44 and 14% of the exchangeable proton populations, respectively). In native protein the size of the exchange refractory proton population is sensitive to changes in pH, temperature and the presence of a ligand. It is uninfluenced by the presence or absence of glycosyl groups attached to Asn21. Helical content is virtually identical in native and treated protein. Biological activity is significantly reduced but not obliterated in treated protein. The hydrogen-deuterium exchange profile appears to be a sensitive signature of the correctly folded protein, and reflects a dimension of the protein structure that is not apparent in circular dichroic spectra or in the ability of the protein to support arylsulfatase A-catalyzed sulfate hydrolysis from sulfatide. The hydrogen-deuterium exchange profile will be a valuable criterion for characterizing mutant forms of CSAct produced by recombinant and synthetic paradigms and also the native and mutant forms of related proteins.
Collapse
Affiliation(s)
- K F Faull
- Department of Psychiatry and Biobehavioral Sciences and the Neuropsychiatric Institute, UCLA, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Fluharty AL, Lombardo C, Louis A, Stevens RL, Whitelegge J, Waring AJ, To T, Fluharty CB, Faull KF. Preparation of the cerebroside sulfate activator (CSAct or saposin B) from human urine. Mol Genet Metab 1999; 68:391-403. [PMID: 10562467 DOI: 10.1006/mgme.1999.2900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purification of cerebroside sulfate activator (CSAct) or saposin B from pooled human urine is described. Urinary proteins are concentrated by ammonium sulfate precipitation. A suspension of the precipitate is heat-treated and the heat-stable proteins are fractionated through a series of chromatographic steps. An initial concanavalin A column retains little of the CSAct activity, but is important for subsequent purification. Passing the Con A effluent directly onto an octyl Sepharose column removes the protein of interest which is recovered by affinity elution with octyl glucoside. Subsequent ion-exchange and gel filtration chromatographies yield a protein of 80-90% purity, although it is sometimes necessary to repeat one or more steps. A small amount of CSAct can sometimes be recovered from the initial Con A Sepharose column by methyl mannoside elution and purified by a parallel chromatographic protocol. Mass spectral analysis suggests that the final material is a mixture of two major and several minor glycoforms of a 79 amino acid protein with the structure predicted from the human prosaposin cDNA by truncation of both N- and C-terminal regions. Sugar analysis revealed the presence of glucosamine, mannose, and fucose, consistent with the major isoforms bearing a five-sugar Man(2)GluNac(2)Fuc or a single GluNac substituent. The human urinary material is similar to the previously characterized pig kidney protein in most respects, but varies in some details.
Collapse
Affiliation(s)
- A L Fluharty
- Mental Retardation Research Center, University of California Los Angeles, Los Angeles, California, 90024-1759, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Faull KF, Whitelegge JP, Higginson J, To T, Johnson J, Krutchinsky AN, Standing KG, Waring AJ, Stevens RL, Fluharty CB, Fluharty AL. Cerebroside sulfate activator protein (Saposin B): chromatographic and electrospray mass spectrometric properties. JOURNAL OF MASS SPECTROMETRY : JMS 1999; 34:1040-1054. [PMID: 10510427 DOI: 10.1002/(sici)1096-9888(199910)34:10<1040::aid-jms863>3.0.co;2-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cerebroside sulfate activator protein is a small, heat-stable protein that is exceptionally resistant to proteolytic attack. This protein is essential for the catabolism of cerebroside sulfate and several other glycosphingolipids. Protein purified from pig kidney and human urine was extensively characterized by reversed-phase liquid chromatography and electrospray mass spectrometry. These two sources revealed 20 and 18 different molecular isoforms of the protein, respectively. Plausible explanations of the structures of the majority of these isoforms can be made on the basis of accurate molecular mass assignments. The reversed-phase chromatographic and electrospray mass spectrometric properties of enzymatically deglycosylated and disulfide-reduced protein were also compared. In addition to a demonstration of the power of electrospray ionization mass spectrometry for revealing a wealth of information on protein microheterogeneity and structural detail, the results also demonstrate the utility of this technique for monitoring spontaneous chemical and enzymatically mediated changes that occur as a result of metabolic processing and protein purification.
Collapse
Affiliation(s)
- K F Faull
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences and the Neuropsychiatric Institute and Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Prosaposin is a multifunctional protein that encodes four glycoproteins, named saposins A, B, C and D. They participate in the catabolism of glycosphingolipids in lysosomes. When secreted, intact prosaposin may function as a neuritogenic factor. Human and mouse prosaposin displayed similar temporal and spatial regulation of expression. To gain insight into the transcriptional regulation of this locus, the 5' region was characterized from the human prosaposin gene. The putative human promoter was shown to be TATA-less, i.e. it belonged to the TATA-less housekeeping gene family. The transcription initiation sites were localized to -23, -27, -31 and -83bp 5' to ATG, compared to -87 and -94bp in the mouse. In SK-N-SH neuroblastoma cells, positive regulatory elements were detected -343 to -813bp upstream of ATG. A negative regulatory region existed between -813 and -2500bp using SK-N-SH, H441 and NS20Y cells. EMSA and DNA-footprint analysis showed that Sp1 and Sp3 are involved in human prosaposin gene regulation. Compared to the mouse promoter, the human promoter is missing a Sp1 cluster within a 310-bp upstream segment, and has AP-1, Oct-1 and two RORalpha sites that are protected from DNaseI by selected nuclear extracts.
Collapse
Affiliation(s)
- Y Sun
- The Division of Human Genetics, Children's Hospital Research Foundation at Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
27
|
Asfaw B, Schindler D, Ledvinová J, Černý B, Šmíd F, Conzelmann E. Degradation of blood group A glycolipid A-6-2 by normal and mutant human skin fibroblasts. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)32164-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Abstract
The cDNA for acid beta-glucosidase, the Gaucher disease enzyme, was overexpressed in a variety of mammalian cells and in Sf9 insect cells. Whether overexpressed from the MFG-GC retrovirus or the tetracycline transactivator system, there was a large discrepancy between the amounts of mRNA (>750-fold) and acid beta-glucosidase protein (approximately 6- to 14-fold) produced in mammalian cells. This was not observed in Sf9 insect cells. Quantitative evaluation of translation of this mRNA in intact mammalian cells indicated a 55- to 135-fold inefficiency in cell lines compared to normal human skin fibroblasts. In vitro translation efficiency with acid beta-glucosidase mRNAs from overexpressing mammalian or insect cells was similar to that from normal human fibroblasts. A cytoplasmic, heat labile protein was suggested as inhibitory to in vitro translation of these RNAs. North-Western blots and cytoplasmic depletion experiments showed this to be an 80-kDa cytoplasmic mRNA-binding protein that recognized acid beta-glucosidase coding sequences. The cytoplasmic protein was not detected in insect cells. These results implicate acid beta-glucosidase coding sequences and a heat labile cytoplasmic protein in modulating the translation of overexpressed mRNA in transgenic cell lines.
Collapse
Affiliation(s)
- Y H Xu
- Division of Human Genetics, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
29
|
Jin P, Sun Y, Grabowski GA. Role of Sp proteins and RORalpha in transcription regulation of murine prosaposin. J Biol Chem 1998; 273:13208-16. [PMID: 9582364 DOI: 10.1074/jbc.273.21.13208] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prosaposin is the precursor of four low molecular weight sphingolipid-activating proteins (SAPs) or saposins. These four proteins function as intracellular activators of several lysosomal enzymes involved in the degradation of glycosphingolipids, and prosaposin itself has neurite outgrowth effects. Expression of prosaposin is regulated in a temporal and spatial manner with expression in specific brain neurons and visceral cell types. Here a major regulatory fragment was characterized within 310 bp 5' to the transcription start site. Using electrophoretic mobility shift assay (EMSA) and DNA footprinting, members of the Sp family (Sp1, Sp3, and Sp4), the orphan nuclear receptor (RORalpha), and an unknown transcription factor (U; TGGGGGAG) were shown to bind to this region. To evaluate the role of such transcription factor binding sites for this locus, a series of mutant constructs was generated within this region, and their function was evaluated in cultured NS20Y neuroblastoma cells. A 3' Sp1 site, a 5' Sp1/U cluster and the RORalpha binding sites were functional. The data are consistent with a model in which the factors that bind to the Sp1/U cluster and RORE site interact negatively to diminish promoter activity to a background level that is determined primarily by the 3' Sp1 site. These interactions depend on the tissue-specific repertoire of transcription factors leading to differential expression of this locus.
Collapse
Affiliation(s)
- P Jin
- Division of Human Genetics, Children's Hospital Research Foundation, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | | | |
Collapse
|
30
|
Grabowski GA, Horowitz M. Gaucher's disease: molecular, genetic and enzymological aspects. BAILLIERE'S CLINICAL HAEMATOLOGY 1997; 10:635-56. [PMID: 9497856 DOI: 10.1016/s0950-3536(97)80032-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular, genetic and enzymological abnormalities in Gaucher's disease have been delineated during the past decade. Although our understanding of the primary predisposition to the Gaucher's disease phenotypes has improved, the relationships remain poorly understood between the mutant alleles, the resultant enzyme variants, the saposin C (activator protein) locus and phenotypes. Of the more than 100-disease associated alleles, about 8 to 10 have significant frequencies in various ethnic and demographic groups. The N370S(1226G) allele is very frequent in Caucasian populations, but absent in Asian groups. In the Ashkenazi Jewish population, the N370S homozygosity predisposes to Gaucher's disease, but over 50% of such patients escape medical detection because of their mild to absent involvement, i.e. N370S may be a prediposing polymorphic variant. Clarification of genotype/phenotype relationships and the identification of modifier loci that impact on Gaucher's disease phenotypes remain a critical area for research. Greater understanding of these issues will facilitate genetic counselling and appropriate interventive therapy to prevent the morbid long-term manifestations of Gaucher's disease.
Collapse
Affiliation(s)
- G A Grabowski
- University of Cincinnati College of Medicine, Children's Hospital Medical Center, Ohio 45339-3039, USA
| | | |
Collapse
|
31
|
Yadao F, Hechtman P, Kaplan F. Formation of a ternary complex between GM2 activator protein, GM2 ganglioside and hexosaminidase A. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1340:45-52. [PMID: 9217013 DOI: 10.1016/s0167-4838(97)00027-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The GM2 activator is a 17 kDa protein required for the hydrolysis of GM2 ganglioside by the lysosomal enzyme hexosaminidase A (HexA). The activator behaves as a substrate binding protein, solubilizing GM2 ganglioside monomers from micelles (in vitro) or membranes (in vivo). However, the activator also shows a high order of specificity for activation of lysosomal hydrolases and has been predicted to form a ternary complex with the heterodimeric enzyme (alphabeta) Hex A and GM2 ganglioside. We demonstrated a transient interaction between HexA and the GM2 activator. A chimeric protein containing the FLAG epitope sequence upstream of the GM2 activator was expressed in Escherichia coli and purified using the M1 immunoaffinity (anti-FLAG) column. Binding of the FLAG-GM2 activator (FLAG-AP) fusion protein to the M1 column led to the specific retardation of Hex A applied to the column. Other proteins were not retarded by the column nor did they compete with Hex A for binding to FLAG-AP. Hex A and GM2 ganglioside could be simultaneously bound to the column, but the binding of each ligand was independent of the other. The homodimeric (beta beta) isozyme Hex B did not bind to the immobilized activator. The alpha alpha homodimer, HexS, bound weakly, confirming that a hexosaminidase alpha subunit is required for interaction of enzyme and activator.
Collapse
Affiliation(s)
- F Yadao
- McGill University-Montreal Children's Hospital Research Institute, Montreal, Canada
| | | | | |
Collapse
|
32
|
Abstract
Prosaposin is a multifunctional protein that, when secreted, functions as a neurotrophic agent and, when retained in the lysosomes, is processed to essential glycosphingolipid hydrolase activator proteins. The prosaposin locus is temporarily and spatially regulated at the transcriptional and post-translational levels. The prosaposin gene has been partially characterized, but the 5' region has not. RACE, S1 nuclease protection, and sequence analysis were used to characterize the first intron and first exon as well as the 5'-flanking regions from murine P1 clones. The first intron is approximately 15 kb in length and the complete gene is approximately 25 kb. The transcriptional initiation sites are located 87 and 94 bp 5' to the ATG in exon 1. Using luciferase as a reporter gene and transfection into NS20Y, NIH-3T3, or SF-7 Sertoli cell cultures, deletion constructs from the 5' putative promoter region were shown to contain positive and negative regulatory elements within 2,400 bp 5' to the transcription start site. A negative regulatory element is located between 742 and 310 bp 5' to the transcription start site. These studies provide insight into the regulation of this unique "lysosomal" locus.
Collapse
Affiliation(s)
- Y Sun
- Division of Human Genetics, Children's Hospital Research Foundation at Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | | | | |
Collapse
|
33
|
Leonova T, Qi X, Bencosme A, Ponce E, Sun Y, Grabowski GA. Proteolytic processing patterns of prosaposin in insect and mammalian cells. J Biol Chem 1996; 271:17312-20. [PMID: 8663398 DOI: 10.1074/jbc.271.29.17312] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Prosaposin is a multifunctional protein encoded at a single locus in humans and mice. The precursor contains, in tandem, four glycoprotein activators or saposins, termed A, B, C, and D, that are essential for specific glycosphingolipid hydrolase activities. Prosaposin appears to be a potent neurotrophic factor. To explore the proteolytic processing from prosaposin to mature activator proteins, metabolic labeling was done with human prosaposin expressed in insect cells, human fibroblasts, neuronal stem cells (NT2) and retinoic acid-differentiated NT2 neurons. In all cell types, the major processing pathway was through a tetrasaposin, A-B-C-D, from which saposin A was then removed. In mammalian cells monosaposins were derived from the trisaposin B-C-D by cleavage to the disaposins, B-C and C-D, that were processed to monosaposins. In insect cells the major end products were the disaposins, with A-B and C-D derived from the tetrasaposin, A-B-C-D, or with B-C and C-D derived from the trisaposin, B-C-D. In insect and mammalian cells, the nonsignal NH2-terminal peptide preceding saposin A (termed Nter) was usually removed prior to saposin A cleavage. In NT2-derived differentiated neurons, precursor tetrasaposins containing A-B-C-D were secreted with and without Nter. Immunofluorescence studies using prosaposin-specific antisera showed large steady state amounts of uncleaved prosaposin in Purkinje cells, cortical neurons, and other specific cell types in adult mice. These studies indicate that prosaposin processing is highly regulated at a proteolytic level to produce prosaposin, tetrasaposins, or mature monosaposins in specific mammalian cells.
Collapse
Affiliation(s)
- T Leonova
- Division of Human Genetics, Children's Hospital Research Foundation at Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | |
Collapse
|
34
|
Grabowski GA, Saal HM, Wenstrup RJ, Barton NW. Gaucher disease: a prototype for molecular medicine. Crit Rev Oncol Hematol 1996; 23:25-55. [PMID: 8817081 DOI: 10.1016/1040-8428(96)00199-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- G A Grabowski
- Division of Human Genetics, Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
35
|
Qi X, Qin W, Sun Y, Kondoh K, Grabowski GA. Functional organization of saposin C. Definition of the neurotrophic and acid beta-glucosidase activation regions. J Biol Chem 1996; 271:6874-80. [PMID: 8636113 DOI: 10.1074/jbc.271.12.6874] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Saposin C is an essential co-factor for the hydrolysis of glucosylceramide by acid beta-glucosidase in mammals. In addition, prosaposin promotes neurite outgrowth in vitro via sequences in saposin C. The regional organization of these neurotrophic and activation properties of saposin C was elucidated using recombinant or chemically synthesized saposin Cs from various regions of the molecule. Unreduced and reduced proteins were analyzed by electrospray-mass spectrometry to establish the complement of disulfide bonds in selected saposin Cs. Using saposin B as a unreactive backbone, chimeric saposins containing various length segments of saposin B and C localized the neurotrophic and acid beta-glucosidase activation properties to the carboxyl- and NH2-terminal 50% of saposin C, respectively. The peptide spanning residues 22-31 had neurotrophic effects. Molecular modeling and site-directed mutagenesis localized the activation properties of saposin C to the region spanning residues 47-62. Secondary structure was needed for retention of this property. Single substitutions of R and S at the conserved cysteines at 47 or 78 diminished but did not obliterate the activation properties. These results indicate the segregation of neurotrophic and activation properties of saposin C to two different faces of the molecule and suggest a topographic sequestration of the activation region of prosaposin for protection of the cell from adverse hydrolytic activity of acid beta-glucosidase.
Collapse
Affiliation(s)
- X Qi
- Children's Hospital Research Foundation, Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | |
Collapse
|
36
|
Cao QP, Crain WR. Expression of SGP-1 mRNA in preimplantation mouse embryos. DEVELOPMENTAL GENETICS 1995; 17:263-71. [PMID: 8565332 DOI: 10.1002/dvg.1020170311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In a search for genes expressed in preimplantation mouse embryos that are important for the earliest steps in differentiation, we identified an abundant mRNA that codes for a sulfated glycoprotein, SGP-1. The amount of this RNA rises approximately 100-fold during preimplantation development to a level approximately equal to that of beta-actin mRNA in blastocysts, although the level of these transcripts per cell remains fairly constant during these stages at approximately 2,000-4,000 copies. An antisense RNA that is complementary to approximately the last one-third of the message and contains an open reading frame of 455 nt was found in blastocysts at a 2-3-fold higher level than the mRNA. In situ hybridization with sense and antisense riboprobes showed that both strands are distributed throughout the embryo. The abundance of the SGP-1 mRNA indicates that the encoded protein may play an important role in the development of embryos, and the excess of antisense RNA raises the possibility of an unusual mechanism of regulating its expression.
Collapse
Affiliation(s)
- Q P Cao
- Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts, USA
| | | |
Collapse
|
37
|
Igdoura S, Morales C, Tranchemontagne J, Potier M. Ultrastructural and immunocytochemical study of skin fibroblasts from normal and sialidosis patients. Cell Tissue Res 1994; 278:527-34. [PMID: 7850863 DOI: 10.1007/bf00331370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The objectives of this study were to analyze morphologically, morphometrically and immunocytochemically the lysosomal compartment of normal fibroblasts and of fibroblasts with neuraminidase deficiency. The immunocytochemical analyses consisted of quantifying the distribution of saposins and beta-galactosidase in the lysosomes of these cells to test the hypothesis that neuraminidase deficiency is associated with an impairment in the transport of these proteins to the lysosomal compartment. To test this idea, cultured skin fibroblasts of patients with or without sialidosis were prepared for electron microscopy and probed with antibodies against lysosomal beta-galactosidase and lysosomal saposins. The lysosomes of the affected cells had an abnormal accumulation of incompletely digested membranes which was associated with a significant lowering in the density of antigenic sites per lysosome. However, due to a significant increase in the number of lysosomes per affected cell, the total number of antigenic sites in control and neuraminidase deficient cells was similar. This presumably compensatory effect indicates that although the rate of production of beta-galactosidase and saposins remains unchanged, the transport of these molecules to the lysosomes is somehow affected. Our data also indicate that in the fibroblasts, lysosomes require a normal concentration of the three enzymes to maintain neuraminidase activity and sphingolipid degradation.
Collapse
Affiliation(s)
- S Igdoura
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
38
|
Champagne MJ, Lamontagne S, Potier M. Binding of GM1 ganglioside to a synthetic peptide derived from the lysosomal sphingolipid activator protein saposin B. FEBS Lett 1994; 349:439-41. [PMID: 8050611 DOI: 10.1016/0014-5793(94)00717-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Saposin B is a lysosomal sphingolipid activator protein which activates GM1 ganglioside hydrolysis by lysosomal beta-galactosidase. To identify the structural elements of saposin B implicated in sphingolipid binding, we studied a synthetic peptide corresponding to a predicted alpha-helix, sapB-18, spanning residues 52-69 of saposin B. The circular dichroism spectrum of sapB-18 at pH 4.4 was consistent with a 44% alpha-helix content. As shown by intrinsic Tyr fluorescence studies of sapB-18, this peptide binds the GM1 ganglioside with a Kd of about 7 microM. Thus, we suggest that a putative amphipathic alpha-helix between residues 52 and 69 of saposin B plays a major role in the recognition and binding of GM1 ganglioside by saposin B.
Collapse
Affiliation(s)
- M J Champagne
- Service de Génétique Médicale, Hôpital Sainte-Justine, Montréal, Qué., Canada
| | | | | |
Collapse
|
39
|
Qi X, Leonova T, Grabowski GA. Functional human saposins expressed in Escherichia coli. Evidence for binding and activation properties of saposins C with acid beta-glucosidase. J Biol Chem 1994. [PMID: 8206997 DOI: 10.1016/s0021-9258(19)89454-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Small (80-amino acid) glycoproteins or saposins are important for the in vivo function of several lysosomal hydrolases. Four saposins, A, B, C, and D, are encoded by a single locus termed prosaposin. Saposins C and A are thought to function in vivo as activators of acid beta-glucosidase. The physiologic role of saposin C has been confirmed, whereas that of saposin A role has not. To investigate the effects of saposins C and A on acid beta-glucosidase activity, the coding sequence for the individual saposins was expressed in Escherichia coli and the recombinant proteins purified to homogeneity. Recombinant and natural saposins A and C activated acid beta-glucosidase similarly only in micromolar amounts. Saposin C had specific activation of acid beta-glucosidase activity at < 200 nM. A second phase of activation was achieved at > 1 microM. In comparison, saposin A consistently activated acid beta-glucosidase only at > 1 microM. Two mutant saposins C (Cys382-->Phe and Cys382--Gly) were created and shown to compete with saposin C for a site on acid beta-glucosidase. The mutant saposins did not activate the enzyme. Recombinant saposin A (< 200 nM) competed with saposin C for a site on the enzyme but without activating effects. These studies show that saposin A is not an in vitro activator of acid beta-glucosidase at physiologic concentrations, although binding occurs without activating acid beta-glucosidase. The studies with mutant saposins C indicate that the binding and activation effects of saposins C are distinct events. These results indicate that the saposin C-induced conformational change in the enzyme occurs via highly specific, probably multivalent, interactions between acid beta-glucosidase and saposin C.
Collapse
Affiliation(s)
- X Qi
- Division of Human Genetics, Children's Hospital Research Foundation, Cincinnati, Ohio
| | | | | |
Collapse
|
40
|
Champagne MJ, Lamontagne S, Potier M. Binding of GM1-ganglioside to a synthetic peptide derived from the lysosomal sphingolipid-activator-protein saposin B. FEBS Lett 1994; 347:265-7. [PMID: 8034015 DOI: 10.1016/0014-5793(94)00536-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Saposin B is a lysosomal sphingolipid-activator-protein which activates GM1-ganglioside hydrolysis by lysosomal beta-galactosidase. To identify the structural elements of saposin B implicated in sphingolipid binding, we studied a synthetic peptide corresponding to a predicted alpha-helix, sapB-18, spanning residues 52 to 69 of saposin B. The circular dichroism spectrum of sapB-18 at pH 4.4 was consistent with a 44% alpha-helix content. As shown by intrinsic Tyr fluorescence studies of sapB-18, this peptide binds the GM1-ganglioside with a Kd of about 7 microM. Thus, we suggest that a putative amphipathic alpha-helix between residues 52 and 69 of saposin B plays a major role in the recognition and binding of GM1-ganglioside by saposin B.
Collapse
Affiliation(s)
- M J Champagne
- Service de Génétique Médicale, Hôpital Sainte-Justine, Montréal, Québec, Canada
| | | | | |
Collapse
|
41
|
Abstract
Glucocerebrosidase is a lysosomal enzyme responsible for hydrolysis of glucosylceramide to ceramide and glucose. Mutations disrupting the function of this enzyme cause autosomal recessive Gaucher disease. This disease is very heterogeneous. The clinical heterogeneity is due to a large number of mutations within the gene encoding glucocerebrosidase. To date 36 mutations have been described in Gaucher disease. In this part we present the mutations and review the more common ones. We also review the glucocerebrosidase natural activator, designated saposin C and mutations in its gene, associated with Gaucher disease.
Collapse
Affiliation(s)
- M Horowitz
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
42
|
Kondoh K, Sano A, Kakimoto Y, Matsuda S, Sakanaka M. Distribution of prosaposin-like immunoreactivity in rat brain. J Comp Neurol 1993; 334:590-602. [PMID: 8408767 DOI: 10.1002/cne.903340407] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Prosaposin is the precursor for saposins A, B, C, and D, which are small lysosomal proteins required for the hydrolysis of sphingolipids by specific lysosomal hydrolases. With a monospecific anti-saposin C antibody, which cross-reacts with prosaposin but not with saposin A, B, or D, the present immunoblot experiments showed that the rat brain expresses an unprocessed approximately 72 kDa protein (possibly prosaposin) and little saposin C. Regional analysis demonstrated that prosaposin is abundant in the brainstem, hypothalamus, cerebellum, striatum, and hippocampus, and less abundant in the cerebral cortex. Consistent with this finding, prosaposin-like immunoreactive neurons and fibers as revealed by immunohistochemistry were observed frequently in subcortical regions. The medial septum, diagonal bands, basal nucleus of Meynert, ventral striatum, medial habenular nucleus, and motor nuclei of cranial nerve had significant numbers of immunoreactive neurons. There were also nerve fibers with prosaposin-like immunoreactivity in several projection fields of the above nuclei. Other brain areas that contained prosaposin-like immunoreactive neurons and/or processes were: several brain nuclei (nucleus caudate putamen, globus pallidus, substantia nigra, red nucleus) constituting the so-called extrapyramidal system, reticular thalamic nucleus, entopeduncular nucleus, mammillary nuclei, auditory relay nuclei, cerebellum, sensory cranial nerve nuclei, and the reticular formation. The distribution pattern of prosaposin is apparently different from that of other neuroactive substances so far examined, and thus prosaposin may be involved in novel central events.
Collapse
Affiliation(s)
- K Kondoh
- Department of Neuropsychiatry, Ehime University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
43
|
Rafi MA, de Gala G, Zhang XL, Wenger DA. Mutational analysis in a patient with a variant form of Gaucher disease caused by SAP-2 deficiency. SOMATIC CELL AND MOLECULAR GENETICS 1993; 19:1-7. [PMID: 8460394 DOI: 10.1007/bf01233949] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It is now clear that the lysosomal hydrolysis of sphingolipids requires both lysosomal enzymes and so-called sphingolipid activator proteins (SAPs). One gene, called prosaposin, codes for a precursor protein that is proteolytically cut into four putative SAPs. These four SAPs, of about 80 amino acids, share some structural features but differ somewhat in their specificity. Domain 3 of prosaposin mRNA contains the coding region for SAP-2, an activator of glucocerebrosidase. While most patients with Gaucher disease store glucosylceramide due to defects in glucocerebrosidase, a few patients store this lipid in the presence of normal enzyme levels. In this paper we describe the identification of a point mutation in domain 3 of a patient who died with this variant form of Gaucher disease. Polymerase chain reaction amplification was performed in the small amount of genomic DNA available using primers generated from the intronic sequence surrounding domain 3. The patient was found to have a T-to-G substitution at position 1144 (counting from the A of ATG initiation codon) in half of the M13 recombinant clones. This changes the codon for cysteine382 to glycine. His father and unaffected brother also had this mutation, but his mother did not. She was found to have half of the normal amount of mRNA for prosaposin in her cultured skin fibroblasts. Therefore, this child inherited a point mutation in domain 3 from his father and a deficiency of all four SAPs coded for by prosaposin from his mother.
Collapse
Affiliation(s)
- M A Rafi
- Department of Medicine (Medical Genetics), Jefferson Medical College, Philadelphia, Pennsylvania 19107
| | | | | | | |
Collapse
|
44
|
Fürst W, Sandhoff K. Activator proteins and topology of lysosomal sphingolipid catabolism. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1126:1-16. [PMID: 1606169 DOI: 10.1016/0005-2760(92)90210-m] [Citation(s) in RCA: 224] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The lysosomal degradation of several sphingolipids by acid hydrolases is dependent on small non-enzymic cofactors, called sphingolipid activator proteins some of which have been identified as sphingolipid binding proteins. This review summarizes the information available on the structure, function, biosynthesis, gene organization and pathobiochemistry of the known sphingolipid activator proteins. It also offers models for their mode of action and for the topology of lysosomal digestion of glycolipids.
Collapse
Affiliation(s)
- W Fürst
- Institute for Organic Chemistry and Biochemistry, University of Bonn, Germany
| | | |
Collapse
|
45
|
Abstract
The gene for prosaposin was characterized by sequence analysis of chromosomal DNA to gain insight into the evolution of this locus that encodes four highly conserved sphingolipid activator proteins or saposins. The 13 exons ranged in size from 57 to 1200 bp, while the introns were from 91 to 3812 bp in length. The regions encoding saposins A, B, and D each had three exons, while that for saposin C had only two. This sequence included the regions that encode the carboxy terminus of the signal peptide, the four mature prosaposin proteins, and the 3' untranslated region. Primer extension studies indicated that over 99% of the coding sequence was contained in these 19,985 bp. Use of PCR and reverse PCR techniques indicated that the most 5' coding approximately 140 bp contained large introns and at least two small exons. Analyses of the intronic positions in the saposin regions indicated that this gene evolved from an ancestral gene by two duplication events and at least one gene rearrangement involving a double crossover after introns had been inserted into the gene.
Collapse
Affiliation(s)
- E G Rorman
- Department of Pediatrics, Mount Sinai School of Medicine, New York
| | | | | |
Collapse
|
46
|
Sano A, Mizuno T, Kondoh K, Hineno T, Ueno S, Kakimoto Y, Morita N. Saposin-C from bovine spleen; complete amino acid sequence and relation between the structure and its biological activity. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1120:75-80. [PMID: 1554743 DOI: 10.1016/0167-4838(92)90426-e] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Saposin-C, a small acidic glycoprotein that can activate glucosylceramide-beta-glucosidase, has been isolated from bovine spleen. The complete amino acid sequence of bovine saposin-C was determined by Edman degradation of the purified protein and its fragmented peptides. It contains 80 amino acids, one carbohydrate chain attached to a single asparagine residue and six cysteine residues in oxidized form. The sequence of bovine saposin-C is 76 and 65% identical with the sequences of saposin-C from human spleen and guinea pig liver, respectively. Hydropathy profiles of the sequence of saposin-C from three species were similar despite the significant residue substitutions. Bovine saposin-C had a stronger effect in stimulating bovine beta-glucosidase compared to human saposin-C. However, the effect of human saposin-C in stimulating human enzyme was stronger than that of bovine saposin-C. The region around residue 35, which is next to the extremely hydrophilic region, seems to be important to produce an interaction with the enzyme.
Collapse
Affiliation(s)
- A Sano
- Department of Neuropsychiatry, Ehime University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Kondoh K, Hineno T, Sano A, Kakimoto Y. Isolation and characterization of prosaposin from human milk. Biochem Biophys Res Commun 1991; 181:286-92. [PMID: 1958198 DOI: 10.1016/s0006-291x(05)81415-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Prosaposin is the precursor protein for saposins, which are small lysosomal proteins required for the hydrolysis of sphingolipids by specific lysosomal hydrolases. Prosaposin, in addition to generating the saposins in the lysosomes, also exists as an unprocessed approximately 70-kDa protein in many tissues and secretory fluids. In this study, we isolated prosaposin from human milk. Milk was fractioned by ammonium sulfate precipitation, then chromatographed with DEAE-Sephacel and G-3000 SW gel permeation-HPLC. A fraction containing prosaposin was finally purified with the anti-saposin C IgG attached affinity column. The protein staining of the purified preparation on SDS-PAGE and the Western blotting showed a single band. The sequence of the initial 10 amino acids from N-terminus of the purified protein was identical to the sequence of prosaposin deduced from cDNA. Although prosaposin itself showed beta-glucosidase activator activity at a slight degree, the activity increased much after trypsin treatment. Western blotting of the trypsin-treated sample confirmed the formation of small saposin-like bands from prosaposin by the action of trypsin.
Collapse
Affiliation(s)
- K Kondoh
- Department of Neuropsychiatry, Ehime University School of Medicine, Japan
| | | | | | | |
Collapse
|
48
|
Fabbro D, Grabowski G. Human acid beta-glucosidase. Use of inhibitory and activating monoclonal antibodies to investigate the enzyme's catalytic mechanism and saposin A and C binding sites. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98580-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
49
|
Zhang XL, Rafi MA, DeGala G, Wenger DA. The mechanism for a 33-nucleotide insertion in mRNA causing sphingolipid activator protein (SAP-1)-deficient metachromatic leukodystrophy. Hum Genet 1991; 87:211-5. [PMID: 2066109 DOI: 10.1007/bf00204185] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metachromatic leukodystrophy is a severe autosomal recessive disorder caused by accumulation of sulfatide resulting from deficient lysosomal degradation. While most patients have mutations in the lysosomal enzyme arylsulfatase A, some patients have mutations in a required heat stable sphingolipid activator protein, we call SAP-1. One patient with SAP-1 deficiency was previously demonstrated to have a 33-nucleotide insertion in her mRNA. This resulted in the production of mature SAP-1 with 11 extra amino acids, which was unstable during intracellular processing. In this manuscript we demonstrate that the 33 nucleotides are present near the middle of a 4-kb intron, and that a single base change, c to a, in the second position preceding the 33-nucleotide insertion, coupled with the presence of a string of pyrimidines immediately upstream from this change, creates a new 3' splice junction. The presence of a string of pyrimidines within the 33-nucleotide insertion, which has three cag trinucleotides near the 3' end, leads to alternative splicing in normal people as found in this laboratory and by others. The insertion region is followed by a gt dinucleotide that is spliced to a typical 3' consensus sequence. The single nucleotide change, c to a, was confirmed by identifying normal and mutant sequence in the consanguineous parents and a sister, previously identified as a carrier of this disorder.
Collapse
Affiliation(s)
- X L Zhang
- Department of Medicine (Medical Genetics), Jefferson Medical College, Philadelphia, PA 19107
| | | | | | | |
Collapse
|
50
|
Koval M, Pagano RE. Intracellular transport and metabolism of sphingomyelin. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1082:113-25. [PMID: 2007175 DOI: 10.1016/0005-2760(91)90184-j] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SM is unique among the phospholipids because it is restricted to the lumenal aspect of organelles involved in the secretory and endocytic pathways. Given the intracellular sites of SM biosynthesis and hydrolysis, and the interconnections between these sites by vesicle-mediated transport pathways, the basic mechanism for maintaining the intracellular distribution of SM seems clear. It remains to be determined how SM metabolism and transport are coordinated to maintain the SM content of each organelle. For example, the size of the SM pool at the cell surface is maintained by regulation of at least five processes: transport of newly synthesized SM from the Golgi apparatus, plasma membrane lipid recycling, local SM synthesis, local SM hydrolysis, and SM transport from the cell surface to lysosomes. Although SM cannot undergo spontaneous transbilayer movement, SM metabolism generates both DAG, Cer and (indirectly) SPhB which can rapidly 'flip-flop', and thus gain access to the cytoplasmic leaflet of a membrane. It is of particular interest that these lipid species may be involved in the regulation of PK-C, suggesting that SM metabolism could play a role in signal transduction. However, physiological effects of endogenous Cer and SPhB remain elusive, even though the pharmacological effect of SPhB on PK-C is well established. Aside from the direct generation of second messengers, stimulation of SM hydrolysis has also been shown to induce cholesterol movement from the cell surface to intracellular membranes. It is not known whether this reflects the possibility that cholesterol may act as a second messenger. Alternatively, this phenomenon suggests that SM metabolism may cause rapid changes in the physical properties of the cell surface. For example, erythrocytes extensively treated with exogenously-added SMase will undergo endovesiculation It is tempting to speculate that any involvement of SM in the regulation of intracellular processes requires a combination of both the generation of biochemical second messengers and the alteration of membrane biophysical properties that can result from SM metabolism.
Collapse
Affiliation(s)
- M Koval
- Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210-3301
| | | |
Collapse
|