1
|
Sil S, Keegan S, Ettefa F, Denes LT, Boeke JD, Holt LJ. Condensation of LINE-1 is critical for retrotransposition. eLife 2023; 12:e82991. [PMID: 37114770 PMCID: PMC10202459 DOI: 10.7554/elife.82991] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/27/2023] [Indexed: 04/29/2023] Open
Abstract
LINE-1 (L1) is the only autonomously active retrotransposon in the human genome, and accounts for 17% of the human genome. The L1 mRNA encodes two proteins, ORF1p and ORF2p, both essential for retrotransposition. ORF2p has reverse transcriptase and endonuclease activities, while ORF1p is a homotrimeric RNA-binding protein with poorly understood function. Here, we show that condensation of ORF1p is critical for L1 retrotransposition. Using a combination of biochemical reconstitution and live-cell imaging, we demonstrate that electrostatic interactions and trimer conformational dynamics together tune the properties of ORF1p assemblies to allow for efficient L1 ribonucleoprotein (RNP) complex formation in cells. Furthermore, we relate the dynamics of ORF1p assembly and RNP condensate material properties to the ability to complete the entire retrotransposon life-cycle. Mutations that prevented ORF1p condensation led to loss of retrotransposition activity, while orthogonal restoration of coiled-coil conformational flexibility rescued both condensation and retrotransposition. Based on these observations, we propose that dynamic ORF1p oligomerization on L1 RNA drives the formation of an L1 RNP condensate that is essential for retrotransposition.
Collapse
Affiliation(s)
- Srinjoy Sil
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Sarah Keegan
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Farida Ettefa
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Lance T Denes
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Jef D Boeke
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| |
Collapse
|
2
|
Kass DH, Beatty S, Smith A, Scott M, Shah D, Czaplicki M. The discovery of multiple active mys-related LTR-retroelements within the Neotominae subfamily of cricetid rodents. Genetica 2023:10.1007/s10709-023-00183-z. [PMID: 36869995 DOI: 10.1007/s10709-023-00183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
Retrotransposon families in the rodent family Cricetidae have been understudied in contrast to Muridae, both taxa classified within the superfamily Muroidea. Therefore, we carried out a study to advance our knowledge of the unique mys LTR-retroelement identified in Peromyscus leucopus, by incorporating intra-ORF PCR, quantitative dot blots, DNA and protein library screens, the generation of molecular phylogenies, and analyses of orthologous LTR-retroelement loci. These analyses led to the discovery of three additional related families of LTR-retroelements, which include a 2900 bp full-length element of mys-related sequences (mysRS), an 8000 bp element containing the mys ORF1 sequence (mORF1) with ERV-related sequences downstream in the reverse orientation, as well as an 1800 bp element primarily consisting of mys ORF2 (mORF2) related sequences flanked by LTRs. Our data revealed only a few full-length mys elements among genera of the Neotominae subfamily of cricetid rodents, most existing as partial copies. The mysRS and mORF1 elements are also limited to the genomes of the Neotominae subfamily, whereas mORF2 appears to be restricted to the Peromyscus genus. Molecular phylogenies demonstrating concerted evolution along with an assessment of orthologous loci in Peromyscus for the presence or absence of elements are consistent with activity of these novel LTR-retroelement families within this genus. Together with known activity of various families of non-LTR retroelements in Peromyscus species, we propose that retrotransposons have been continually contributing to the dynamics of Peromyscus genomes promoting genomic diversity and may be correlated with the evolution of more than 50 identified Peromyscus species.
Collapse
Affiliation(s)
- David H Kass
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA.
| | - Sarah Beatty
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA
| | - Ashlee Smith
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA
| | - Megan Scott
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA
| | - Dishita Shah
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA
| | - Mary Czaplicki
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA
| |
Collapse
|
3
|
Sokolowski M, Chynces M, deHaro D, Christian CM, Belancio VP. Truncated ORF1 proteins can suppress LINE-1 retrotransposition in trans. Nucleic Acids Res 2017; 45:5294-5308. [PMID: 28431148 PMCID: PMC5605252 DOI: 10.1093/nar/gkx211] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/12/2017] [Indexed: 01/15/2023] Open
Abstract
Long interspersed element 1 (L1) is an autonomous non-LTR retroelement that is active in mammalian genomes. Although retrotranspositionally incompetent and functional L1 loci are present in the same genomes, it remains unknown whether non-functional L1s have any trans effect on mobilization of active elements. Using bioinformatic analysis, we identified over a thousand of human L1 loci containing at least one stop codon in their ORF1 sequence. RNAseq analysis confirmed that many of these loci are expressed. We demonstrate that introduction of equivalent stop codons in the full-length human L1 sequence leads to the expression of truncated ORF1 proteins. When supplied in trans some truncated human ORF1 proteins suppress human L1 retrotransposition. This effect requires the N-terminus and coiled-coil domain (C-C) as mutations within the ORF1p C-C domain abolish the suppressive effect of truncated proteins on L1 retrotransposition. We demonstrate that the expression levels and length of truncated ORF1 proteins influence their ability to suppress L1 retrotransposition. Taken together these findings suggest that L1 retrotransposition may be influenced by coexpression of defective L1 loci and that these L1 loci may reduce accumulation of de novo L1 integration events.
Collapse
Affiliation(s)
- Mark Sokolowski
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
| | - May Chynces
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
| | - Dawn deHaro
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
| | - Claiborne M Christian
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
| | - Victoria P Belancio
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Sokolowski M, deHaro D, Christian CM, Kines KJ, Belancio VP. Characterization of L1 ORF1p self-interaction and cellular localization using a mammalian two-hybrid system. PLoS One 2013; 8:e82021. [PMID: 24324740 PMCID: PMC3852968 DOI: 10.1371/journal.pone.0082021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/23/2013] [Indexed: 12/31/2022] Open
Abstract
Long INterspersed Element-1 (LINE-1, L1) is an active retrotransposon that mobilizes using a ribonucleoprotein particle (RNP) intermediate composed of the full-length bicistronic L1 mRNA and the two proteins (ORF1p and ORF2p) encoded by that mRNA. ORF1p and ORF2p demonstrate cis-preference for their encoding mRNA. Previous studies of ORF1p, purified from bacterial and insect cells demonstrated that this protein forms trimers in vitro. While valuable for understanding ORF1p function, these in vitro approaches do not provide any information on ORF1p self-interaction in the context of mammalian cells. We used a mammalian two-hybrid (M2H) system in order to study L1 ORF1p self-interaction in human and mouse cells. We demonstrate that the M2H system successfully detects human and mouse ORF1p self-interactions in transiently transfected mammalian cells. We also generated mouse and human ORF1p-specific antibodies to characterize the expression of ORF1p fusion proteins used in the M2H system. Using these antibodies, we demonstrate that ORF1p interaction in trans leads to the formation of heterodimers that are expected to produce a positive signal in the M2H system. Although the role for L1 ORF1p cis-preference in L1 mobilization is established, the impact of ability of ORF1pto interact in trans on the L1 replication cycle is not known. Furthermore, western blot analysis of ORF1p generated by a full-length L1, wild type ORF1, or a codon-optimized ORF1 expression vector is detected in the nucleus. In contrast, the addition of a tag to the N-terminus of the mouse and human ORF1 proteins can significantly alter the subcellular localization in a tag-specific manner. These data support that nuclear localization of ORF1p may contribute to L1 (and potentially the SINE Alu) RNP nuclear access in the host cell.
Collapse
Affiliation(s)
- Mark Sokolowski
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, Louisiana, United States of America
| | - Dawn deHaro
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, Louisiana, United States of America
| | - Claiborne M. Christian
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, Louisiana, United States of America
| | - Kristine J. Kines
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, Louisiana, United States of America
| | - Victoria P. Belancio
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
5
|
Ikeno M, Suzuki N, Kamiya M, Takahashi Y, Kudoh J, Okazaki T. LINE1 family member is negative regulator of HLA-G expression. Nucleic Acids Res 2012; 40:10742-52. [PMID: 23002136 PMCID: PMC3510505 DOI: 10.1093/nar/gks874] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Class Ia molecules of human leucocyte antigen (HLA-A, -B and -C) are widely expressed and play a central role in the immune system by presenting peptides derived from the lumen of the endoplasmic reticulum. In contrast, class Ib molecules such as HLA-G serve novel functions. The distribution of HLA-G is mostly limited to foetal trophoblastic tissues and some tumour tissues. The mechanism required for the tissue-specific regulation of the HLA-G gene has not been well understood. Here, we investigated the genomic regulation of HLA-G by manipulating one copy of a genomic DNA fragment on a human artificial chromosome. We identified a potential negative regulator of gene expression in a sequence upstream of HLA-G that overlapped with the long interspersed element (LINE1); silencing of HLA-G involved a DNA secondary structure generated in LINE1. The presence of a LINE1 gene silencer may explain the limited expression of HLA-G compared with other class I genes.
Collapse
Affiliation(s)
- Masashi Ikeno
- School of Medicine, Keio University, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
Belancio VP, Roy-Engel AM, Deininger PL. All y'all need to know 'bout retroelements in cancer. Semin Cancer Biol 2010; 20:200-10. [PMID: 20600922 DOI: 10.1016/j.semcancer.2010.06.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 06/14/2010] [Accepted: 06/17/2010] [Indexed: 01/08/2023]
Abstract
Genetic instability is one of the principal hallmarks and causative factors in cancer. Human transposable elements (TE) have been reported to cause human diseases, including several types of cancer through insertional mutagenesis of genes critical for preventing or driving malignant transformation. In addition to retrotransposition-associated mutagenesis, TEs have been found to contribute even more genomic rearrangements through non-allelic homologous recombination. TEs also have the potential to generate a wide range of mutations derivation of which is difficult to directly trace to mobile elements, including double strand breaks that may trigger mutagenic genomic rearrangements. Genome-wide hypomethylation of TE promoters and significantly elevated TE expression in almost all human cancers often accompanied by the loss of critical DNA sensing and repair pathways suggests that the negative impact of mobile elements on genome stability should increase as human tumors evolve. The biological consequences of elevated retroelement expression, such as the rate of their amplification, in human cancers remain obscure, particularly, how this increase translates into disease-relevant mutations. This review is focused on the cellular mechanisms that control human TE-associated mutagenesis in cancer and summarizes the current understanding of TE contribution to genetic instability in human malignancies.
Collapse
Affiliation(s)
- Victoria P Belancio
- Tulane University, Department of Structural and Cellular Biology, School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
7
|
Affiliation(s)
- V. A. Kordium
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
8
|
Kinomoto M, Kanno T, Shimura M, Ishizaka Y, Kojima A, Kurata T, Sata T, Tokunaga K. All APOBEC3 family proteins differentially inhibit LINE-1 retrotransposition. Nucleic Acids Res 2007; 35:2955-64. [PMID: 17439959 PMCID: PMC1888823 DOI: 10.1093/nar/gkm181] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 02/25/2007] [Accepted: 03/13/2007] [Indexed: 11/15/2022] Open
Abstract
Approximately 17% of the human genome is comprised of long interspersed nuclear element 1 (LINE-1, L1) non-LTR retrotransposons. L1 retrotransposition is known to be the cause of several genetic diseases, such as hemophilia A, Duchene muscular dystrophy, and so on. The L1 retroelements are also able to cause colon cancer, suggesting that L1 transposition could occur not only in germ cells, but also in somatic cells if innate immunity would not function appropriately. The mechanisms of L1 transposition restriction in the normal cells, however, are not fully defined. We here show that antiretroviral innate proteins, human APOBEC3 (hA3) family members, from hA3A to hA3H, differentially reduce the level of L1 retrotransposition that does not correlate either with antiviral activity against Vif-deficient HIV-1 and murine leukemia virus, or with patterns of subcellular localization. Importantly, hA3G protein inhibits L1 retrotransposition, in striking contrast to the recent reports. Inhibitory effect of hA3 family members on L1 transposition might not be due to deaminase activity, but due to novel mechanism(s). Thus, we conclude that all hA3 proteins act to differentially suppress uncontrolled transposition of L1 elements.
Collapse
Affiliation(s)
- Masanobu Kinomoto
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan and Department of Intractable Diseases, International Medical Center of Japan, Tokyo, 162-8655, Japan
| | - Takayuki Kanno
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan and Department of Intractable Diseases, International Medical Center of Japan, Tokyo, 162-8655, Japan
| | - Mari Shimura
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan and Department of Intractable Diseases, International Medical Center of Japan, Tokyo, 162-8655, Japan
| | - Yukihito Ishizaka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan and Department of Intractable Diseases, International Medical Center of Japan, Tokyo, 162-8655, Japan
| | - Asato Kojima
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan and Department of Intractable Diseases, International Medical Center of Japan, Tokyo, 162-8655, Japan
| | - Takeshi Kurata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan and Department of Intractable Diseases, International Medical Center of Japan, Tokyo, 162-8655, Japan
| | - Tetsutaro Sata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan and Department of Intractable Diseases, International Medical Center of Japan, Tokyo, 162-8655, Japan
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan and Department of Intractable Diseases, International Medical Center of Japan, Tokyo, 162-8655, Japan
| |
Collapse
|
9
|
Girardot M, Guibert S, Laforet MP, Gallard Y, Larroque H, Oulmouden A. The insertion of a full-length Bos taurus LINE element is responsible for a transcriptional deregulation of the Normande Agouti gene. ACTA ACUST UNITED AC 2006; 19:346-55. [PMID: 16827753 DOI: 10.1111/j.1600-0749.2006.00312.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mammalian pigmentation is controlled by the concerted action of Tyr, Tyrp1 and Dct producing eumelanin and/or pheomelanin in melanocytes. The ratio of these two pigments is determined by the agonist alpha-melanocyte stimulating hormone and the antagonist Agouti protein acting on the Mc1r. Here we show that the Agouti gene is over-expressed in Normande breed compared with Prim'Holstein breed. The Normande cattle have a characteristic coat color phenotype with a variable presence of black (eumelanin) hair over a red/brown background. We have found a previously undescribed full-length L1-BT element inserted in the 5'-genomic sequence of the Agouti gene in Normande cattle which promotes the over-expression of alternative transcripts. The variable expression of the alternative transcript directed by the long interspersed nuclear element promoter may be the origin of the brindle coat color pattern of the Normande breed. This new bovine Agouti allele isolated in Normande breed has been named Abr. Finally, as ectopic over-expression of Agouti in Ay mice is responsible for the obesity syndrome, we discuss the possible consequences of Abr for meat and milk production in cattle.
Collapse
Affiliation(s)
- Michael Girardot
- Unité de Génétique Moléculaire Animale, UMR 1061-INRA/Université de Limoges, Limoges, France
| | | | | | | | | | | |
Collapse
|
10
|
Brooks MB, Gu W, Barnas JL, Ray J, Ray K. A Line 1 insertion in the Factor IX gene segregates with mild hemophilia B in dogs. Mamm Genome 2004; 14:788-95. [PMID: 14722728 DOI: 10.1007/s00335-003-2290-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Accepted: 07/08/2003] [Indexed: 10/26/2022]
Abstract
We undertook the biochemical and molecular characterization of hemophilia in a large pedigree of German wirehaired pointers. Males affected with hemophilia B had approximately 5% normal Factor IX coagulant activity and a proportional reduction of Factor IX protein concentration, indicative of a mild hemophilia B phenotype. Using Southern blot analyses and PCR amplification of genomic DNA, we discovered a large, 1.5-kb insertion in intron 5 of the Factor IX gene of an affected male. The insert consists of a 5' truncated canine Line-1 followed by an approximately 200-bp 3' poly (A) tract, flanked by a 15-bp direct repeat. The insert can be traced through at least five generations and segregates with the hemophilia B phenotype in this breed. This is the first description of a Factor IX mutation associated with mild hemophilia B in a non-human species and provides evidence for a recent Line-1 insertion event in the canine genome.
Collapse
Affiliation(s)
- Marjory B Brooks
- Department of Population Medicine and Diagnostic Sciences, Comparative Coagulation Section, College of Veterinary Medicine, Cornell University, Upper Tower Road, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
11
|
Abstract
The plethora of genomic information gathered by the sequencing of the human and mouse genomes has paved the way for a new era of genetics. While in the past we focused mainly on the small percentage of DNA that codes for proteins, we can now concentrate on the remainder, i.e. the noncoding sequences that interrupt and separate genes. This portion of the genome is made up, in most part, of repetitive DNA sequences including DNA transposons, long terminal repeat (LTR) retrotransposons, LINEs (long interspersed nuclear elements) and SINEs (short interspersed nuclear elements). Some of these elements are transcriptionally active and can transpose or retrotranspose around the genome, resulting in insertional mutagenesis that can cause disease. In these cases, insertions have occurred in the coding sequence. However, recent evidence suggests that the main effect of these elements is their ability to influence transcription of neighbouring genes. The elements themselves contain promoters that can initiate transcription of flanking genomic DNA. Furthermore, they are susceptible to epigenetic silencing, which is often stochastic and incomplete, resulting in complex patterns of transcription. This review discusses some diseases in both human and mouse that are caused by these repetitive elements.
Collapse
Affiliation(s)
- R Druker
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales, Australia
| | | |
Collapse
|
12
|
Roy-Engel AM, Salem AH, Oyeniran OO, Deininger L, Hedges DJ, Kilroy GE, Batzer MA, Deininger PL. Active Alu element "A-tails": size does matter. Genome Res 2002; 12:1333-44. [PMID: 12213770 PMCID: PMC186649 DOI: 10.1101/gr.384802] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Long and short interspersed elements (LINEs and SINEs) are retroelements that make up almost half of the human genome. L1 and Alu represent the most prolific human LINE and SINE families, respectively. Only a few Alu elements are able to retropose, and the factors determining their retroposition capacity are poorly understood. The data presented in this paper indicate that the length of Alu "A-tails" is one of the principal factors in determining the retropositional capability of an Alu element. The A stretches of the Alu subfamilies analyzed, both old (Alu S and J) and young (Ya5), had a Poisson distribution of A-tail lengths with a mean size of 21 and 26, respectively. In contrast, the A-tails of very recent Alu insertions (disease causing) were all between 40 and 97 bp in length. The L1 elements analyzed displayed a similar tendency, in which the "disease"-associated elements have much longer A-tails (mean of 77) than do the elements even from the young Ta subfamily (mean of 41). Analysis of the draft sequence of the human genome showed that only about 1000 of the over one million Alu elements have tails of 40 or more adenosine residues in length. The presence of these long A stretches shows a strong bias toward the actively amplifying subfamilies, consistent with their playing a major role in the amplification process. Evaluation of the 19 Alu elements retrieved from the draft sequence of the human genome that are identical to the Alu Ya5a2 insert in the NF1 gene showed that only five have tails with 40 or more adenosine residues. Sequence analysis of the loci with the Alu elements containing the longest A-tails (7 of the 19) from the genomes of the NF1 patient and the father revealed that there are at least two loci with A-tails long enough to serve as source elements within our model. Analysis of the A-tail lengths of 12 Ya5a2 elements in diverse human population groups showed substantial variability in both the Alu A-tail length and sequence homogeneity. On the basis of these observations, a model is presented for the role of A-tail length in determining which Alu elements are active.
Collapse
Affiliation(s)
- Astrid M Roy-Engel
- Tulane Cancer Center, SL-66, Department of Environmental Health Sciences, Tulane University-Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
L1 retrotransposons comprise 17% of the human genome. Although most L1s are inactive, some elements remain capable of retrotransposition. L1 elements have a long evolutionary history dating to the beginnings of eukaryotic existence. Although many aspects of their retrotransposition mechanism remain poorly understood, they likely integrate into genomic DNA by a process called target primed reverse transcription. L1s have shaped mammalian genomes through a number of mechanisms. First, they have greatly expanded the genome both by their own retrotransposition and by providing the machinery necessary for the retrotransposition of other mobile elements, such as Alus. Second, they have shuffled non-L1 sequence throughout the genome by a process termed transduction. Third, they have affected gene expression by a number of mechanisms. For instance, they occasionally insert into genes and cause disease both in humans and in mice. L1 elements have proven useful as phylogenetic markers and may find other practical applications in gene discovery following insertional mutagenesis in mice and in the delivery of therapeutic genes.
Collapse
Affiliation(s)
- E M Ostertag
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
14
|
Neidhart M, Rethage J, Kuchen S, Künzler P, Crowl RM, Billingham ME, Gay RE, Gay S. Retrotransposable L1 elements expressed in rheumatoid arthritis synovial tissue: association with genomic DNA hypomethylation and influence on gene expression. ARTHRITIS AND RHEUMATISM 2000; 43:2634-47. [PMID: 11145021 DOI: 10.1002/1529-0131(200012)43:12<2634::aid-anr3>3.0.co;2-1] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is characterized by a progressive destruction of joints by invasive synovial fibroblasts (SF). We searched for retroviral sequences in RA synovial fluid pellets, identified a sequence similar to that of open reading frame 2 (ORF2)/L1 retrotransposable elements, explored the expression of L1 in RA synovial tissues and cultured RA SF, and investigated the link to genomic DNA hypomethylation and the influence of functional L1 on gene expression. METHODS RA synovial fluid pellets were screened by reverse transcriptase-polymerase chain reaction (RT-PCR) using degenerated pol primers. The sequences were identified by GenBank search. Riboprobes to ORF2/L1 and galectin-3 and antibodies to the ORF1/L1-related p40 protein were used for in situ hybridization and immunohistochemistry of synovial tissues and cultured RA SF. Real-time quantitative RT-PCR was used for detecting ORF1 messenger RNA (mRNA). Since DNA hypomethylation occurs in inflammatory diseases, we incubated cells with the methylation inhibitor 5-aza-2'-deoxycytidine (5-azaC) and compared RA SF and osteoarthritis (OA) SF. L1-negative RA SF were transfected with the functional L1.2 construct, and differential gene expression was analyzed by subtractive hybridization combined with nested PCR. RESULTS RNA sequences similar to those of ORF2/L1 retrotransposable elements, THE1 transposon, human endogenous retrovirus (ERV)-E, human ERV-HC2, and gibbon ape leukemia virus pol genes were isolated from different RA synovial fluid pellets. In RA synovial tissues, ORF2/L1 transcripts were detected in the sublining layer and at sites of cartilage and bone destruction. Galectin-3 mRNA and L1-related ORF1/ p40 protein showed similar expression patterns. In contrast, OA synovial tissues in situ and cultures in vitro were negative. Real-time quantitative RT-PCR confirmed the presence of ORF1 mRNA in cultured RA SF (30-300-fold the amount in normal SF), demonstrating the existence of a nondegenerated and functional L1 element. In vitro, the majority of RA SF expressed ORF2/L1 mRNA. After incubation of SF with 5-azaC, L1 mRNA appeared in a time- and dose-dependent manner. Compared with OA SF, RA SF were more sensitive to 5-azaC. After transfection of RA SF with a functional L1.2 element, human stress-activated protein kinase 2 delta (SAPK2delta [or SAPK4]), met protooncogene, and galectin-3 binding protein genes were differentially expressed. The transcription of the SAPK2delta gene, favored also by DNA hypomethylation in vitro, was confirmed in RA synovial tissues. CONCLUSION Taken together, these data suggest that L1 elements and SAPK2delta pathways play a role in the activation of RA SF.
Collapse
Affiliation(s)
- M Neidhart
- Center for Experimental Rheumatology, Department of Rheumatology, University Hospital, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sheen FM, Sherry ST, Risch GM, Robichaux M, Nasidze I, Stoneking M, Batzer MA, Swergold GD. Reading between the LINEs: human genomic variation induced by LINE-1 retrotransposition. Genome Res 2000; 10:1496-508. [PMID: 11042149 PMCID: PMC310943 DOI: 10.1101/gr.149400] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2000] [Accepted: 08/11/2000] [Indexed: 11/25/2022]
Abstract
The insertion of mobile elements into the genome represents a new class of genetic markers for the study of human evolution. Long interspersed elements (LINEs) have amplified to a copy number of about 100,000 over the last 100 million years of mammalian evolution and comprise approximately 15% of the human genome. The majority of LINE-1 (L1) elements within the human genome are 5' truncated copies of a few active L1 elements that are capable of retrotransposition. Some of the young L1 elements have inserted into the human genome so recently that populations are polymorphic for the presence of an L1 element at a particular chromosomal location. L1 insertion polymorphisms offer several advantages over other types of polymorphisms for human evolution studies. First, they are typed by rapid, simple, polymerase chain reaction (PCR)-based assays. Second, they are stable polymorphisms that rarely undergo deletion. Third, the presence of an L1 element represents identity by descent, because the probability is negligible that two different young L1 repeats would integrate independently between the exact same two nucleotides. Fourth, the ancestral state of L1 insertion polymorphisms is known to be the absence of the L1 element, which can be used to root plots/trees of population relationships. Here we report the development of a PCR-based display for the direct identification of dimorphic L1 elements from the human genome. We have also developed PCR-based assays for the characterization of six polymorphic L1 elements within the human genome. PCR analysis of human/rodent hybrid cell line DNA samples showed that the polymorphic L1 elements were located on several different chromosomes. Phylogenetic analysis of nonhuman primate DNA samples showed that all of the recently integrated "young" L1 elements were restricted to the human genome and absent from the genomes of nonhuman primates. Analysis of a diverse array of human populations showed that the allele frequencies and level of heterozygosity for each of the L1 elements was variable. Polymorphic L1 elements represent a new source of identical-by-descent variation for the study of human evolution. [The sequence data described in this paper have been submitted to the GenBank data library under accession nos. AF242435-AF242451.]
Collapse
Affiliation(s)
- F M Sheen
- Promega Corporation, Madison, Wisconsin 53711, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Otto E, Betz R, Rensing C, Schätzle S, Kuntzen T, Vetsi T, Imm A, Hildebrandt F. A deletion distinct from the classical homologous recombination of juvenile nephronophthisis type 1 (NPH1) allows exact molecular definition of deletion breakpoints. Hum Mutat 2000; 16:211-23. [PMID: 10980528 DOI: 10.1002/1098-1004(200009)16:3<211::aid-humu4>3.0.co;2-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Juvenile nephronophthisis, an autosomal recessive cystic kidney disease, is the most common genetic cause of end-stage renal disease in children and young adults. We recently identified by positional cloning the causative gene, NPHP1. Its gene product nephrocystin may play a role in focal adhesion and adherens junction signaling. Approximately 80% of all patients with NPH1 carry large homozygous deletions, which contain the NPHP1 gene. These common deletions are positioned within a complex arrangement of large inverted and direct repeats, suggesting unequal recombination as a potential cause for their origin. In this study we have characterized the deletion breakpoints in a family with juvenile nephronophthisis that bears a unique maternal deletion of the NPHP1 gene, which is not the result of an event of homologous recombination. We molecularly characterized the centromeric and telomeric deletion breakpoints by extensive genomic sequencing, Southern blot analysis, and cloning and sequencing of the junction fragment. We were able to exactly localize the breakpoints at the position of two guanines. The centromeric breakpoint was positioned within intron 2 of the NPHP1 gene 360 bp downstream of the 5' end of a complete LINE-1 element. Multiple topoisomerase I and II consensus sequences were found at the breakpoint sites, suggesting the involvement of topoisomerase II in the deletion mechanism. These findings provide the first data on a potential mechanism for a deletion of the NPHP1 gene, that most likely is not the result of an event of homologous recombination and thereby distinct from the known common deletions.
Collapse
Affiliation(s)
- E Otto
- University Children's Hospital, D-79106 Freiburg University, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Most of the aging theories are monistic in nature, they omit numerous key factors of senescence during the process of model creation. There are two main categories of these theories: program theories and error (mutation) ones. Program theories imply the existence of internal or external programs that determine the aging process ab ovo. The error theories involve explicit or implicit the idea that aging would not happen without the destructive factors that cause errors, mutations, regulation disorders, and in turn these processes finally lead to disfunctions and senescence. The aim of this paper is to indicate that aging may be multifactorial and the process of senescence may be determined by the information level of the organization. This level itself changes during senescence (including the information level of the genom that also alters by time because of, e.g. its 'fluid' character). According to this approach the aging process is determined by the sum effects of internal (e.g. genom) and external (material, energy, information) factors, although there are some elements that bear more importance than others. Subsequently, the maximal life-span is probably determined by the principle of the weakest element of the chain. Because of the high complexity of the human body where different information systems superpose each other, the cooperation of the elements (counter-effects, regulation) have the same determining importance as the information level of the unit parts (cells) have. The further aim of this paper is to show that the roots of certain diseases (e.g. cancer) could firmly be linked to the aging process itself. This interpretation offers two ways of influencing the process of senescence. It could be influenced by maintaining the information level of the organism via optimization or by changing (elevating) this level. All the factors that help to prevent the decrease of the information level of the organism could act against aging and certain diseases, and vice versa: the factors which deteriorate the state of the information system could contribute to the acceleration of the aging process.
Collapse
Affiliation(s)
- I Semsei
- Molecular Biology Research Laboratory, 3rd Department of Medicine, Medical and Health Science Center, University of Debrecen, Moricz Zs. Krt. 22 (POB 3), 4004, Debrecen, Hungary.
| |
Collapse
|
18
|
Seul KH, Beyer EC. Mouse connexin37: gene structure and promoter analysis. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:499-504. [PMID: 11004519 DOI: 10.1016/s0167-4781(00)00122-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Connexin37 (Cx37) is a subunit gap junction protein which exhibits limited expression in only a few cell types, predominantly in endothelial cells and in the lung. To begin to analyze Cx37 expression, we isolated a 1.6 kb mouse Cx37 cDNA from a mouse lung cDNA library and isolated corresponding mouse genomic clones from a bacterial artificial chromosome library. Sequencing and comparison of these clones showed that the Cx37 gene contained a short first exon, an 1.0 kb single intron and a second exon containing the complete coding region and 3'-untranslated region (UTR). The 5'-UTR of the mouse cDNA showed 70% identity to that of human Cx37. Primer extension experiments performed using mouse lung RNA gave two bands of sizes consistent with the transcription start site predicted from the cDNA. Sequence analysis showed that the regions flanking exon I contained a consensus 'TATA box' 43 bp 5' from the transcription start site preceded by several putative transcription factor binding sites and a 282 bp truncated L1Md interspersed element. Luciferase reporter gene transfections suggested that an area of 268 bp 5' from the first exon acted as a basal promoter for Cx37 and that there was a strong negative regulatory element in the intron.
Collapse
Affiliation(s)
- K H Seul
- Department of Physiology and Institute for Cardiovascular Research, Chonbuk National Univeristy, Chonbuk Medical School, Chonju, South Korea
| | | |
Collapse
|
19
|
Kimberland ML, Divoky V, Prchal J, Schwahn U, Berger W, Kazazian HH. Full-length human L1 insertions retain the capacity for high frequency retrotransposition in cultured cells. Hum Mol Genet 1999; 8:1557-60. [PMID: 10401005 DOI: 10.1093/hmg/8.8.1557] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Functional L1 elements are autonomous retrotransposons that can insert into human genes and cause disease. To date, 10 of 12 known L1 retrotranspositions into human genes have been found to be 5"-truncated and incapable of further retrotransposition. Here we report the nucleotide sequences of the two full-length L1 elements, L1beta-thal and L1RP, that have inserted into the beta-globin and retinitis pigmentosa-2 (RP2) genes, respectively. L1beta-thal is 99. 4% identical to a consensus sequence of active human L1s, while L1RP is 99.9% identical. Both elements retain impressive capacity for high frequency retrotransposition in cultured HeLa cells. Indeed, L1RP is the most active L1 isolated to date. Our data indicate that not all L1 insertions into human genes are 'dead on arrival'. Our findings also lend further credence to the concept of cis preference, that the proteins encoded by a particular L1 preferentially act upon their encoding RNA as opposed to other L1 RNAs.
Collapse
Affiliation(s)
- M L Kimberland
- Department of Genetics, University of Pennsylvania, 475 CRB, 415 Curie Boulevard, Philadelphia, PA 19104-6145, USA
| | | | | | | | | | | |
Collapse
|
20
|
Ritter M, Buechler C, Langmann T, Schmitz G. Genomic organization and chromosomal localization of the human CD163 (M130) gene: a member of the scavenger receptor cysteine-rich superfamily. Biochem Biophys Res Commun 1999; 260:466-74. [PMID: 10403791 DOI: 10.1006/bbrc.1999.0866] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The human protein CD163 (M130) is a member of the scavenger receptor cysteine-rich (SRCR) superfamily, which is exclusively expressed by monocytes and macrophages. Here, we investigated the genomic organization and the chromosomal localization of the human CD163 gene. The CD163 gene is composed of 17 exons and 16 introns and spans over 35 kb. Each of its nine SRCR domains is encoded by a separate exon, which is similar to other members of the group B SRCR subfamily. Two cytoplasmic variants of CD163 arise from alternative splicing of intron 15, while a truncated and an extracellular variant results from alternative splicing of intron 5 or intron 7, respectively. Using fluorescence in situ hybridization we mapped this gene to the human chromosome 12p13. The transcription initiation sites of the CD163 gene were determined and the 5'-flanking region was sequenced. The nucleotide analysis revealed several putative binding sites for transcription factors, which have been shown to play an important role in myeloid specific gene expression. In addition, we identified a L1 element located 1.4 kb upstream of the major transcription initiation site.
Collapse
MESH Headings
- Alternative Splicing
- Antigens, CD
- Antigens, Differentiation, Myelomonocytic/genetics
- Base Sequence
- Chromosome Mapping
- Chromosomes, Human, Pair 12
- Cysteine/chemistry
- DNA
- Exons
- Humans
- In Situ Hybridization, Fluorescence
- Introns
- Membrane Proteins
- Molecular Sequence Data
- RNA, Messenger/genetics
- Receptors, Cell Surface
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Lipoprotein
- Receptors, Scavenger
- Scavenger Receptors, Class B
- Terminator Regions, Genetic
Collapse
Affiliation(s)
- M Ritter
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, D-93042, Germany
| | | | | | | |
Collapse
|
21
|
Affiliation(s)
- S E Antonarakis
- Department of Genetics and Microbiology, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
22
|
Gruber AD, Elble RC, Ji HL, Schreur KD, Fuller CM, Pauli BU. Genomic cloning, molecular characterization, and functional analysis of human CLCA1, the first human member of the family of Ca2+-activated Cl- channel proteins. Genomics 1998; 54:200-14. [PMID: 9828122 DOI: 10.1006/geno.1998.5562] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have cloned and molecularly and functionally characterized the first human member of the family of Ca2+-activated Cl- channels, human (h) CLCA1. The 31,902-bp gene is located on chromosome 1p22-31 and is preceded by a canonic promoter region that contains an L1 transposable element. In contrast to all previously known homologs in other species, hCLCA1 is exclusively expressed in intestinal basal crypt epithelia and goblet cells, suggesting that it does not represent the human counterpart of any of them. Expression of the 914-amino-acid hCLCA1 protein in HEK 293 cells yielded a 125-kDa precursor that was processed to yield two cell-surface-associated subunits, a 90-kDa protein and a group of 37- to 41-kDa proteins. Four transmembrane domains were established within the 90-kDa subunit. HEK 293 cells transfected with CLCA1 exhibited an increase in whole-cell Ca2+-sensitive Cl- currents that were outwardly rectified and inhibited by 4,4'-diisothiocyanatostilbene-2, 2'-disulfonic acid, dithiothreitol, and niflumic acid. Cell-attached patch recordings of transfected cells revealed single channels with a slope conductance of 13.4 pS. These findings suggest that human CLCA1 mediates a Ca2+-activated Cl- conductance in the human intestine and make it an interesting candidate as a modulating factor in the pathogenesis of cystic fibrosis.
Collapse
Affiliation(s)
- A D Gruber
- Cancer Biology Laboratories, Department of Molecular Medicine, Cornell University College of Veterinary Medicine, Ithaca, New York, 14853, USA
| | | | | | | | | | | |
Collapse
|
23
|
Yoshida K, Nakamura A, Yazaki M, Ikeda S, Takeda S. Insertional mutation by transposable element, L1, in the DMD gene results in X-linked dilated cardiomyopathy. Hum Mol Genet 1998; 7:1129-32. [PMID: 9618170 DOI: 10.1093/hmg/7.7.1129] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
X-linked dilated cardiomyopathy (XLDCM) is a clinical phenotype of dystrophinopathy which is characterized by preferential myocardial involvement without any overt clinical signs of skeletal myopathy. To date, several mutations in the Duchenne muscular dystrophy gene, DMD , have been identified in patients with XLDCM, but a pathogenic correlation of these cardiospecific mutations in DMD with the XLDCM phenotype has remained to be elucidated. We report here the identification of a unique de novo L1 insertion in the muscle exon 1 in DMD in three XLDCM patients from two unrelated Japanese families. The insertion was a 5'-truncated form of human L1 inversely integrated in the 5'-untranslated region in the muscle exon 1, which affected the transcription or the stability of the muscle form of dystrophin transcripts but not that of the brain or Purkinje cell form, probably due to its unique site of integration. We speculate that this insertion of an L1 sequence in DMD is responsible for some of the population of Japanese patients with XLDCM.
Collapse
Affiliation(s)
- K Yoshida
- Department of Medicine (Neurology) and Division of Clinical Genetics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| | | | | | | | | |
Collapse
|
24
|
Abstract
A substantial fraction of mammalian genomes is composed of mobile elements and their remnants. Recent insertions of LTR-retrotransposons, non-LTR retrotransposons, and non-autonomous retrotransposons have caused disease frequently in mice, but infrequently in humans. Although many of these elements are defective, a number of mammalian non-LTR retrotransposons of the L1 type are capable of autonomous retrotransposition. The mechanism by which they retrotranspose and in turn aide the retrotransposition of non-autonomous elements is being elucidated.
Collapse
Affiliation(s)
- H H Kazazian
- Department of Genetics, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
25
|
Abstract
The 'master' human mobile element, the L1 retrotransposon, has come of age as a biological entity. Knowledge of how it retrotransposes in vivo, how its proteins act to retrotranspose other poly A elements and the extent of its role in shaping the human genome should emerge rapidly over the next few years. We review the impact of retrotransposons and how new insight is likely to lead to important practical applications for these intriguing mobile elements.
Collapse
Affiliation(s)
- H H Kazazian
- Department of Genetics, University of Pennsylvania, School of Medicine, Philadelphia 19104, USA.
| | | |
Collapse
|
26
|
Hohjoh H, Singer MF. Ribonuclease and high salt sensitivity of the ribonucleoprotein complex formed by the human LINE-1 retrotransposon. J Mol Biol 1997; 271:7-12. [PMID: 9300051 DOI: 10.1006/jmbi.1997.1159] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
P40 is encoded by the first open reading frame of the human LINE-1 retrotransposon and is found in a large cytoplasmic ribonucleoprotein (RNP) complex, the p40 RNP-complex, in association with LINE-1 RNA(s) in human teratocarcinoma cell lines. We report here investigations on the stability of the p40 RNP-complex against various nucleases and high salt (0.5 M NaCl) treatment. The results indicate that (1) the p40 RNP-complex is dissociated after ribonuclease or high salt treatment, (2) DNase I does not disrupt the complex, (3) after dissociation of the complex, p40 maintain protein-protein interactions but in smaller complexes, and (4) p40 is not associated with the LINE-1 RNA(s) after high salt treatment. These observations suggest that the RNA molecule(s) is(are) essential for the stability of the large p40 complex and that the complex has a structure which allows various nucleases to reach the RNA. These features are distinct from those of typical virus and virus-like particles of retroviruses and other retrotransposons, respectively. Together with the fact that no significant sequence homology exists between p40 and the gag and gag-like proteins, it is likely that the p40 RNP-complex is structurally different from the typical virus and virus-like particles.
Collapse
Affiliation(s)
- H Hohjoh
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
27
|
|
28
|
Jurka J. Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci U S A 1997; 94:1872-7. [PMID: 9050872 PMCID: PMC20010 DOI: 10.1073/pnas.94.5.1872] [Citation(s) in RCA: 386] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It is commonly accepted that the reverse-transcribed cellular RNA molecules, called retroposons, integrate at staggered breaks in mammalian chromosomes. However, unlike what was previously thought, most of the staggered breaks are not generated by random nicking. One of the two nicks involved is primarily associated with the 5'-TTAAAA hexanucleotide and its variants derived by a single base substitution, particularly A --> G and T --> C. It is probably generated in the antisense strand between the consensus bases 3'-AA and TTTT complementary to 5'-TTAAAA. The sense strand is nicked at variable distances from the TTAAAA consensus site toward the 3' end, preferably within 15-16 base pairs. The base composition near the second nicking site is also nonrandom at positions preceding the nick. On the basis of the observed sequence patterns it is proposed that integration of mammalian retroposons is mediated by an enzyme with endonucleolytic activity. The best candidate for such enzyme may be the reverse transcriptase encoded by the L1 non-long-terminal-repeat retrotransposon, which contains a freshly reported domain homologous to the apurinic/apyrimidinic (AP) endonuclease family [Martin, F., Olivares, M., Lopez, M. C. & Alonso, C. (1996) Trends Biochem. Sci. 21, 283-285; Feng, Q., Moran, J. V., Kazazian, H. H. & Boeke, J. D. (1996) Cell 87, 905-916] and shows nicking in vitro with preference for targets similar to 5'-TTAAAA/3'-AATTTT consensus sequence [Feng, Q., Moran, J. V., Kazazian, H. H. & Boeke, J. D. (1996) Cell 87, 905-916]. A model for integration of mammalian retroposons based on the presented data is discussed.
Collapse
Affiliation(s)
- J Jurka
- Genetic Information Research Institute, Palo Alto, CA 94306, USA.
| |
Collapse
|
29
|
Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH. High frequency retrotransposition in cultured mammalian cells. Cell 1996; 87:917-27. [PMID: 8945518 DOI: 10.1016/s0092-8674(00)81998-4] [Citation(s) in RCA: 776] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We previously isolated two human L1 elements (L1.2 and LRE2) as the progenitors of disease-producing insertions. Here, we show these elements can actively retrotranspose in cultured mammalian cells. When stably expressed from an episome in HeLa cells, both elements retrotransposed into a variety of chromosomal locations at a high frequency. The retrotransposed products resembled endogenous L1 insertions, since they were variably 5' truncated, ended in poly(A) tracts, and were flanked by target-site duplications or short deletions. Point mutations in conserved domains of the L1.2-encoded proteins reduced retrotransposition by 100- to 1000-fold. Remarkably, L1.2 also retrotransposed in a mouse cell line, suggesting a potential role for L1-based vectors in random insertional mutagenesis.
Collapse
Affiliation(s)
- J V Moran
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
30
|
Feng Q, Moran JV, Kazazian HH, Boeke JD. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 1996; 87:905-16. [PMID: 8945517 DOI: 10.1016/s0092-8674(00)81997-2] [Citation(s) in RCA: 844] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human L1 elements are highly abundant poly(A) (non-LTR) retrotransposons whose second open reading frame (ORF2) encodes a reverse transcriptase (RT). We have identified an endonuclease (EN) domain at the L1 ORF2 N-terminus that is highly conserved among poly(A) retrotransposons and resembles the apurinic/apyrimidinic (AP) endonucleases. Purified L1 EN protein (L1 ENp) makes 5'-PO4, 3'-OH nicks in supercoiled plasmids, shows no preference for AP sites, and preferentially cleaves sequences resembling L1 in vivo target sequences. Mutations in conserved amino acid residues of L1 EN abolish its nicking activity and eliminate L1 retrotransposition. We propose that L1 EN cleaves the target site for L1 insertion and primes reverse transcription.
Collapse
Affiliation(s)
- Q Feng
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
31
|
Shirakawa T, Nishiyama K, Poh-San L, Ishida T, Matsuo M. Comparison of insertion rate of L1 retroposon into intron 30 of the neurofibromatosis type 1 gene in seven Asian and Pacific populations. THE JAPANESE JOURNAL OF HUMAN GENETICS 1996; 41:209-14. [PMID: 8914637 DOI: 10.1007/bf01892629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The allele frequency of a L1 retroposon insertion into intron 30 of the neurofibromatosis type 1 (NF1) gene was determined by analyzing amplified fragment lengths in seven Asian or Pacific population; namely, Japanese, Chinese. Indian, Malay, Filipino, Indonesian and New Guinean. Nearly 100 chromosomes from each group were analyzed. The presence of the L1 insertion was identified by the appearance of an abnormally large PCR-amplified product. The insertion frequency varied from 0.45 to 0.75, depending on the population group. Malay and Indonesian populations were found to have the highest insertion frequencies (0.75 and 0.72, respectively), while the wild-type genotype was more prevalent in Indians. The lowest insertion frequency (0.45), observed in Indians, was nearest to that reported in Westerners (0.35). The different L1 insertion frequencies found in Asian and Pacific groups reflect a major divergence in these human populations. Japanese and Chinese populations showed the highest heterozygosity (0.50), suggesting the usefulness of this polymorphism in linkage analysis in these populations.
Collapse
Affiliation(s)
- T Shirakawa
- Faculty of Health Science, Kobe University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
32
|
Abstract
The APC (adenomatous polyposis coli) gene was isolated as a gene responsible for familial polyposis coli, an autosomal-dominant disease, characterized by development of hundreds to thousands of adenomatous polyps in the colon and rectum. However, recent studies revealed that inactivation of the APC gene also plays a significant role in development of sporadic forms of colorectal adenoma and carcinoma. Furthermore, somatic mutations have also been detected in pancreatic carcinomas as well as some type of gastric carcinomas, suggesting that APC has a critical function in regulation of cell growth in digestive tissues.
Collapse
Affiliation(s)
- Y Nakamura
- Laboratory of Molecular Medicine, University of Tokyo, Japan
| |
Collapse
|
33
|
Antonarakis SE, Kazazian HH, Tuddenham EG. Molecular etiology of factor VIII deficiency in hemophilia A. Hum Mutat 1995; 5:1-22. [PMID: 7728145 DOI: 10.1002/humu.1380050102] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hemophilia is a common X-linked coagulation disorder due to deficiency of factor VIII. The factor VIII gene has been cloned in 1984 and a large number of mutations that cause hemophilia A have been identified in the last decade. The most common of the mutations is an inversion of factor VIII that accounts for nearly 45% of patients with severe hemophilia A. This review lists all the factor VIII mutations identified to date and briefly discusses their functional significance.
Collapse
Affiliation(s)
- S E Antonarakis
- Division of Medical Genetics, University of Geneva Medical School and Cantonal Hospital, Switzerland
| | | | | |
Collapse
|
34
|
Antonarakis SE, Kazazian HH, Gitschier J, Hutter P, de Moerloose P, Morris MA. Molecular etiology of factor VIII deficiency in hemophilia A. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 386:19-34. [PMID: 8851012 DOI: 10.1007/978-1-4613-0331-2_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S E Antonarakis
- Division of Medical Genetics, University of Geneva Medical School and Cantonal Hospital, Switzerland
| | | | | | | | | | | |
Collapse
|
35
|
Chan A, Zhao J, Krajden M. Polymerase chain reaction kinetics when using a positive internal control target to quantitatively detect cytomegalovirus target sequences. J Virol Methods 1994; 48:223-36. [PMID: 7989439 DOI: 10.1016/0166-0934(94)90121-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
High-performance liquid chromatography (HPLC) was used to detect and quantify cytomegalovirus (CMV) specific polymerase chain reaction (PCR) products generated during PCR co-amplification. PCR of CMV AD 169 or a plasmid which contains the CMV AD 169 native target sequence using the CMV primer set of Hsia et al. (J. Clin. Microbiol. 27, 1802-1809) generates a 152 bp PCR product. A CMV control sequence plasmid which shared the primer sequence of native CMV AD 169 but when amplified produces a larger 362 bp product was constructed. Under co-amplification conditions there was a linear relationship (over 3 logs) between the molar ratio of input CMV native and control target sequence and the molar ratio of the output PCR products as detected by HPLC despite differences between the two PCR target and product sizes. Co-amplifying known amounts of CMV control sequence plasmid as an internal standard allowed accurate quantitation of the amount of CMV native target sequence in a sample when the two PCR targets were present in approximately equimolar amounts +/- 1.5 log (coefficient of variation (CV) < 12%). By modifying the amount of CMV control target sequence plasmid used for co-amplification, accurate detection of the amount of CMV native sequence in samples could be extended to 5 logs, standard error (S.E.) < or = 16%. Precise quantitation of PCR targets using co-amplification PCR requires multiple sample dilutions to ensure that the CMV native target sequence was in a close equimolar relationship with the CMV control sequence at the time of PCR amplification.
Collapse
Affiliation(s)
- A Chan
- Department of Microbiology, Toronto Hospital, Ont., Canada
| | | | | |
Collapse
|
36
|
Dombroski BA, Scott AF, Kazazian HH. Two additional potential retrotransposons isolated from a human L1 subfamily that contains an active retrotransposable element. Proc Natl Acad Sci U S A 1993; 90:6513-7. [PMID: 8393568 PMCID: PMC46962 DOI: 10.1073/pnas.90.14.6513] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have previously reported the isolation of a human retrotransposable L1 element. This element, allele L1.2B at the LRE-1 locus of chromosome 22, was shown by nucleotide sequence identity to be the direct precursor of a de novo retrotransposition event into the factor VIII gene on the X chromosome, resulting in hemophilia A in patient JH-27. We now report the isolation of the two remaining full-length members of the subfamily of L1 elements closely related to L1.2B present in the genome of the mother of JH-27. Since these elements, L1.3 and L1.4, are very similar in sequence to L1.2B and contain both open reading frames 1 and 2 intact, they are also likely to be active retrotransposable elements. This suggests that certain L1 subfamilies may contain multiple active elements.
Collapse
Affiliation(s)
- B A Dombroski
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | |
Collapse
|
37
|
Abstract
The human genome contains a complex variety of inherited endogenous retroviral sequences (ERSs), several of which are transcriptionally active and contain open reading frames. Aberrant expression of ERSs and generation of antibodies to ERS-encoded proteins have recently been revealed in autoimmune disorders. Involvement of ERSs could explain both the familial aggregation and the detection of antiretroviral antibodies in autoimmune diseases.
Collapse
Affiliation(s)
- A Perl
- Dept of Medicine, State University of New York, Health Science Center, Syracuse 13210
| | | |
Collapse
|
38
|
Narita N, Nishio H, Kitoh Y, Ishikawa Y, Ishikawa Y, Minami R, Nakamura H, Matsuo M. Insertion of a 5' truncated L1 element into the 3' end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. J Clin Invest 1993; 91:1862-7. [PMID: 8387534 PMCID: PMC288178 DOI: 10.1172/jci116402] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We report here the second evidence of retrotransposition of L1, which was found inserted into the dystrophin gene of a patient, causing Duchenne muscular dystrophy (DMD). When the PCR was used to amplify a region of the dystrophin gene encompassing exon 44 from genomic DNA of two Japanese brothers with DMD, it was found to be approximately 600 bp larger than expected. Both the normal and the abnormally large products were amplified from the DNA of their mother. However, the maternal grandparents did not have the abnormal allele, and the mutation must therefore have occurred in the mother. Analysis of nucleotide sequence of the amplified product from a patient disclosed that the insertion was present zero to two bases upstream from the 3' end of exon 44 and that two to four bases of the exon sequence were deleted from the insertion site. The insertion sequence was found to be composed of 606-608 bp and to be almost identical to the inverse complement of 3' portion of the L1 retrotransposon consensus sequence. The dystrophin gene transcript from peripheral lymphocytes of one of the patients was analyzed by using reverse transcription/semi-nested PCR. The size of the amplified product encompassing exon 42 to 46 was smaller than expected. Sequencing of the amplified product disclosed that the sequence of exon 43 was directly joined to that of exon 45. Exon 44 of the transcript was thus shown to be skipped during splicing. This novel mutation of the dystrophin gene has important implications regarding retrotransposition of an active L1 element and provides a new insight into the origins of mutations in the dystrophin gene.
Collapse
Affiliation(s)
- N Narita
- Department of Pediatrics, Kobe University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Amariglio N, Rechavi G. Insertional mutagenesis by transposable elements in the mammalian genome. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1993; 21:212-218. [PMID: 8385004 DOI: 10.1002/em.2850210303] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Several mammalian repetitive transposable genetic elements were characterized in recent years, and their role in mutagenesis is delineated in this review. Two main groups have been described: elements with symmetrical termini such as the murine IAP sequences and the human THE 1 elements and elements characterized by a poly-A rich tail at the 3' end such as the SINE and LINE sequences. The characteristic property of such mobile elements to spread and integrate in the host genome leads to insertional mutagenesis. Both germline and somatic mutations have been documented resulting from the insertion of the various types of mammalian repetitive transposable genetic elements. As foreseen by Barbara McClintock, such genetic events can cause either the activation or the inactivation of specific genes, resulting in their identification via an altered phenotype. Several disease states, such as hemophilia and cancer, are the result of this apparent aspect of genome instability.
Collapse
Affiliation(s)
- N Amariglio
- Department of Hematology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | | |
Collapse
|
40
|
Affiliation(s)
- Y Nakamura
- Department of Biochemistry, Cancer Institute, Tokyo, Japan
| |
Collapse
|
41
|
Dombroski BA, Mathias SL, Nanthakumar E, Scott AF, Kazazian HH. Isolation of an active human transposable element. Science 1991; 254:1805-8. [PMID: 1662412 DOI: 10.1126/science.1662412] [Citation(s) in RCA: 331] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two de novo insertions of truncated L1 elements into the factor VIII gene on the X chromosome have been identified that produced hemophilia A. A full-length L1 element that is the likely progenitor of one of these insertions was isolated by its sequence identity to the factor VIII insertion. This L1 element contains two open-reading frames and is one of at least four alleles of a locus on chromosome 22 that has been occupied by an L1 element for at least 6 million years.
Collapse
Affiliation(s)
- B A Dombroski
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | |
Collapse
|
42
|
Tuddenham EG, Cooper DN, Gitschier J, Higuchi M, Hoyer LW, Yoshioka A, Peake IR, Schwaab R, Olek K, Kazazian HH. Haemophilia A: database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene. Nucleic Acids Res 1991; 19:4821-33. [PMID: 1923751 PMCID: PMC328775 DOI: 10.1093/nar/19.18.4821] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mutations at the factor VIII gene locus causing Haemophilia A have now been identified in many patients from many ethnic groups. Earlier studies used biased methods which detected repetitive mutations at a few CG dinucleotides. More recently rapid gene scanning methods have uncovered an extreme diversity of mutations. Over 80 different point mutations, 6 insertions, 7 small deletions, and 60 large deletions have been characterised. Repetitive mutation has been proved for at least 16 CpG sites. All nonsense mutations cause severe disease. Most missense mutations appear to cause instability of the protein, but some are associated with production of dysfunctional factor VIII molecules, thereby localising functionally critical regions of the cofactor. Variable phenotype has been observed in association with three of the latter class of genotype. This catalogue of gene lesions in Haemophilia A will be updated annually.
Collapse
Affiliation(s)
- E G Tuddenham
- Haemostasis Research Group, Clinical Research Centre, Harrow, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Guzzetta V, Montes de Oca-Luna R, Lupski JR, Patel PI. Isolation of region-specific and polymorphic markers from chromosome 17 by restricted Alu polymerase chain reaction. Genomics 1991; 9:31-6. [PMID: 2004767 DOI: 10.1016/0888-7543(91)90217-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We demonstrate that the digestion of template DNAs with restriction endonucleases prior to Alu polymerase chain reaction ("restricted Alu-PCR") reduces the complexity of the Alu-primed amplification patterns of human DNA in somatic cell hybrids and allows a direct informative comparison of these patterns. A comparison of restricted Alu-PCR patterns of a monochromosomal hybrid retaining a human chromosome 17 (MH22-6) and a hybrid retaining a human chromosome 17 deleted for band p11.2 (DH110-D1) revealed four Alu-PCR products that were present in the former but absent in the latter hybrid. Hybridization of these fragments to the total Alu-PCR amplification products of the two hybrids confirmed their absence in DH110-D1 amplification products. Hybridization to a panel of somatic cell hybrids indicated that two of these fragments were deleted in the hybrid DH110-D1 and mapped to 17p11.2, as expected. However, two additional fragments were not deleted in the hybrid DH110-D1 and mapped to other regions of chromosome 17. An insertion-deletion polymorphism was associated with one of the latter fragments, which may be the mechanism for the lack of its amplification in the hybrid DH110-D1. Restricted Alu-PCR should enhance the applications of Alu-PCR and provides a new method for the identification of chromosome-specific polymorphic markers.
Collapse
Affiliation(s)
- V Guzzetta
- Institute for Molecular Genetics, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | |
Collapse
|
44
|
Belmaaza A, Wallenburg JC, Brouillette S, Gusew N, Chartrand P. Genetic exchange between endogenous and exogenous LINE-1 repetitive elements in mouse cells. Nucleic Acids Res 1990; 18:6385-91. [PMID: 1978749 PMCID: PMC332516 DOI: 10.1093/nar/18.21.6385] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The repetitive LINE (L1) elements of the mouse, which are present at about 10(5) copies per genome and share over 80% of sequence homology, were examined for their ability to undergo genetic exchange with exogenous L1 sequences. The exogenous L1 sequences, carried by a shuttle vector, consisted of an internal fragment from L1Md-A2, a previously described member of the L1 family of the mouse. Using an assay that does not require the reconstitution of a selectable marker we found that this vector, in either circular or linear form, acquired DNA sequences from endogenous L1 elements at a frequency of 10(-3) to 10(-4) per rescued vector. Physical analysis of the acquired L1 sequences revealed that distinct endogenous L1 elements acted as donors and that different subfamilies participated. These results demonstrate that L1 elements are readily capable of genetic exchange. Apart from gene conversion events, the acquisition of L1 sequences outside the region of homology suggested that a second mechanism was also involved in the genetic exchange. A model which accounts for this mechanism is presented and its potential implication on the rearrangement of L1 elements is discussed.
Collapse
Affiliation(s)
- A Belmaaza
- Canadian Red Cross Society, Research and Development, Montreal Centre, Quebec
| | | | | | | | | |
Collapse
|
45
|
Hohjoh H, Minakami R, Sakaki Y. Selective cloning and sequence analysis of the human L1 (LINE-1) sequences which transposed in the relatively recent past. Nucleic Acids Res 1990; 18:4099-104. [PMID: 2165587 PMCID: PMC331165 DOI: 10.1093/nar/18.14.4099] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
L1 (LINE-1), a long interspersed repetitive DNA family of mammalian genomes, is thought to be a sequence family derived from a retrotransposon-like element(s), but its actively transposable unit(s) has not been identified yet. We developed a novel method for selective isolation of the human L1 sequences which transposed in a relatively recent past and may have still retained a feature of the 'active L1' unit. From the inspection of the nucleotide sequences, we conjectured that the 'active L1' or 'nearly active L1' units should have a high content of the CpG dinucleotide sequence, a mutation hot spot sequence, and contain several sites for rare cutters such as BssH II and Nar I at their 5' terminal regions. Using these rare cutter sites as selection markers, the L1 sequences were isolated, which had the high content of CpG at the 5' terminal regions and over 90% homology to L1 transcripts found in a human teratocarcinoma cell line. These L1s were shown to be 'relatively new L1' units which had integrated into chromosomes within these several million years during evolution. From the sequence data of these L1s and L1 cDNA, a consensus sequence of the 5' terminal region of high CpG L1s were constructed. A region of the consensus sequence showed about 69% homology to the 5' terminal region of Drosophila jockey element.
Collapse
Affiliation(s)
- H Hohjoh
- Research Laboratory for Genetic Information, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
46
|
Wong Z, Royle NJ, Jeffreys AJ. A novel human DNA polymorphism resulting from transfer of DNA from chromosome 6 to chromosome 16. Genomics 1990; 7:222-34. [PMID: 1971807 DOI: 10.1016/0888-7543(90)90544-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A cloned minisatellite, termed lambda MS29, that is unusual because it detects two variable loci in human DNA has been isolated. One locus, DNF21S1, located in the terminal region of the short arm of human chromosome 6, is also present in great apes. The second minisatellite locus, DNF21S2, is located interstitially on chromosome 16p11 and is absent both from non-human primates and from some humans. Physical mapping and sequencing show that the second locus has arisen recently in evolution by duplication of a large (greater than 15 kb) segment of chromosome 6 DNA containing a minisatellite and transposition onto chromosome 16 into a member of a novel low-copy-number repetitive DNA family. This unusual duplication/transposition event appears to represent the first example of a human DNA polymorphism arising through DNA-mediated, rather than RNA-mediated, transfer between autosomes.
Collapse
Affiliation(s)
- Z Wong
- Department of Genetics, University of Leicester, United Kingdom
| | | | | |
Collapse
|
47
|
Economou EP, Bergen AW, Warren AC, Antonarakis SE. The polydeoxyadenylate tract of Alu repetitive elements is polymorphic in the human genome. Proc Natl Acad Sci U S A 1990; 87:2951-4. [PMID: 2326257 PMCID: PMC53811 DOI: 10.1073/pnas.87.8.2951] [Citation(s) in RCA: 171] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To identify DNA polymorphisms that are abundant in the human genome and are detectable by polymerase chain reaction amplification of genomic DNA, we tested the hypothesis that the polydeoxyadenylate tract of the Alu family of repetitive elements is polymorphic among human chromosomes. We analyzed the 3' ends of three specific Alu sequences and found that two (in the adenosine deaminase gene and the beta-globin pseudogene) were polymorphic. This novel class of polymorphisms, termed AluVpA [Alu variable poly(A)] may represent one of the most useful and informative group of DNA markers in the human genome.
Collapse
Affiliation(s)
- E P Economou
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | |
Collapse
|