1
|
Staphylococcus aureus Genomes Harbor Only MpsAB-Like Bicarbonate Transporter but Not Carbonic Anhydrase as Dissolved Inorganic Carbon Supply System. Microbiol Spectr 2021; 9:e0097021. [PMID: 34730408 PMCID: PMC8567241 DOI: 10.1128/spectrum.00970-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In recent years, it became apparent that not only autotrophic but also most other bacteria require CO2 or bicarbonate for growth. Two systems are available for the acquisition of dissolved inorganic carbon supply (DICS): the cytoplasmic localized carbonic anhydrase (CA) and the more recently described bicarbonate transporter MpsAB (membrane potential generating system). In the pathogenic species Staphylococcus aureus, there are contradictions in the literature regarding the presence of a CA or MpsAB. Here, we address these contradictions in detail. We could demonstrate by careful BLASTp analyses with 259 finished and 4,590 unfinished S. aureus genomes that S. aureus does not contain CA and that the bicarbonate transporter MpsAB is the only DICS system in this species. This finding is further supported by two further pieces of evidence: (i) mpsAB deletion mutants in four different S. aureus strains failed to grow under atmospheric air, which should not be the case if they possess CAs, since we have previously shown that both CA and MpsAB can substitute for each other, and (ii) S. aureus is completely resistant to CA inhibitors, whereas Staphylococcus carnosus, which has been shown to have only CA, was inhibited by ethoxyzolamide (EZA). Taken together, we demonstrate beyond doubt that the species S. aureus possesses only the bicarbonate transporter MpsAB as its sole DICS system. IMPORTANCE The discrepancies in the current literature and even in NCBI database, which listed some protein sequences annotated as Staphylococcus aureus carbonic anhydrase (CA), are misleading. One of the existing problems in publicly available sequence databases is the presence of incorrectly annotated genes, especially if they originated from unfinished genomes. Here, we demonstrate that some of these unfinished genomes are of poor quality and should be interpreted with caution. In the present study, we aimed to address these discrepancies and correct the current literature about S. aureus CA, considering the medical relevance of S. aureus. If left unchecked, these misleading studies and wrongly annotated genes might lead to a continual propagation of wrong annotation and, consequently, wrong interpretations and wasted time. In addition, we also show that bicarbonate transporter MpsAB-harboring bacteria are resistant to CA inhibitor, suggesting that pathogens possessing both MpsAB and CA are not treatable with CA inhibitors.
Collapse
|
2
|
Lomelino CL, Andring JT, McKenna R. Crystallography and Its Impact on Carbonic Anhydrase Research. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2018; 2018:9419521. [PMID: 30302289 PMCID: PMC6158936 DOI: 10.1155/2018/9419521] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
Abstract
X-ray and neutron crystallography are powerful techniques utilized to study the structures of biomolecules. Visualization of enzymes in complex with substrate/product and the capture of intermediate states can be related to activity to facilitate understanding of the catalytic mechanism. Subsequent analysis of small molecule binding within the enzyme active site provides insight into mechanisms of inhibition, supporting the design of novel inhibitors using a structure-guided approach. The first X-ray crystal structures were determined for small, ubiquitous enzymes such as carbonic anhydrase (CA). CAs are a family of zinc metalloenzymes that catalyze the hydration of CO2, producing HCO3 - and a proton. The CA structure and ping-pong mechanism have been extensively studied and are well understood. Though the function of CA plays an important role in a variety of physiological functions, CA has also been associated with diseases such as glaucoma, edema, epilepsy, obesity, and cancer and is therefore recognized as a drug target. In this review, a brief history of crystallography and its impact on CA research is discussed.
Collapse
Affiliation(s)
- Carrie L. Lomelino
- University of Florida College of Medicine, Department of Biochemistry and Molecular Biology, Gainesville, FL 32610, USA
| | - Jacob T. Andring
- University of Florida College of Medicine, Department of Biochemistry and Molecular Biology, Gainesville, FL 32610, USA
| | - Robert McKenna
- University of Florida College of Medicine, Department of Biochemistry and Molecular Biology, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Hao X, Xing Y, Moore MW, Zhang J, Han D, Schulte BA, Dubno JR, Lang H. Sox10 expressing cells in the lateral wall of the aged mouse and human cochlea. PLoS One 2014; 9:e97389. [PMID: 24887110 PMCID: PMC4041576 DOI: 10.1371/journal.pone.0097389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/17/2014] [Indexed: 12/20/2022] Open
Abstract
Age-related hearing loss (presbycusis) is a common human disorder, affecting one in three Americans aged 60 and over. Previous studies have shown that presbyacusis is associated with a loss of non-sensory cells in the cochlear lateral wall. Sox10 is a transcription factor crucial to the development and maintenance of neural crest-derived cells including some non-sensory cell types in the cochlea. Mutations of the Sox10 gene are known to cause various combinations of hearing loss and pigmentation defects in humans. This study investigated the potential relationship between Sox10 gene expression and pathological changes in the cochlear lateral wall of aged CBA/CaJ mice and human temporal bones from older donors. Cochlear tissues prepared from young adult (1–3 month-old) and aged (2–2.5 year-old) mice, and human temporal bone donors were examined using quantitative immunohistochemical analysis and transmission electron microscopy. Cells expressing Sox10 were present in the stria vascularis, outer sulcus and spiral prominence in mouse and human cochleas. The Sox10+ cell types included marginal and intermediate cells and outer sulcus cells, including those that border the scala media and those extending into root processes (root cells) in the spiral ligament. Quantitative analysis of immunostaining revealed a significant decrease in the number of Sox10+ marginal cells and outer sulcus cells in aged mice. Electron microscopic evaluation revealed degenerative alterations in the surviving Sox10+ cells in aged mice. Strial marginal cells in human cochleas from donors aged 87 and older showed only weak immunostaining for Sox10. Decreases in Sox10 expression levels and a loss of Sox10+ cells in both mouse and human aged ears suggests an important role of Sox10 in the maintenance of structural and functional integrity of the lateral wall. A loss of Sox10+ cells may also be associated with a decline in the repair capabilities of non-sensory cells in the aged ear.
Collapse
Affiliation(s)
- Xinping Hao
- Department of Otolaryngology – Head & Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yazhi Xing
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Michael W. Moore
- Department of Otolaryngology – Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jianning Zhang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Otolaryngology, Shanghai Yueyang Integrated Medicine Hospital, Shanghai, China
| | - Demin Han
- Department of Otolaryngology – Head & Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- * E-mail: (HL); (DH)
| | - Bradley A. Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Otolaryngology – Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Judy R. Dubno
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Otolaryngology – Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail: (HL); (DH)
| |
Collapse
|
4
|
Kasow KA, Bonfim C, Asch J, Margolis DA, Jenkins J, Tamburro RF, Handgretinger R, Horwitz EM. Malignant infantile osteopetrosis and primary pulmonary hypertension: a new combination? Pediatr Blood Cancer 2004; 42:190-4. [PMID: 14752886 DOI: 10.1002/pbc.10455] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Malignant infantile osteopetrosis (MIOP), a rare genetic disorder of the osteoclast, is fatal without hematopoietic stem cell transplantation. Primary pulmonary hypertension (PPH), a rare progressive disorder of the pulmonary circulation, is predominantly fatal in the absence of successful therapy. A clinical association between these two disorders has not been recognized and a pathophysiologic link between osteoclast function and pulmonary vascular pressure as a rationale for such an association is not readily apparent. Here, we report five infants with MIOP, without cardiac abnormalities, who were found to have PPH after undergoing stem cell transplantation. We suggest that PPH may be linked to a specific variant of MIOP and recognizing the potential for pulmonary hypertension in children with MIOP may lead to a more rapid diagnosis and life-saving intervention.
Collapse
Affiliation(s)
- Kimberly A Kasow
- Division of Stem Cell Transplantation, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Affiliation(s)
- Y Edwards
- MRC Human Biochemical Genetics Unit, Wolfson House, University College London, 4, Stephenson Way, London NW1 2HE, UK
| | | | | |
Collapse
|
6
|
Sowden J, Smith H, Morrison K, Edwards Y. Sequence comparisons and functional studies of the proximal promoter of the carbonic anhydrase 3 (CA3) gene. Gene X 1998; 214:157-65. [PMID: 9651514 DOI: 10.1016/s0378-1119(98)00201-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Carbonic anhydrase 3 (CA3) is a member of a gene family encoding proteins which catalyse the hydration of CO2 to generate protons and bicarbonate ions for cellular ion transport and pH homeostasis. In mouse embryos CA3 is expressed at high levels in notochord and skeletal muscle and here we demonstrate that this pattern of expression is the same in the developing human embryo. To investigate mechanisms controlling CA3 transcription, we have isolated and compared 2.8kb of sequence flanking exon 1 from the mouse and human genes. Several segments of high sequence identity >80% have been identified, the longest segments of which represent a proximal promoter region and a putative enhancer element. We have shown previously that in cultured cells the human 2.8kb promoter region imposes high level myogenic specific transcription of a reporter gene. However, we now show that while this promoter region directed muscle-specific expression in transgenic mouse embryos this was subject to position effects.
Collapse
Affiliation(s)
- J Sowden
- MRC Human Biochemical Genetics Unit, University College London, Wolfson House, 4 Stephenson Way, London, NW1 2HE, UK
| | | | | | | |
Collapse
|
7
|
Abstract
Carbonic anhydrase (CA; carbonate hydro-lyase, EC 4.2.1.1) is a zinc-containing enzyme that catalyzes the reversible hydration of carbon dioxide: CO2+ H2O<-->HCO3(-)+H+. The enzyme is the target for drugs, such as acetazolamide, methazolamide, and dichlorphenamide, for the treatment of glaucoma. There are three evolutionarily unrelated CA families, designated alpha, beta, and gamma. All known CAs from the animal kingdom are of the alpha type. There are seven mammalian CA isozymes with different tissue distributions and intracellular locations, CA I-VII. Crystal structures of human CA I and II, bovine CA III, and murine CA V have been determined. All of them have the same tertiary fold, with a central 10-stranded beta-sheet as the dominating secondary structure element. The zinc ion is located in a cone-shaped cavity and coordinated to three histidyl residues and a solvent molecule. Inhibitors bind at or near the metal center guided by a hydrogen-bonded system comprising Glu-106 and Thr-199. The catalytic mechanism of CA II has been studied in particular detail. It involves an attack of zinc-bound OH- on a CO2 molecule loosely bound in a hydrophobic pocket. The resulting zinc-coordinated HCO3- ion is displaced from the metal ion by H2O. The rate-limiting step is an intramolecular proton transfer from the zinc-bound water molecule to His-64, which serves as a proton shuttle between the metal center and buffer molecules in the reaction medium.
Collapse
Affiliation(s)
- S Lindskog
- Department of Biochemistry, Umeå University, Sweden
| |
Collapse
|
8
|
Erickson RP, Grimes J, Venta PJ, Tashian RE. Expression of carbonic anhydrase II (CA II) promoter-reporter fusion genes in multiple tissues of transgenic mice does not replicate normal patterns of expression indicating complexity of CA II regulation in vivo. Biochem Genet 1995; 33:421-37. [PMID: 8825942 DOI: 10.1007/bf00554600] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although the proximal, 5' 115 bp of the human carbonic anhydrase II (CA II) gene was sufficient for expression of a reporter gene in some transfected cell lines, we found previously that 1100 bp of this promoter (or 500 bp of the mouse CA II promoter) was not sufficient for expression in transgenic mice. We have now studied the expression of linked reporter genes in mice transgenic for either (1) 11 kb of the human 5' promoter or (2) 8 kb of the human 5' promoter with mouse sequences from the first exon, part of the first intron (since a CpG island spans this region), and the 3' sequences of the gene. Expression was found in both cases, but the tissue specificity was not appropriate for CA II. Although there was a difference in the sensitivity of the assays used, the first construct led to expression in many tissues, while the second construct was expressed only in spleen. These findings indicate considerable complexity of DNA control regions for in vivo CA II expression.
Collapse
Affiliation(s)
- R P Erickson
- Department of Pediatrics, University of Arizona, Tucson, USA
| | | | | | | |
Collapse
|
9
|
Sowden J, Edwards M, Morrison K, Butterworth PH, Edwards YH. Erythroid expression and DNAaseI-hypersensitive sites of the carbonic anhydrase 1 gene. Biochem J 1992; 288 ( Pt 2):545-51. [PMID: 1463458 PMCID: PMC1132045 DOI: 10.1042/bj2880545] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The carbonic anhydrase 1 gene is expressed in adult human and mouse erythroid cells and colon epithelia from two distinct promoters. We have explored the erythroid promoter for cis-acting sequences involved in transcription using DNAaseI as a probe. Two DNAaseI-hypersensitive sites (DHS-1 and DHS-2) have been identified in the distal erythroid promoter in CA1-expressing erythroleukaemic cells. These sites are present at low levels in K562 cells, which have a foetal/embryonic phenotype and do not express CA1. DHS-1 and DHS-2 are not present in non-erythroid cells, including colon cells, which express CA1 from the proximal colon promoter. DHS-1 and DHS-2 were also generated in an heterologous CA1 gene containing 5 kb of erythroid promoter sequence after transfection into erythroid cells, including K562 cells. These transfection studies showed that both this fragment, and an abbreviated 817 bp promoter fragment which contains only DHS-1, were sufficient to confer erythroid-specific expression to a reporter gene. These promoters were active in cell lines expressing CA1 and in K562 cells. This latter observation implies that a developmental repressor factor is both present in K562 cells and binds to a cis-acting sequence that is absent from the sequence 5 kb upstream of the erythroid transcription start site.
Collapse
Affiliation(s)
- J Sowden
- MRC Human Biochemical Genetics Unit, Galton Laboratory (UCL), London, U.K
| | | | | | | | | |
Collapse
|
10
|
Bergenhem NC, Venta PJ, Hopkins PJ, Kim HJ, Tashian RE. Mutation creates an open reading frame within the 5' untranslated region of macaque erythrocyte carbonic anhydrase (CA) I mRNA that suppresses CA I expression and supports the scanning model for translation. Proc Natl Acad Sci U S A 1992; 89:8798-802. [PMID: 1528895 PMCID: PMC50008 DOI: 10.1073/pnas.89.18.8798] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A variant allele at the CA I locus that produces a deficiency of erythrocyte-specific CA I occurs as a widespread polymorphism in pigtail macaques from southeast Asia. Sequence analyses revealed a C----G substitution 12 nucleotides downstream of the cap site in the variant erythrocyte CA I mRNA. This mutation forms a new AUG start site and an open reading frame coding for 26 amino acids that terminates 6 nucleotides before the normal AUG initiation codon for CA I. It appears that the presence of this upstream open reading frame greatly diminishes reinitiation of translation from the normal start site, resulting in trace levels of CA I in erythrocytes. Preferential use of the first AUG codon supports the scanning model for translation initiation in eukaryotes.
Collapse
Affiliation(s)
- N C Bergenhem
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor 48109-0618
| | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- R E Tashian
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor 48109
| |
Collapse
|