1
|
Toral-López J, González-Huerta LM, Cuevas-Covarrubias SA. X linked recessive ichthyosis: Current concepts. World J Dermatol 2015; 4:129-134. [DOI: 10.5314/wjd.v4.i3.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/31/2015] [Accepted: 05/28/2015] [Indexed: 02/06/2023] Open
Abstract
In the present review, we describe the most important aspects of the X-linked ichthyosis (XLI) and make a compilation of the some historic details of the disease. The aim of the present study is an update of the XLI. Historical, clinical, epidemiological, and molecular aspects are described through the text. Recessive XLI is a relatively common genodermatosis affecting different ethnic groups. With a high spectrum of the clinical manifestations due to environmental factors, the disease has a genetic heterogeneity that goes from a point mutation to a large deletion involving several genes to produce a contiguous gene syndrome. Most XLI patients harbor complete STS gene deletion and flanked sequences; seven intragenic deletions and 14 point mutations with a complete loss of the steroid sulfatase activity have been reported worldwide. In this study, we review current knowledge about the disease.
Collapse
|
2
|
Analysis of exon dosage using MLPA in South African Parkinson's disease patients. Neurogenetics 2009; 11:305-12. [DOI: 10.1007/s10048-009-0229-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 11/17/2009] [Indexed: 12/17/2022]
|
3
|
Toral-Lopez J, González-Huerta LM, Cuevas-Covarrubias SA. Segregation analysis in X-linked ichthyosis: paternal transmission of the affected X-chromosome. Br J Dermatol 2008; 158:818-20. [PMID: 18205863 DOI: 10.1111/j.1365-2133.2007.08405.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Steroid sulphatase (STS) deficiency has been described in a diversity of ethnic populations. The phenotype of STS deficiency, X-linked ichthyosis (XLI), is a genodermatosis characterized by dark scaly skin. About 90% of patients with XLI have complete deletion of the entire STS gene and flanking sequences. The variable number tandem repeats, on either side of the STS gene, appear to play an important role in these interstitial deletions due to nonallelic homologous recombination (NAHR). It is difficult to establish if this NAHR occurs between two chromosomes, between sister chromatids or between the same chromatid. OBJECTIVES To identify the parental origin of the affected X-chromosome in seven unrelated sporadic cases of XLI. METHODS Amplification of the regions from DXS89 to DXS1134 (telomeric-centromeric) including the 5' and 3' ends of the STS gene was performed through polymerase chain reaction. GeneScan analysis was performed using the DXS987, DXS8051 and DXS1060 markers located on the short arm of the X-chromosome. Fluorescence in situ hybridization analysis was performed with a digoxigenin-labelled cDNA STS probe. RESULTS STS gene deletion in patients with XLI involved the sequences DXS1139 and DXF22S1. In five families segregation analysis showed paternal transmission of the affected X-chromosome in the XLI carrier. It was not possible to determine the parental origin of the affected X-chromosome in two families. CONCLUSIONS These data strongly suggest that STS gene deletion occurred in the male meiosis probably due to an intrachromosomal event, recombination between S232 sequences on the same DNA molecule, or during the process of DNA replication.
Collapse
Affiliation(s)
- J Toral-Lopez
- Servicio de Génetica, Hospital General de México, Facultad de Medicina, UNAM, Mexico DF, Mexico
| | | | | |
Collapse
|
4
|
Hershkovitz E, Loewenthal N, Peretz A, Parvari R. Testicular Expressed Genes Are Missing in Familial X-Linked Kallmann Syndrome due to Two Large Different Deletions in Daughter’s X Chromosomes. HORMONE RESEARCH 2008; 69:276-83. [DOI: 10.1159/000114858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 06/23/2007] [Indexed: 11/19/2022]
|
5
|
Reliene R, Bishop AJR, Schiestl RH. Involvement of homologous recombination in carcinogenesis. ADVANCES IN GENETICS 2007; 58:67-87. [PMID: 17452246 DOI: 10.1016/s0065-2660(06)58003-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA alterations of every type are associated with the incidence of carcinogenesis, often on the genomic scale. Although homologous recombination (HR) is an important pathway of DNA repair, evidence is accumulating that deleterious genomic rearrangements can result from HR. It therefore follows that HR events may play a causative role in carcinogenesis. HR is elevated in response to carcinogens. HR may also be increased or decreased when its upstream regulation is perturbed or components of the HR machinery itself are not fully functional. This chapter summarizes research findings that demonstrate an association between HR and carcinogenesis. Increased or decreased frequencies of HR have been found in cancer cells and cancer-prone hereditary human disorders characterized by mutations in genes playing a role in HR, such as ATM, Tp53, BRCA, BLM, and WRN genes. Another evidence linking perturbations in HR and carcinogenesis is provided by studies showing that exposure to carcinogens results in an increased frequency of HR resulting in DNA deletions in yeast, human cells, or mice.
Collapse
Affiliation(s)
- Ramune Reliene
- Department of Pathology, Geffen School of Medicine, UCLA, Los Angeles, CA 90024, USA
| | | | | |
Collapse
|
6
|
BOERKOEL CF, INOUE K, REITER LT, WARNER LE, LUPSKI JR. Molecular Mechanisms for CMT1A Duplication and HNPP Deletion. Ann N Y Acad Sci 2006; 883:22-35. [DOI: 10.1111/j.1749-6632.1999.tb08563.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Abstract
Sulfatases are a highly conserved family of proteins that cleave sulfate esters from a wide range of substrates. The importance of sulfatases in human metabolism is underscored by the presence of at least eight human monogenic diseases caused by the deficiency of individual sulfatases. Sulfatase activity requires a unique posttranslational modification, which is impaired in patients with multiple sulfatase deficiency (MSD) due to a mutation of the sulfatase modifying factor 1 (SUMF1). Here we review current knowledge and future perspectives on the evolution of the sulfatase gene family, on the role of these enzymes in human metabolism, and on new developments in the therapy of sulfatase deficiencies.
Collapse
Affiliation(s)
- Graciana Diez-Roux
- Telethon Institute of Genetics and Medicine (TIGEM), Department of Pediatrics, Federico II University, Naples 80131, Italy.
| | | |
Collapse
|
8
|
Balaresque P, Toupance B, Heyer E, Crouau-Roy B. Evolutionary dynamics of duplicated microsatellites shared by sex chromosomes. J Mol Evol 2004; 57 Suppl 1:S128-37. [PMID: 15008409 DOI: 10.1007/s00239-003-0018-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Segmental duplications on sex chromosomes constitute an important proportion of recent duplications (approximately 30%). Among those, the evolution of duplicated noncoding DNA is still poorly investigated. We focus our work on repeated DNA sequences extensively used in population genetics and evolution: microsatellites. Six duplicated (CA), microsatellite loci, located on the homologous region of human sex chromosomes, were studied at the intraspecific level in Homo sapiens and by an orthologous comparison in eight primate species. At the intraspecific level, we evaluated the congruence in paralogous divergence between the flanking sequences of the six microsatellites and the approximately 2.2-kb surrounding sequences and observed that both phylogenies are congruent. At the interspecific level (8 species of primates: 54 individuals), we analyzed the sequence polymorphism and divergence of each orthologous locus for both the flanking sequence and the microsatellite. The results showed a lower divergence of flanking sequences than expected in noncoding DNA and a relative stability of the first nucleotides close to the microsatellite. The location of each CAIII locus in a Low Copy Repeated element containing duplicated VCX/Y genes (approximately 1 kb) suggested that direct or indirect selection could explain these results. Moreover, the substitution rates in the flanking sequences and in the microsatellites were correlated. Thus, the evolutionary dynamics of microsatellites seems closely linked to the variation of spontaneous mutations in the surrounding regions.
Collapse
Affiliation(s)
- Patricia Balaresque
- Laboratoire Evolution et Diversité Biologique, UMR 5174 Bat. IV R3, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 4, France.
| | | | | | | |
Collapse
|
9
|
Abstract
Exposure to environmental factors and genetic predisposition of an individual may lead individually or in combination to various genetic diseases including cancer. These diseases may be a consequence of genetic instability resulting in large-scale genomic rearrangements, such as DNA deletions, duplications, and translocations. This review focuses on mouse assays detecting genetic instability at endogenous loci. The frequency of DNA deletions by homologous recombination at the pink-eyed unstable (p(un)) locus is elevated in mice with mutations in ATM, Trp53, Gadd45, and WRN genes and after exposure to carcinogens. Other quantitative in vivo assays detecting loss of heterozygosity events, such as the mammalian spot assay, Dlb-1 mouse and Aprt mouse assays, are also reviewed. These in vivo test systems may predict hazardous effects of an environmental agent and/or genetic predisposition to cancer.
Collapse
Affiliation(s)
- Ramune Reliene
- Department of Pathology, David Geffen School of Medicine and School of Public Health, UCLA, 650 Charles E Young Drive South, Los Angeles, CA 90024, USA
| | | |
Collapse
|
10
|
Abstract
Cancer develops when cells no longer follow their normal pattern of controlled growth. In the absence or disregard of such regulation, resulting from changes in their genetic makeup, these errant cells acquire a growth advantage, expanding into precancerous clones. Over the past decade many studies have revealed the relevance of genomic mutation in this process, be it by misreplication, environmental damage, or a deficiency in repairing endogenous and exogenous damage. Here we discuss the possibility of homologous recombination as an errant DNA repair mechanism that can result in loss of heterozygosity or genetic rearrangements. Some of these genetic alterations may play a primary role in carcinogenesis, but they are more likely to be involved in secondary and subsequent steps of carcinogenesis by which recessive oncogenic mutations are revealed. Patients, whose cells display an increased frequency of recombination, also have an elevated frequency of cancer, further supporting the link between recombination and carcinogenesis.
Collapse
|
11
|
Brunetti-Pierri N, Andreucci MV, Tuzzi R, Vega GR, Gray G, McKeown C, Ballabio A, Andria G, Meroni G, Parenti G. X-linked recessive chondrodysplasia punctata: spectrum of arylsulfatase E gene mutations and expanded clinical variability. Am J Med Genet A 2003; 117A:164-8. [PMID: 12567415 DOI: 10.1002/ajmg.a.10950] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
X-linked chondrodysplasia punctata (CDPX1), due to mutations of the arylsulfatase E (ARSE) gene, is a congenital disorder characterized by abnormalities in cartilage and bone development. We performed mutational analysis of the ARSE gene in a series of 16 male patients, and we found mutations in 12 subjects. Clinical variability was observed among the patients, including severe presentations with early lethality in one of them, and symptoms such as cataract and respiratory distress. This indicates that the clinical spectrum of CDPX1, commonly considered a relatively mild form of chondrodysplasia punctata, is wider than previously reported. Different types of mutations were found among the patients examined. Three missense mutations (I80N, T481M, P578S) were expressed in Cos7 cells to study the effects on arylsulfatase E catalytic activity. These mutations caused impaired enzymatic activity suggesting that they are responsible for the disease. Two nonsense mutations, W581X in four patients and R540X in one, were found. One patient showed an insertion (T616ins). In three patients we found deletions of the ARSE gene: in one the deletion involved only the 3' end of the gene, while in two the ARSE gene was completely deleted.
Collapse
|
12
|
Martinez-Garay I, Jablonka S, Sutajova M, Steuernagel P, Gal A, Kutsche K. A new gene family (FAM9) of low-copy repeats in Xp22.3 expressed exclusively in testis: implications for recombinations in this region. Genomics 2002; 80:259-67. [PMID: 12213195 DOI: 10.1006/geno.2002.6834] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Illegitimate recombinations between low-copy repetitive elements (LCR) have been implicated in the pathogenesis of various chromosomal rearrangements. Two such duplicons have been reported previously on Xp22.3, the CRI-S232 elements, involved in the generation of deletions in the steroidsulfatase gene and five members of the G1.3 (DXF22S) repetitive sequence family. By molecular characterization of an Xp22/10q24 translocation, we identified one duplicon of the G1.3 family in the breakpoint region in Xp22.3. We show that G1.3 elements harbor at least three expressed genes, FAM9A, FAM9B, and FAM9C, and three putative pseudogenes, all mapped to Xp22.33-p22.31. The deduced amino acid sequence of the three novel proteins shows homology to SYCP3, a component of the synaptonemal complex located along the paired chromosomes during meiosis. FAM9A, FAM9B, and FAM9C are expressed exclusively in testis; their proteins are located in the nucleus, and FAM9A localizes to the nucleolus. The presence of genes within duplicons may represent putative recombination-promoting factors for actively transcribed genes in meiotic cells, with the resulting open chromatin structure facilitating unequal crossing-over events and chromosomal rearrangements.
Collapse
|
13
|
Abstract
Cancer develops when cells no longer follow their normal pattern of controlled growth. In the absence or disregard of such regulation, resulting from changes in their genetic makeup, these errant cells acquire a growth advantage, expanding into precancerous clones. Over the last decade, many studies have revealed the relevance of genomic mutation in this process, be it by misreplication, environmental damage, or a deficiency in repairing endogenous and exogenous damage. Here, we discuss homologous recombination as another mechanism that can result in a loss of heterozygosity or genetic rearrangements. Some of these genetic alterations may play a primary role in carcinogenesis, but they are more likely to be involved in secondary and subsequent steps of carcinogenesis by which recessive oncogenic mutations are revealed. Patients, whose cells display an increased frequency of recombination, also have an elevated frequency of cancer, further supporting the link between recombination and carcinogenesis.
Collapse
Affiliation(s)
| | - Robert H. Schiestl
- Department of Pathology, UCLA Medical School, Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
|
15
|
Valdes-Flores M, Vaca AL, Rivera-Vega MR, Kofman-Alfaro SH, Cuevas-Covarrubias SA. Maternal transmission of the 3 bp deletion within exon 7 of the STS gene in steroid sulfatase deficiency. J Invest Dermatol 2001; 117:997-9. [PMID: 11676848 DOI: 10.1046/j.0022-202x.2001.01507.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Bishop AJ, Kosaras B, Carls N, Sidman RL, Schiestl RH. Susceptibility of proliferating cells to benzo[a]pyrene-induced homologous recombination in mice. Carcinogenesis 2001; 22:641-9. [PMID: 11285201 DOI: 10.1093/carcin/22.4.641] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The pink-eyed unstable mutation, p(un), is the result of a 70 kb tandem duplication within the murine pink-eyed, p, gene. Deletion of one copy of the duplicated region by homologous deletion/recombination occurs spontaneously in embryos and results in pigmented spots in the fur and eye. Such deletion events are inducible by a variety of DNA damaging agents, as we have observed previously with both fur- and eye-spot assays. Here we describe a study of the effect of exposure to benzo[a]pyrene (B[a]P) at different times of development on reversion induction in the eye. Previously we, among others, have reported that the retinal pigment epithelium (RPE) displays a position effect variegation phenotype in the pattern of pink-eyed unstable reversions. Following an acute exposure to B[a]P or X-rays on the tenth day of gestation an increased frequency of reversion events was detected in a distinct region of the adult RPE. Examining exposure at different times of eye development reveals that both B[a]P and X-rays result in an increased frequency of reversion events, though the increase was only significant following B[a]P exposure, similar to our previous report limited to exposure on the tenth day of gestation. Examination of B[a]P-exposed RPE in the present study revealed distinct regions where the induced events lie and that the positions of these regions are found at increasing distances from the optic nerve the later the time of exposure. This position effect directly reflects the previously observed developmental pattern of the RPE, namely that cells in the regions most distal from the optic nerve are proliferating most vigorously. The numbers and positions of RPE cells displaying the transformed (pigmented) phenotype strongly advocate the proposal that dividing cells are at highest risk to deletions induced by carcinogens.
Collapse
Affiliation(s)
- A J Bishop
- Department of Cancer Cell Biology, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
17
|
Bishop AJ, Schiestl RH. Homologous recombination as a mechanism of carcinogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1471:M109-21. [PMID: 11250067 DOI: 10.1016/s0304-419x(01)00018-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cancer develops when cells no longer follow their normal pattern of controlled growth. In the absence or disregard of such regulation, resulting from changes in their genetic makeup, these errant cells acquire a growth advantage, expanding into pre-cancerous clones. Over the last decade many studies have revealed the relevance of genomic mutation in this process, be it by misreplication, environmental damage or a deficiency in repairing endogenous and exogenous damage. Here we discuss homologous recombination as another mechanism that can result in loss of heterozygosity or genetic rearrangements. Some of these genetic alterations may play a primary role in carcinogenesis, but they are more likely to be involved in secondary and subsequent steps of carcinogenesis by which recessive oncogenic mutations are revealed. Patients whose cells display an increased frequency of recombination also have an elevated frequency of cancer, further supporting the link between recombination and carcinogenesis. In addition, homologous recombination is induced by a wide variety of carcinogens, many of which are classically considered to be efficiently repaired by other repair pathways. Overall, homologous recombination is a process that has been widely overlooked but may be more central to the process of carcinogenesis than previously described.
Collapse
Affiliation(s)
- A J Bishop
- Department of Cancer Cell Biology, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
18
|
Valdes-Flores M, Kofman-Alfaro SH, Vaca AL, Cuevas-Covarrubias SA. Deletion of exons 1-5 of the STS gene causing X-linked ichthyosis. J Invest Dermatol 2001; 116:456-8. [PMID: 11231321 DOI: 10.1046/j.1523-1747.2001.01259.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
X-linked ichthyosis is an inherited disorder due to steroid sulfatase deficiency. It is clinically characterized by dark, adhesive, and regular scales of the skin. Most X-linked ichthyosis patients present large deletions of the STS gene and flanking markers; a minority show a point mutation or partial deletion of the STS gene. In this study we analyzed the STS gene in a family with simultaneous occurrence of X-linked ichthyosis and ichthyosis vulgaris. X-linked ichthyosis diagnosis was confirmed through steroid sulfatase assay in leukocytes using 7-[3H]-dehydroepiandrosterone sulfate as a substrate. Exons 1, 2, 5, and 6-10, and the 5' flanking markers DXS1130, DXS1139, and DXS996 of the STS gene were analyzed by polymerase chain reaction. X-linked ichthyosis patients of the family (n = 4 males) had undetectable levels of STS activity (0.00 pmol per mg protein per h). The DNA analysis showed that only exons 6-10 and the 5' flanking markers of the STS gene were present. We report the first partial deletion of the STS gene spanning exons 1-5 in X-linked ichthyosis patients.
Collapse
Affiliation(s)
- M Valdes-Flores
- Servicio de Genetica, Instituto Nacional de Ortopedia and Servicio de Genetica, Hospital General de Mexico, Facultad de Medicina, UNAM, Mexico D.F., Mexico
| | | | | | | |
Collapse
|
19
|
Wandstrat AE, Conroy JM, Zurcher VL, Pasztor LM, Clark BA, Zackowski JL, Schwartz S. Molecular and cytogenetic analysis of familial Xp deletions. AMERICAN JOURNAL OF MEDICAL GENETICS 2000; 94:163-9. [PMID: 10982973 DOI: 10.1002/1096-8628(20000911)94:2<163::aid-ajmg9>3.0.co;2-u] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Five families in which an Xp deletion is segregating and two families in which an X chromosome rearrangement including a deletion of the short arm is segregating were ascertained for study. Normal fertility was seen in all families. Members from 5 of the 7 families manifested short stature (height <5th centile), while normal height was present in two families. Studies of both the FMR-1 and the androgen receptor loci using PCR based X-inactivation analysis demonstrated that in all families analyzed, there is preferential inactivation of one X chromosome. Molecular cytogenetic analysis showed that members of 3 of the 7 families share a common breakpoint in an approximate 2-3 Mb region at Xp22.12, suggesting a possible hotspot for chromatin breakage. Previous genotype-phenotype correlations and deletion mapping have indicated that a gene for stature resides within the pseudoautosomal region in Xp22.33. Our findings indicate that the loss of this region is not always associated with short stature, suggesting that other factors may be involved.
Collapse
Affiliation(s)
- A E Wandstrat
- Department of Genetics and Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Fukami M, Kirsch S, Schiller S, Richter A, Benes V, Franco B, Muroya K, Rao E, Merker S, Niesler B, Ballabio A, Ansorge W, Ogata T, Rappold GA. A member of a gene family on Xp22.3, VCX-A, is deleted in patients with X-linked nonspecific mental retardation. Am J Hum Genet 2000; 67:563-73. [PMID: 10903929 PMCID: PMC1287516 DOI: 10.1086/303047] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2000] [Accepted: 06/23/2000] [Indexed: 11/03/2022] Open
Abstract
X-linked nonspecific mental retardation (MRX) has a frequency of 0.15% in the male population and is caused by defects in several different genes on the human X chromosome. Genotype-phenotype correlations in male patients with a partial nullisomy of the X chromosome have suggested that at least one locus involved in MRX is on Xp22.3. Previous deletion mapping has shown that this gene resides between markers DXS1060 and DXS1139, a region encompassing approximately 1.5 Mb of DNA. Analyzing the DNA of 15 males with Xp deletions, we were able to narrow this MRX critical interval to approximately 15 kb of DNA. Only one gene, VCX-A (variably charged, X chromosome mRNA on CRI-S232A), was shown to reside in this interval. Because of a variable number of tandem 30-bp repeats in the VCX-A gene, the size of the predicted protein is 186-226 amino acids. VCX-A belongs to a gene family containing at least four nearly identical paralogues on Xp22.3 (VCX-A, -B, -B1, and -C) and two on Yq11.2 (VCY-D, VCY-E), suggesting that the X and Y copies were created by duplication events. We have found that VCX-A is retained in all patients with normal intelligence and is deleted in all patients with mental retardation. There is no correlation between the presence or absence of VCX-B1, -B, and VCX-C and mental status in our patients. These results suggest that VCX-A is sufficient to maintain normal mental development.
Collapse
Affiliation(s)
- Maki Fukami
- Institute of Human Genetics, University of Heidelberg, and European Molecular Biology Laboratory, Heidelberg; Telethon Institute of Genetics and Medicine, Milan; and Department of Pediatrics, Keio University, Tokyo
| | - Stefan Kirsch
- Institute of Human Genetics, University of Heidelberg, and European Molecular Biology Laboratory, Heidelberg; Telethon Institute of Genetics and Medicine, Milan; and Department of Pediatrics, Keio University, Tokyo
| | - Simone Schiller
- Institute of Human Genetics, University of Heidelberg, and European Molecular Biology Laboratory, Heidelberg; Telethon Institute of Genetics and Medicine, Milan; and Department of Pediatrics, Keio University, Tokyo
| | - Alexandra Richter
- Institute of Human Genetics, University of Heidelberg, and European Molecular Biology Laboratory, Heidelberg; Telethon Institute of Genetics and Medicine, Milan; and Department of Pediatrics, Keio University, Tokyo
| | - Vladimir Benes
- Institute of Human Genetics, University of Heidelberg, and European Molecular Biology Laboratory, Heidelberg; Telethon Institute of Genetics and Medicine, Milan; and Department of Pediatrics, Keio University, Tokyo
| | - Brunella Franco
- Institute of Human Genetics, University of Heidelberg, and European Molecular Biology Laboratory, Heidelberg; Telethon Institute of Genetics and Medicine, Milan; and Department of Pediatrics, Keio University, Tokyo
| | - Koji Muroya
- Institute of Human Genetics, University of Heidelberg, and European Molecular Biology Laboratory, Heidelberg; Telethon Institute of Genetics and Medicine, Milan; and Department of Pediatrics, Keio University, Tokyo
| | - Ercole Rao
- Institute of Human Genetics, University of Heidelberg, and European Molecular Biology Laboratory, Heidelberg; Telethon Institute of Genetics and Medicine, Milan; and Department of Pediatrics, Keio University, Tokyo
| | - Sabine Merker
- Institute of Human Genetics, University of Heidelberg, and European Molecular Biology Laboratory, Heidelberg; Telethon Institute of Genetics and Medicine, Milan; and Department of Pediatrics, Keio University, Tokyo
| | - Beate Niesler
- Institute of Human Genetics, University of Heidelberg, and European Molecular Biology Laboratory, Heidelberg; Telethon Institute of Genetics and Medicine, Milan; and Department of Pediatrics, Keio University, Tokyo
| | - Andrea Ballabio
- Institute of Human Genetics, University of Heidelberg, and European Molecular Biology Laboratory, Heidelberg; Telethon Institute of Genetics and Medicine, Milan; and Department of Pediatrics, Keio University, Tokyo
| | - Wilhelm Ansorge
- Institute of Human Genetics, University of Heidelberg, and European Molecular Biology Laboratory, Heidelberg; Telethon Institute of Genetics and Medicine, Milan; and Department of Pediatrics, Keio University, Tokyo
| | - Tsutomu Ogata
- Institute of Human Genetics, University of Heidelberg, and European Molecular Biology Laboratory, Heidelberg; Telethon Institute of Genetics and Medicine, Milan; and Department of Pediatrics, Keio University, Tokyo
| | - Gudrun A. Rappold
- Institute of Human Genetics, University of Heidelberg, and European Molecular Biology Laboratory, Heidelberg; Telethon Institute of Genetics and Medicine, Milan; and Department of Pediatrics, Keio University, Tokyo
| |
Collapse
|
21
|
Ji Y, Eichler EE, Schwartz S, Nicholls RD. Structure of chromosomal duplicons and their role in mediating human genomic disorders. Genome Res 2000; 10:597-610. [PMID: 10810082 DOI: 10.1101/gr.10.5.597] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chromosome-specific low-copy repeats, or duplicons, occur in multiple regions of the human genome. Homologous recombination between different duplicon copies leads to chromosomal rearrangements, such as deletions, duplications, inversions, and inverted duplications, depending on the orientation of the recombining duplicons. When such rearrangements cause dosage imbalance of a developmentally important gene(s), genetic diseases now termed genomic disorders result, at a frequency of 0.7-1/1000 births. Duplicons can have simple or very complex structures, with variation in copy number from 2 to >10 repeats, and each varying in size from a few kilobases in length to hundreds of kilobases. Analysis of the different duplicons involved in human genomic disorders identifies features that may predispose to recombination, including large size and high sequence identity between the recombining copies, putative recombination promoting features, and the presence of multiple genes/pseudogenes that may include genes expressed in germ cells. Most of the chromosome rearrangements involve duplicons near pericentromeric regions, which may relate to the propensity of such regions to accumulate duplicons. Detailed analyses of the structure, polymorphic variation, and mechanisms of recombination in genomic disorders, as well as the evolutionary origin of various duplicons will further our understanding of the structure, function, and fluidity of the human genome.
Collapse
Affiliation(s)
- Y Ji
- Department of Genetics, Case Western Reserve University School of Medicine, and Center for Human Genetics, University Hospitals of Cleveland, Cleveland, Ohio 44106 USA
| | | | | | | |
Collapse
|
22
|
Goodman BK, Shaffer LG, Rutberg J, Leppert M, Harum K, Gagos S, Ray JH, Bialer MG, Zhou X, Pletcher BA, Shapira SK, Geraghty MT. Inherited duplication Xq27-qter at Xp22.3 in severely affected males: molecular cytogenetic evaluation and clinical description in three unrelated families. AMERICAN JOURNAL OF MEDICAL GENETICS 1998; 80:377-84. [PMID: 9856567 DOI: 10.1002/(sici)1096-8628(19981204)80:4<377::aid-ajmg14>3.0.co;2-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We describe the clinical phenotype in four males from three families with duplication (X)(qter-->q27::p22.3-->qter). This is an unusual duplication of the distal long arm segment, Xq27-qter, onto the distal short arm of the X chromosome at Xp22.3, as shown by fluorescent in situ hybridization analysis with multiple X-specific probes. The patients are young male offspring of three unrelated, phenotypically normal carrier women. The affected males have similar clinical manifestations including severe growth retardation and developmental delay, severe axial hypotonia, and minor anomalies. Such clinical similarity in three unrelated families demonstrates that this chromosome abnormality results in a new and distinct clinical phenotype. Replication studies, performed on two of the mothers, provided evidence that inactivation of the abnormal X chromosome permitted the structural abnormality to persist in these families for a generation or more in females without phenotypic expression.
Collapse
Affiliation(s)
- B K Goodman
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lupski JR. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 1998; 14:417-22. [PMID: 9820031 DOI: 10.1016/s0168-9525(98)01555-8] [Citation(s) in RCA: 598] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Molecular medicine began with Pauling's seminal work, which recognized sickle-cell anemia as a molecular disease, and with Ingram's demonstration of a specific chemical difference between the hemoglobins of normal and sickled human red blood cells. During the four decades that followed, investigations have focused on the gene--how mutations specifically alter DNA and how these changes affect the structure and expression of encoded proteins. Recently, however, the advances of the human genome project and the completion of total genome sequences for yeast and many bacterial species, have enabled investigators to view genetic information in the context of the entire genome. As a result, we recognize that the mechanisms for some genetic diseases are best understood at a genomic level. The evolution of the mammalian genome has resulted in the duplication of genes, gene segments and repeat gene clusters. This genome architecture provides substrates for homologous recombination between nonsyntenic regions of chromosomes. Such events can result in DNA rearrangements that cause disease.
Collapse
Affiliation(s)
- J R Lupski
- Department of Molecular and Human Genetics, Texas Children's Hospital, Baylor College of Medicine, Houston 77030, USA.
| |
Collapse
|
24
|
Saeki H, Kuwata S, Nakagawa H, Shimada S, Tamaki K, Ishibashi Y. Deletion pattern of the steroid sulphatase gene in Japanese patients with X-linked ichthyosis. Br J Dermatol 1998; 139:96-8. [PMID: 9764155 DOI: 10.1046/j.1365-2133.1998.02320.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most caucasian patients with X-linked ichthyosis (XLI) reportedly display large genomic deletions involving the entire steroid sulphatase (STS) gene and flanking regions. In this study, we investigated the deletion patterns of the STS gene and flanking regions in 12 unrelated Japanese patients with XLI using the polymerase chain reaction method with 10 markers, including the 5' and 3' ends of the STS gene. Eleven of the 12 patients exhibited deletion of this entire gene, whereas the twelfth patient showed no evidence of deletion. In 10 of the 12 patients, the entire region from DXS1139 to DXF22S1 was deleted, the most common deletion pattern observed in caucasian patients, indicating that there are no racial or ethnic differences.
Collapse
Affiliation(s)
- H Saeki
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Mazzarella R, Schlessinger D. Duplication and distribution of repetitive elements and non-unique regions in the human genome. Gene 1997; 205:29-38. [PMID: 9461377 DOI: 10.1016/s0378-1119(97)00477-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genome mapping efforts and the initial sequencing of large segments of human DNA permit ongoing assessment of the patterns and extent of sequence duplication and divergence in the human genome. Initial sequence data indicate that the most highly repetitive sequences show isochore-related enrichment and clustering produced by successive insertional recombination and local duplication of particular repetitive elements. Regional duplication is also observed for a number of otherwise unique genomic sequences and thereby makes these segments become repetitive. The consequences of these duplication events are: (1) clustering of related genes, along with a variety of coregulatory mechanisms; and (2) recombinations between the nearby homologous sequences, which can delete genes in individuals and account for a significant fraction of human genetic disease.
Collapse
Affiliation(s)
- R Mazzarella
- Washington University School of Medicine, Department of Molecular Microbiology, St. Louis, MO 63110, USA.
| | | |
Collapse
|
26
|
Osborne LR, Herbrick JA, Greavette T, Heng HH, Tsui LC, Scherer SW. PMS2-related genes flank the rearrangement breakpoints associated with Williams syndrome and other diseases on human chromosome 7. Genomics 1997; 45:402-6. [PMID: 9344666 DOI: 10.1006/geno.1997.4923] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The human PMS2 mismatch repair gene and a family of at least 17 other related genes (named human PMSR or PMS2L genes) have been localized to human chromosome 7. Human PMS2 has been mapped previously to 7p22 and shown to be causative in hereditary nonpolyposis colon cancer (HNPCC), but the human PMS2L genes have not been positioned in the context of the physical or genetic map of chromosome 7. In this study we have used various mapping methodologies to determine the precise location of the human PMS2L genes at 7q11.22, 7q11.23, and 7q22. Within 7q11.23, human PMS2L genes were found to be present at at least three sites as part of duplicated genomic segments that flank the most common rearrangement breakpoints in Williams syndrome.
Collapse
Affiliation(s)
- L R Osborne
- Department of Genetics, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Chen KS, Manian P, Koeuth T, Potocki L, Zhao Q, Chinault AC, Lee CC, Lupski JR. Homologous recombination of a flanking repeat gene cluster is a mechanism for a common contiguous gene deletion syndrome. Nat Genet 1997; 17:154-63. [PMID: 9326934 DOI: 10.1038/ng1097-154] [Citation(s) in RCA: 296] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Smith-Magenis syndrome (SMS), caused by del(17)p11.2, represents one of the most frequently observed human microdeletion syndromes. We have identified three copies of a low-copy-number repeat (SMS-REPs) located within and flanking the SMS common deletion region and show that SMS-REP represents a repeated gene cluster. We have isolated a corresponding cDNA clone that identifies a novel junction fragment from 29 unrelated SMS patients and a different-sized junction fragment from a patient with dup(17)p11.2. Our results suggest that homologous recombination of a flanking repeat gene cluster is a mechanism for this common microdeletion syndrome.
Collapse
Affiliation(s)
- K S Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Alperin ES, Shapiro LJ. Characterization of point mutations in patients with X-linked ichthyosis. Effects on the structure and function of the steroid sulfatase protein. J Biol Chem 1997; 272:20756-63. [PMID: 9252398 DOI: 10.1074/jbc.272.33.20756] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
X-linked ichthyosis is the result of steroid sulfatase (STS) deficiency. While most affected individuals have extensive deletions of the STS gene, point mutations have been reported in three patients (1). In this study, we identify an additional three point mutations and characterize the effects of all six mutations on STS activity and expression. All six are unique single base pair substitutions. The mutations are located in a 105-amino acid region of the C-terminal half of the polypeptide. Five of the six mutations involve the substitutions of Pro or Arg for Trp372, Arg for His444, Tyr for Cys446, or Leu for Cys341. The other mutation is in a splice junction and results in a frameshift causing premature termination of the polypeptide at residue 427. All the affected residues are conserved to some degree within the sulfatase family. The six mutations were reproduced in normal STS cDNA and transiently expressed in STS-deficient cells. All six mutant vectors direct the expression of STS protein that lacks enzymatic activity. The mutant polypeptides show a shift in mobility on SDS-PAGE and resistance to proteinase K digestion when translated in the presence of dog pancreas microsomes, indicating glycosylation and normal translocation.
Collapse
Affiliation(s)
- E S Alperin
- Department of Pediatrics, University of California San Francisco, San Francisco, California 94143, USA
| | | |
Collapse
|
29
|
Eliez S, Morris MA, Dahoun-Hadorn S, DeLozier-Blanchet CD, Gos A, Sizonenko P, Antonarakis SE. Familial translocation t(Y;15)(q12;p11) and de novo deletion of the Prader-Willi syndrome (PWS) critical region on 15q11-q13. AMERICAN JOURNAL OF MEDICAL GENETICS 1997; 70:222-8. [PMID: 9188657 DOI: 10.1002/(sici)1096-8628(19970613)70:3<222::aid-ajmg3>3.0.co;2-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We describe a 17-year-old girl with mild Prader-Willi syndrome (PWS) due to 15q11-q13 deletion. The deletion occurred on a paternal chromosome 15 already involved in a translocation, t(Y;15)(q12;p11), the latter being present in five other, phenotypically normal individuals in three generations. This appears to be the first case of PWS in which the causative 15q11-q13 deletion occurred on a chromosome involved in a familial translocation, but with breakpoints considerably distal to those of the familial rearrangement. The translocation could predispose to additional rearrangements occurring during meiosis and/or mitosis or, alternatively, the association of two cytogenetic anomalies on the same chromosome could be fortuitous.
Collapse
Affiliation(s)
- S Eliez
- Division of Medical Genetics, Geneva University Medical School and Hospital, Switzerland
| | | | | | | | | | | | | |
Collapse
|
30
|
Wilgenbus KK, Seranski P, Brown A, Leuchs B, Mincheva A, Lichter P, Poustka A. Molecular characterization of a genetically unstable region containing the SMS critical area and a breakpoint cluster for human PNETs. Genomics 1997; 42:1-10. [PMID: 9177769 DOI: 10.1006/geno.1997.4707] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recently we demonstrated the clustering of deletion breakpoints in the pericentromeric region of human chromosome 17p in human primitive neuroectodermal tumors (PNETs). Chromosomal disruption was shown to occur between the two markers D17S805 and D17S953, a region previously shown to be deleted in the Smith-Magenis syndrome. To characterize the molecular basis of this genomic instability, we established clone contigs covering this region. An initial physical map of chromosome 17p has been constructed with overlapping sets of YACs. YAC clones were transformed into five clone contigs according to their content of 30 previously known and 16 newly established sequence-tagged sites (STSs). To circumvent the complications inherent in YAC technologies, such as internal deletions, chimerism, and complex rearrangements, we then converted the YAC contigs to PAC and cosmid contigs. Thirty-nine individual PAC/cosmid clones were identified and were used to construct six different PAC/cosmid contigs ranging from 130 to 1200 kb in size and covering approximately 2.5 Mb of genomic DNA. The composite YAC/PAC/cosmid map covers a region of > 6 Mb of genomic DNA consisting of four different clone contigs of up to 2.9 Mb in size. We have demonstrated that three STSs (D17S58, PS1, and D17S842) are duplicated, suggesting the occurrence of low abundant repetitive sequences in this region. By integration of publicly available information we further mapped 10 genes and ESTs to their precise chromosomal positions and thus could exclude or identify them as candidate genes for PNET and/or the Smith-Magenis syndrome.
Collapse
Affiliation(s)
- K K Wilgenbus
- Abtl. Molekulare Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Porta G, MacMillan S, Nagaraja R, Mumm S, Zucchi I, Pilia G, Maio S, Featherstone T, Schlessinger D. 4.5-Mb YAC STS contig at 50-kb resolution, spanning Xq25 deletions in two patients with lymphoproliferative syndrome. Genome Res 1997; 7:27-36. [PMID: 9037599 DOI: 10.1101/gr.7.1.27] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sequence-tagged site (STS) content mapping in yeast artificial chromosomes (YACs) was used to cover the region deleted in two patients affected with X-linked lymphoproliferative disorder. The order of markers includes, centromere to telomere, DXS8009-DXS1206-DXS8078-DXS8044-DXS982- DXS6811-DXS8093-AFM240xblO- DXS75-DXS737-DXS100-DXS6-DXS1046-DXS803 8. The order of six major markers is confirmed by fluorescent in situ hybridization, and all the markers assigned by linkage mapping fall within a 1.6-cM interval. The contig comprises 90 clones containing 89 STSs, yielding a resolution of 50 kb; DNA in a gap just telomeric to DXS8044 has not been found in > 20 equivalents of YACs or bacterial clones. The two deletions were found to have centromeric breakpoints that lie close to DXS1206 and may be identical; the telomeric breakpoints are -150 kb apart, one falling between DXS737 and DXS100, the other between DXS100 and DXS1046. Several STSs near the breakpoints show weak amplification from more than one site; one gives products from three groups of YACs, and lie, respectively, within 50 kb of the centromeric and the two telomeric deletion borders. Such partially duplicated segments of DNA are candidates for involvement in the formation of the deletions.
Collapse
Affiliation(s)
- G Porta
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Reiter LT, Murakami T, Koeuth T, Pentao L, Muzny DM, Gibbs RA, Lupski JR. A recombination hotspot responsible for two inherited peripheral neuropathies is located near a mariner transposon-like element. Nat Genet 1996; 12:288-97. [PMID: 8589720 DOI: 10.1038/ng0396-288] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Charcot-Marie Tooth disease type 1A (CMT1A) duplication and hereditary neuropathy with liability to pressure palsies (HNPP) deletion are reciprocal products of an unequal crossing-over event between misaligned flanking CMT1A-REP repeats. The molecular aetiology of this apparently homologous recombination event was examined by sequencing the crossover region. Through the detection of novel junction fragments from the recombinant CMT1A-REPs in both CMT1A and HNPP patients, a 1.7-kb recombination hotspot within the approximately 30-kb CMT1A-REPs was identified. This hotspot is 98% identical between CMT1A-REPs indicating that sequence identity is not likely the sole factor involved in promoting crossover events. Sequence analysis revealed a mariner transposon-like element (MITE) near the hotspot which we hypothesize could mediate strand exchange events via cleavage by a transposase at or near the 3' end of the element.
Collapse
Affiliation(s)
- L T Reiter
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Wang I, Franco B, Ferrero GB, Chinault AC, Weissenbach J, Chumakov I, Le Paslier D, Levilliers J, Klink A, Rappold GA, Ballabio A, Petit C. High-density physical mapping of a 3-Mb region in Xp22.3 and refined localization of the gene for X-linked recessive chondrodysplasia punctata (CDPX1). Genomics 1995; 26:229-38. [PMID: 7601447 DOI: 10.1016/0888-7543(95)80205-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The study of patients with chromosomal rearrangements has led to the mapping of the gene responsible for X-linked recessive chondrodysplasia punctata (CDPX1; MIM 302950) to the distal part of the Xp22.3 region, between the loci PABX and DXS31. To refine this mapping, a yeast artificial chromosome (YAC) contig map spanning this region has been constructed. Together with the YAC contig of the pseudo-autosomal region that we previously established, this map covers the terminal 6 Mb of Xp, with an average density of 1 probe every 100 kb. Newly isolated probes that detect segmental X-Y homologies on Yp and Yq suggest multiple complex rearrangements of the ancestral pseudoautosomal region during evolution. Compilation of the data obtained from the study of individuals carrying various Xp22.3 deletions led us to conclude that the CDPX disease displays incomplete penetrance and, consequently, to refine the localization of CDPX1 to a 600-kb interval immediately adjacent to the pseudoautosomal boundary. This interval, in which 12 probes are ordered, provides the starting point for the isolation of CDPX1.
Collapse
Affiliation(s)
- I Wang
- Institut Pasteur, Unité de Génétique Moléculaire Humaine (CNRS UA 1445), Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Herrell S, Novo FJ, Charlton R, Affara NA. Development and physical analysis of YAC contigs covering 7 Mb of Xp22.3-p22.2. Genomics 1995; 25:526-37. [PMID: 7789987 DOI: 10.1016/0888-7543(95)80054-p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A total of 54 YAC clones have been isolated from the region of Xp22.2-p22.3 extending from the amelogenin gene locus to DXS31. Restriction analysis of these clones in association with STS contenting and end clone analysis has facilitated the construction of 6 contigs covering a total of 7 Mb in which 20 potential CpG islands have been located. Thirty new STSs have been developed from probe and YAC end clone sequences, and these have been used in the analysis of patients suffering from different combinations of chondrodysplasia punctata, mental retardation, X-linked ichthyosis, and Kallmann syndrome. The results suggest that (1) the gene for chondrodysplasia punctata must lie between the X chromosome pseudoautosomal boundary (PABX) and DXS1145; (2) a gene for mental retardation lies between DXS1145 and the sequence tagged site GS1; and (3) the gene for ocular albinism type 1 lies proximal to the STS G13. The CpG islands within the YAC contigs constitute valuable markers for the potential positions of genes. Genes found associated with any of these potential CpG islands would be possible candidates for the disease genes mentioned above.
Collapse
Affiliation(s)
- S Herrell
- Department of Pathology, University of Cambridge, England
| | | | | | | |
Collapse
|
35
|
Zanaria E, Muscatelli F, Bardoni B, Strom TM, Guioli S, Guo W, Lalli E, Moser C, Walker AP, McCabe ER. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 1994; 372:635-41. [PMID: 7990953 DOI: 10.1038/372635a0] [Citation(s) in RCA: 493] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
X-linked adrenal hypoplasia congenita is a developmental disorder of the human adrenal gland that results in profound hormonal deficiencies and is lethal if untreated. We have isolated the gene responsible for the disease, DAX-1, which is deleted or mutated in X-linked adrenal hypoplasia patients. DAX-1 encodes a new member of the nuclear hormone receptor superfamily displaying a novel DNA-binding domain. The DAX-1 product acts as a dominant negative regulator of transcription mediated by the retinoic acid receptor.
Collapse
|
36
|
Newton R, Stanier P, Loughna S, Henderson DJ, Forbes SA, Farrall M, Jensson O, Moore GE. Linkage analysis of 62 X-chromosomal loci excludes the X chromosome in an Icelandic family showing apparent X-linked recessive inheritance of neural tube defects. Clin Genet 1994; 45:241-9. [PMID: 8076409 DOI: 10.1111/j.1399-0004.1994.tb04149.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report here the findings of a linkage analysis, involving numerous markers from the human X chromosome, in an attempt to localise a putative gene causing apparent X-linked spina bifida and anencephaly (SBA) in a large Icelandic pedigree. Two-point linkage analysis was performed using markers from 62 informative loci in this family. Although small positive lod scores were found at a number of these loci, none reached the significance level for linkage. Haplotypes were extensively analysed and found to exclude linkage to the X chromosome.
Collapse
Affiliation(s)
- R Newton
- Action Research Laboratory for the Molecular Biology of Fetal Development, Royal Postgraduate Medical School, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Schaefer L, Ferrero GB, Grillo A, Bassi MT, Roth EJ, Wapenaar MC, van Ommen GJ, Mohandas TK, Rocchi M, Zoghbi HY, Ballabio A. A high resolution deletion map of human chromosome Xp22. Nat Genet 1993; 4:272-9. [PMID: 8358436 DOI: 10.1038/ng0793-272] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have developed a 32-interval deletion panel for human chromosome Xp22 spanning about 30 megabases of genomic DNA. DNA samples from 50 patients with chromosomal rearrangements involving Xp22 were tested with 60 markers using a polymerase chain reaction strategy. The ensuing deletion map allowed us to confirm and refine the order of previously isolated and newly developed markers. Our mapping panel will provide the framework for mapping new sequences, for orienting chromosome walks in the region and for projects aimed at isolating genes responsible for diseases mapping to Xp22.
Collapse
Affiliation(s)
- L Schaefer
- Institute for Molecular Genetics, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Kallmann's syndrome combines hypogonadotropic hypogonadism and anosmia. The most frequent form of the disease is linked to the X chromosome and has been proposed to be due to a defect in the embryonic migration of GnRH neurons and olfactory axons from the nose to the brain. A candidate gene for the X-linked form of the disease has been isolated by positional cloning. Mutations in the open reading frame have been identified in several patients, providing convincing evidence that this gene is the actual gene, KAL, responsible for the X-linked Kallmann's syndrome. Correlations between molecular and clinical data extend the role of the KAL gene to other neuronal pathways and kidney organogenesis. The deduced amino acid sequence led us to postulate that the KAL protein is an extracellular matrix component with possible antiprotease and adhesion functions. Such functions are known to be involved in neuronal migration, axonal guidance and targeting, and also in synaptogenesis. Further experiments will enable the elucidation of the role of the KAL protein.
Collapse
Affiliation(s)
- C Petit
- Christine Petit is at the Unit for Molecular Human Genetics, Institut Pasteur, 75724 Paris Cédex 15, France
| |
Collapse
|
39
|
Incerti B, Guioli S, Pragliola A, Zanaria E, Borsani G, Tonlorenzi R, Bardoni B, Franco B, Wheeler D, Ballabio A. Kallmann syndrome gene on the X and Y chromosomes: implications for evolutionary divergence of human sex chromosomes. Nat Genet 1992; 2:311-4. [PMID: 1303285 DOI: 10.1038/ng1292-311] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The recently identified gene for X-linked Kallmann syndrome (hypogonadotropic hypogonadism and anosmia) has a closely related homologue on the Y chromosome. The X and Y copies of this gene are located in a large region of X/Y homology, on Xp22.3 and Yq11.2, respectively. Comparison of the structure of the X-linked Kallmann syndrome gene and its Y homologue shed light on the evolutionary history of this region of the human sex chromosomes. Our data show that the Y homologue is not functional. Comparative analysis of X/Y sequence identity at several loci on Xp22.3 and Yq11.2 suggests that the homology between these two regions is the result of a complex series of events which occurred in the recent evolution of sex chromosomes.
Collapse
Affiliation(s)
- B Incerti
- Institute for Molecular Genetics, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pentao L, Wise CA, Chinault AC, Patel PI, Lupski JR. Charcot-Marie-Tooth type 1A duplication appears to arise from recombination at repeat sequences flanking the 1.5 Mb monomer unit. Nat Genet 1992; 2:292-300. [PMID: 1303282 DOI: 10.1038/ng1292-292] [Citation(s) in RCA: 287] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have constructed a 3.1 megabase (Mb) physical map of chromosome 17p11.2-p12, which contains a submicroscopic duplication in patients with Charcot-Marie-Tooth disease type 1A (CMT1A). We find that the CMT1A duplication is a tandem repeat of 1.5 Mb of DNA. A YAC contig encompassing the CMT1A duplication and spanning the endpoints was also developed. Several low copy repeats in 17p11.2-p12 were identified including the large (> 17 kb) CMT1A-REP unit which may be part of a mosaic repeat. CMT1A-REP flanks the 1.5 Mb CMT1A monomer unit on normal chromosome 17 and is present in an additional copy on the CMT1A duplicated chromosome. We propose that the de novo CMT1A duplication arises from unequal crossing over due to misalignment at these CMT1A-REP repeat sequences during meiosis.
Collapse
Affiliation(s)
- L Pentao
- Institute for Molecular Genetics, College of Medicine, Houston, Texas 77030
| | | | | | | | | |
Collapse
|
41
|
Mandel JL, Monaco AP, Nelson DL, Schlessinger D, Willard H. Genome analysis and the human X chromosome. Science 1992; 258:103-9. [PMID: 1439756 DOI: 10.1126/science.1439756] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A unified genetic, physical, and functional map of the human X chromosome is being built through a concerted, international effort. About 40 percent of the 160 million base pairs of the X chromosome DNA have been cloned in overlapping, ordered contigs derived from yeast artificial chromosomes. This rapid progress toward a physical map is accelerating the identification of inherited disease genes, 26 of which are already cloned and more than 50 others regionally localized by linkage analysis. This article summarizes the mapping strategies now used and the impact of genome research on the understanding of X chromosome inactivation and X-linked diseases.
Collapse
Affiliation(s)
- J L Mandel
- Laboratoire de Genetique Moleculaire des Eucaryotes du CNRS, INSERM, Strasbourg, France
| | | | | | | | | |
Collapse
|
42
|
Guioli S, Incerti B, Zanaria E, Bardoni B, Franco B, Taylor K, Ballabio A, Camerino G. Kallmann syndrome due to a translocation resulting in an X/Y fusion gene. Nat Genet 1992; 1:337-40. [PMID: 1302031 DOI: 10.1038/ng0892-337] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The X-linked Kallmann syndrome gene was recently cloned and homologous sequences of unknown functional significance identified on the Y chromosome. We now describe a patient with Kallmann syndrome carrying an X;Y translocation resulting from abnormal pairing and precise recombination between the X-linked Kallmann syndrome gene and its homologue on the Y. The translocation created a recombinant, non-functional Kallmann syndrome gene identical to the normal X-linked gene with the exception of the 3' end which is derived from the Y. Our findings indicate that the 3' portion of the Kallmann syndrome gene is essential for its function and cannot be substituted by the Y-derived homologous region, although a 'position' effect remains a formal possibility.
Collapse
|
43
|
Ballabio A, Camerino G. The gene for X-linked Kallmann syndrome: a human neuronal migration defect. Curr Opin Genet Dev 1992; 2:417-21. [PMID: 1504616 DOI: 10.1016/s0959-437x(05)80152-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new gene from the distal short arm of the human X chromosome has recently been cloned and characterized. Mutations in this gene lead to the neuronal migration defect observed in Kallmann syndrome. Although there is no direct proof for the involvement of this gene in neuronal migration, significant similarities between its predicted protein product and neural adhesion molecules have been found. X-linked Kallmann syndrome represents the first example in vertebrates of a neuronal migration defect for which the gene has been isolated.
Collapse
Affiliation(s)
- A Ballabio
- Institute for Molecular Genetics, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|
44
|
Wapenaar MC, Petit C, Basler E, Ballabio A, Henke A, Rappold GA, van Paassen HM, Blonden LA, van Ommen GJ. Physical mapping of 14 new DNA markers isolated from the human distal Xp region. Genomics 1992; 13:167-75. [PMID: 1349572 DOI: 10.1016/0888-7543(92)90217-g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have isolated 14 new DNA markers from the human Xpter-Xp21 region distal to the Duchenne muscular dystrophy gene by targeted cloning, employing two somatic cell hybrids containing this region as their sole human material. High-resolution physical localization of these markers within this region was obtained by hybridization to two mapping panels consisting of DNA from patients carrying various translocations and deletions in distal Xp. Five markers were assigned to the pseudoautosomal region where their position on the long-range map of this region was further determined by pulsed-field gel electrophoresis. The other nine markers map to the X-specific region. Informative TaqI restriction fragment length polymorphisms were observed for four loci. One of these represents a region-specific low-copy repeated element. These 14 new markers represent useful tools for the understanding of distal Xp deletion and translocation mechanisms and for the positional cloning of disease genes in the region.
Collapse
Affiliation(s)
- M C Wapenaar
- Department of Human Genetics, Sylvius Laboratory, Leiden University, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Li XM, Yen PH, Shapiro LJ. Characterization of a low copy repetitive element S232 involved in the generation of frequent deletions of the distal short arm of the human X chromosome. Nucleic Acids Res 1992; 20:1117-22. [PMID: 1549475 PMCID: PMC312100 DOI: 10.1093/nar/20.5.1117] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There are several copies of related sequences on the distal short arm of the human X chromosome and the proximal long arm of the Y chromosome which were originally detected by cross hybridization with a genomic DNA clone, CRI-S232. Recombination between two S232-like sequences flanking the steroid sulfatase locus has been shown to cause frequent deletions in the X chromosome short arm, resulting in steroid sulfatase deficiency. We now report the characterization of several S232-like sequences. Restriction mapping and sequence analysis show that each S232 unit contains 5 kb of unique sequence in addition to two elements, RU1 and RU2, composed of a variable number of tandem repeats. RU1 consists of 30 bp repeating units and its length shows minimal variation between individuals. The RU2 elements in the hypervariable S232 loci on the X chromosome consist of repeating sequences which are highly asymmetric, with about 90% purines and no C's on one strand. The X-derived RU2 elements range from 0.6 kb to over 23 kb among different individuals, accounting entirely for the observed polymorphism at the S232 loci. Although the repeating units of the RU2 elements in the nonpolymorphic S232 loci on the Y chromosome share high sequence homology with those on the X chromosome, they exhibit much higher intrarepeat sequence variation. S232 homologous sequences are found in great apes, old world and new world monkeys. In chimpanzees and gorillas the S232-like sequences are polymorphic in length.
Collapse
Affiliation(s)
- X M Li
- Howard Hughes Medical Institute, Harbor-UCLA Medical Center, Torrance 90509
| | | | | |
Collapse
|
46
|
Carrozzo R, Ellison J, Yen P, Taillon-Miller P, Brownstein BH, Persico G, Ballabio A, Shapiro L. Isolation and characterization of a yeast artificial chromosome (YAC) contig around the human steroid sulfatase gene. Genomics 1992; 12:7-12. [PMID: 1733866 DOI: 10.1016/0888-7543(92)90399-d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The region surrounding the steroid sulfatase (STS) locus on Xp22.3 is of particular interest since it represents a deletion hot spot, shares homology with the proximal long arm of the Y chromosome (Yq11.2), and contains genes for several well-described X-linked disorders. Here we describe yeast artificial chromosomes (YACs) covering 450 kb around the STS gene. Eight YAC clones were isolated from a human YAC library. Their STS exon content was determined and the overlap of the clones characterized. Two of the YAC clones were found to contain the entire STS gene. The most proximal and the most distal ends of the YAC contig were cloned but neither of them crossed the breakpoints in any of the previously described patients with entire STS gene deletions. This is consistent with deletions larger than 500 kb in all these patients. One of the YAC clones was found to contain sequences from the STS pseudogene on Yq11.2. Two anonymous DNA sequences, GMGXY19 and GMGXY3, previously mapped in the vicinity of the STS locus, were found within the YAC contig and their assignment with respect to the STS locus was thus possible. This contig is useful for the overlap cloning of the Xp22.3 region and for reverse genetic strategies for the isolation of disease genes in the region. Furthermore, it may provide insight into the molecular mechanisms of deletion and translocation events on Xp22.3 and in the evolution of sex chromosomes.
Collapse
Affiliation(s)
- R Carrozzo
- Institute for Molecular Genetics, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Franco B, Guioli S, Pragliola A, Incerti B, Bardoni B, Tonlorenzi R, Carrozzo R, Maestrini E, Pieretti M, Taillon-Miller P, Brown CJ, Willard HF, Lawrence C, Graziella Persico M, Camerino G, Ballabio A. A gene deleted in Kallmann's syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 1991; 353:529-36. [PMID: 1922361 DOI: 10.1038/353529a0] [Citation(s) in RCA: 536] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Kallmann's syndrome (clinically characterized by hypogonadotropic hypogonadism and inability to smell) is caused by a defect in the migration of olfactory neurons, and neurons producing hypothalamic gonadotropin-releasing hormone. A gene has now been isolated from the critical region on Xp22.3 to which the syndrome locus has been assigned: this gene escapes X inactivation, has a homologue on the Y chromosome, and shows an unusual pattern of conservation across species. The predicted protein has significant similarities with proteins involved in neural cell adhesion and axonal pathfinding, as well as with protein kinases and phosphatases, which suggests that this gene could have a specific role in neuronal migration.
Collapse
Affiliation(s)
- B Franco
- Institute for Molecular Genetics, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bardoni B, Zuffardi O, Guioli S, Ballabio A, Simi P, Cavalli P, Grimoldi MG, Fraccaro M, Camerino G. A deletion map of the human Yq11 region: implications for the evolution of the Y chromosome and tentative mapping of a locus involved in spermatogenesis. Genomics 1991; 11:443-51. [PMID: 1769656 DOI: 10.1016/0888-7543(91)90153-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A deletion map of Yq11 has been constructed by analyzing 23 individuals bearing structural abnormalities (isochromosomes, terminal deletions and X;Y, Y;X, or A;Y translocations) in the long arm of the Y chromosome. Twenty-two Yq-specific loci were detected using 14 DNA probes, ordered in 11 deletion intervals, and correlated with the cytogenetic map of the chromosome. The breakpoints of seven translocations involving Xp22 and Yq11 were mapped. The results obtained from at least five translocations suggest that these abnormal chromosomes may result from aberrant interchanges between X-Y homologous regions. The use of probes detecting Yq11 and Xp22.3 homologous sequences allowed us to compare the order of loci within these two chromosomal regions. The data suggest that at least three physically and temporary distinct rearrangements (pericentric inversion of pseudoautosomal sequences and/or X-Y transpositions and duplications) have occurred during evolution and account for the present organization of this region of the human Y chromosome. The correlation between the patient' phenotypes and the extent of their Yq11 deletions permits the tentative assignment of a locus involved in human spermatogenesis to a specific interval within Yq11.23.
Collapse
Affiliation(s)
- B Bardoni
- Biologia Generale e Genetica Medica, Università di Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
In the past few years, clinical, cytogenetic and molecular analysis of patients with complex phenotypes has led to the identification of syndromes caused by deletions of adjacent disease genes on a chromosome. These conditions, referred to as contiguous deletion syndromes, are an important component of the syndromes recognized in medical genetics, and the DNA from patients affected by these disorders is useful for the mapping and cloning of disease genes.
Collapse
Affiliation(s)
- A Ballabio
- Institute for Molecular Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
50
|
Wilkie TM, Braun RE, Ehrman WJ, Palmiter RD, Hammer RE. Germ-line intrachromosomal recombination restores fertility in transgenic MyK-103 male mice. Genes Dev 1991; 5:38-48. [PMID: 1671218 DOI: 10.1101/gad.5.1.38] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Males of the MyK-103 line of transgenic mice are fertile and sire litters of normal size, but they never transmit the transgene, whereas females transmit the transgene with normal frequency. The chromosome originally bearing the transgene can be transmitted through the male germ line, but only after the transgene is deleted or rearranged by intrachromosomal recombination. The transgene encodes a functional herpes simplex virus (HSV) thymidine kinase gene that causes sperm infertility when expressed in postmeiotic germ cells. Immunocytochemistry revealed clones of germ cells that fail to express HSV thymidine kinase. We postulate that these cells arose by transgene deletion in embryonic germ cells and postnatal spermatogonial stem cells and that they are responsible for the normal fertility of MyK-103 males. The frequency of recombination events at the integration locus suggests that it contains a hotspot for mitotic recombination.
Collapse
Affiliation(s)
- T M Wilkie
- Biology Division, California Institute of Technology, Pasadena 91125
| | | | | | | | | |
Collapse
|