1
|
Yang Q, Berkman AM, Ezekian JE, Rosamilia M, Rosenfeld JA, Liu P, Landstrom AP. Determining the Likelihood of Disease Pathogenicity Among Incidentally Identified Genetic Variants in Rare Dilated Cardiomyopathy-Associated Genes. J Am Heart Assoc 2022; 11:e025257. [PMID: 36129056 DOI: 10.1161/jaha.122.025257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background As utilization of clinical exome sequencing (ES) has expanded, criteria for evaluating the diagnostic weight of incidentally identified variants are critical to guide clinicians and researchers. This is particularly important in genes associated with dilated cardiomyopathy (DCM), which can cause heart failure and sudden death. We sought to compare the frequency and distribution of incidentally identified variants in DCM-associated genes between a clinical referral cohort with those in control and known case cohorts to determine the likelihood of pathogenicity among those undergoing genetic testing for non-DCM indications. Methods and Results A total of 39 rare, non-TTN DCM-associated genes were identified and evaluated from a clinical ES testing referral cohort (n=14 005, Baylor Genetic Laboratories) and compared with a DCM case cohort (n=9442) as well as a control cohort of population variants (n=141 456) derived from the gnomAD database. Variant frequencies in each cohort were compared. Signal-to-noise ratios were calculated comparing the DCM and ES cohort with the gnomAD cohort. The likely pathogenic/pathogenic variant yield in the DCM cohort (8.2%) was significantly higher than in the ES cohort (1.9%). Based on signal-to-noise and correlation analysis, incidental variants found in FLNC, RBM20, MYH6, DSP, ABCC9, JPH2, and NEXN had the greatest chance of being DCM-associated. Conclusions The distribution of pathogenic variants between the ES cohort and the DCM case cohort was gene specific, and variants found in the ES cohort were similar to variants found in the control cohort. Incidentally identified variants in specific genes are more associated with DCM than others.
Collapse
Affiliation(s)
- Qixin Yang
- Department of Pediatrics, Division of Cardiology Duke University School of Medicine Durham NC.,Department of Cardiology The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou China
| | - Amy M Berkman
- Department of Pediatrics, Division of Cardiology Duke University School of Medicine Durham NC
| | - Jordan E Ezekian
- Department of Pediatrics, Division of Cardiology Duke University School of Medicine Durham NC
| | - Michael Rosamilia
- Department of Pediatrics, Division of Cardiology Duke University School of Medicine Durham NC
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics Baylor College of Medicine and Baylor Genetics Laboratories Houston TX
| | - Pengfei Liu
- Department of Molecular and Human Genetics Baylor College of Medicine and Baylor Genetics Laboratories Houston TX
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology Duke University School of Medicine Durham NC.,Department of Cell Biology Duke University School of Medicine Durham NC
| |
Collapse
|
2
|
Carlo S, Rodríguez-Fernández LF, Benítez Ríos FA, Arciniegas-Medina NJ, Martínez-González H. Genetic Evaluation of Late-Onset Hypertrophic Cardiomyopathy: An Autobiographical Case Report. Cureus 2022; 14:e23349. [PMID: 35475074 PMCID: PMC9018900 DOI: 10.7759/cureus.23349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2022] [Indexed: 12/02/2022] Open
Abstract
Cardiomyopathy, also known as a pathology with a cardiovascular cause, can be further differentiated into multiple categories including genetic. Strong correlations between genetic mutations in sarcomeric proteins and presentation of cardiomyopathies have been made. This case report describes the clinical diagnosis of my late-onset hypertrophic cardiomyopathy, which was brought upon by symptoms of chest pain and palpitations that started approximately two years ago and had mostly gone unnoticed during this period. As a geneticist, I decided to undergo genetic test upon diagnosis. These tests found a heterozygous variant of uncertain significance (VUS) in the ALPK3 gene, c.399dup (p.Gly134ArgfsTer30), and a heterozygous c.7552G>A (p.Val2518Ile) VUS in the desmoplakin (DSP) gene. This autobiographical case report hopes to shed light on the importance of genetic screening in the search for the etiology of clinical symptoms.
Collapse
|
3
|
Jiang Y, Zhang X, Zhang X, Zhao K, Zhang J, Yang C, Chen Y. Comprehensive Analysis of the Transcriptome-Wide m6A Methylome in Pterygium by MeRIP Sequencing. Front Cell Dev Biol 2021; 9:670528. [PMID: 34249924 PMCID: PMC8267473 DOI: 10.3389/fcell.2021.670528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023] Open
Abstract
Aim Pterygium is a common ocular surface disease, which is affected by a variety of factors. Invasion of the cornea can cause severe vision loss. N6-methyladenosine (m6A) is a common post-transcriptional modification of eukaryotic mRNA, which can regulate mRNA splicing, stability, nuclear transport, and translation. To our best knowledge, there is no current research on the mechanism of m6A in pterygium. Methods We obtained 24 pterygium tissues and 24 conjunctival tissues from each of 24 pterygium patients recruited from Shanghai Yangpu Hospital, and the level of m6A modification was detected using an m6A RNA Methylation Quantification Kit. Expression and location of METTL3, a key m6A methyltransferase, were identified by immunostaining. Then we used m6A-modified RNA immunoprecipitation sequencing (MeRIP-seq), RNA sequencing (RNA-seq), and bioinformatics analyses to compare the differential expression of m6A methylation in pterygium and normal conjunctival tissue. Results We identified 2,949 dysregulated m6A peaks in pterygium tissue, of which 2,145 were significantly upregulated and 804 were significantly downregulated. The altered m6A peak of genes were found to play a key role in the Hippo signaling pathway and endocytosis. Joint analyses of MeRIP-seq and RNA-seq data identified 72 hypermethylated m6A peaks and 15 hypomethylated m6A peaks in mRNA. After analyzing the differentially methylated m6A peaks and synchronously differentially expressed genes, we searched the Gene Expression Omnibus database and identified five genes related to the development of pterygium (DSP, MXRA5, ARHGAP35, TMEM43, and OLFML2A). Conclusion Our research shows that m6A modification plays an important role in the development of pterygium and can be used as a potential new target for the treatment of pterygium in the future.
Collapse
Affiliation(s)
- Yaping Jiang
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Zhang
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Zhang
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanxi Yang
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yihui Chen
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Higo N, Sato A, Yamamoto T, Oishi T, Nishimura Y, Murata Y, Onoe H, Isa T, Kojima T. Comprehensive analysis of area‐specific and time‐dependent changes in gene expression in the motor cortex of macaque monkeys during recovery from spinal cord injury. J Comp Neurol 2018; 526:1110-1130. [DOI: 10.1002/cne.24396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Noriyuki Higo
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)Tsukuba Ibaraki Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
- Precursory Research for Embryonic Science and Technology (PRESTO)Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
| | - Akira Sato
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
- Computational Systems Biology Research Group, Advanced Science Institute, RIKENYokohama Kanagawa Japan
| | - Tatsuya Yamamoto
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)Tsukuba Ibaraki Japan
- Department of Physical Therapy, Faculty of Medical and Health SciencesTsukuba International UniversityTsuchiura Ibaraki Japan
| | - Takao Oishi
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
- Systems Neuroscience SectionPrimate Research Institute, Kyoto University, KanrinInuyama Aichi Japan
| | - Yukio Nishimura
- Precursory Research for Embryonic Science and Technology (PRESTO)Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
- Department of Developmental PhysiologyNational Institute for Physiological Sciences (NIPS), National Institutes of Natural SciencesOkazaki Aichi Japan
- The Graduate University for Advanced Studies (SOKENDAI)Hayama Kanagawa Japan
| | - Yumi Murata
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)Tsukuba Ibaraki Japan
| | - Hirotaka Onoe
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
- Division of Bio‐function Dynamics ImagingCenter for Life Science Technologies (CLST), RIKENKobe Hyogo Japan
| | - Tadashi Isa
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
- Department of Developmental PhysiologyNational Institute for Physiological Sciences (NIPS), National Institutes of Natural SciencesOkazaki Aichi Japan
- The Graduate University for Advanced Studies (SOKENDAI)Hayama Kanagawa Japan
| | - Toshio Kojima
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
- Computational Systems Biology Research Group, Advanced Science Institute, RIKENYokohama Kanagawa Japan
- Health Care CenterToyohashi University of TechnologyToyohashi Aichi Japan
| |
Collapse
|
5
|
Choi JW, Kim YH, Oh JW. Comparative Analyses of Signature Genes in Acute Rejection and Operational Tolerance. Immune Netw 2017; 17:237-249. [PMID: 28860953 PMCID: PMC5577301 DOI: 10.4110/in.2017.17.4.237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/06/2017] [Accepted: 08/10/2017] [Indexed: 01/07/2023] Open
Abstract
Using biomarkers as prediction tools or therapeutic targets can be a valuable strategy in transplantation. Recent studies identified biomarkers of acute rejection (AR) and operational tolerance (TOL) through the application of meta-analysis. In this study, we comparatively analyzed the signature genes in acute rejection and operational tolerance seen in human allogeneic transplantations using massive bioinformatical meta-analysis. To identify the signature genes in opposite immunological conditions, AR and TOL, we first collected the 1,252 gene expression data specifically intended for those circumstances. Then we excluded based on biological cut-values, Principal Component Analysis (PCA) as well as Multi-Dimensional Scaling (MDS). Using differentially expressed genes (DEGs) from meta-analysis, we then applied a ranked scoring system to identify the signature genes of AR and TOL. We identified 53 up-regulated and 32 down-regulated signature genes in acute rejection condition. Among them, ISG20, CXCL9, CXCL10, CCL19, FCER1G, PMSE1, UBD are highly expressed in AR condition. In operational tolerance, we identified 110 up-regulated and 48 down-regulated signature genes. TCL1A, BLNK, MS4A1, EBF1, IGHM are up-regulated in TOL condition. These genes are highly representative of AR or TOL across the different organs such as liver, kidney and heart. Since immune response is the sum of complex biological and molecular dynamics, these signature genes as well as pathway analysis using a systems biology approach could be used to catch the insights of the certain pathways that would be overlooked with the conventional gene-level comparative analysis.
Collapse
Affiliation(s)
- Jeong-Woo Choi
- Biomedical Research Institute, Kyungpook National University Hospital, Daegu 41404, Korea.,Department of Anatomy, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Yong-Hee Kim
- Department of Microbiology, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ji Won Oh
- Biomedical Research Institute, Kyungpook National University Hospital, Daegu 41404, Korea.,Department of Anatomy, Kyungpook National University School of Medicine, Daegu 41944, Korea
| |
Collapse
|
6
|
Johnson JL, Najor NA, Green KJ. Desmosomes: regulators of cellular signaling and adhesion in epidermal health and disease. Cold Spring Harb Perspect Med 2014; 4:a015297. [PMID: 25368015 DOI: 10.1101/cshperspect.a015297] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Desmosomes are intercellular junctions that mediate cell-cell adhesion and anchor the intermediate filament network to the plasma membrane, providing mechanical resilience to tissues such as the epidermis and heart. In addition to their critical roles in adhesion, desmosomal proteins are emerging as mediators of cell signaling important for proper cell and tissue functions. In this review we highlight what is known about desmosomal proteins regulating adhesion and signaling in healthy skin-in morphogenesis, differentiation and homeostasis, wound healing, and protection against environmental damage. We also discuss how human diseases that target desmosome molecules directly or interfere indirectly with these mechanical and signaling functions to contribute to pathogenesis.
Collapse
Affiliation(s)
- Jodi L Johnson
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Nicole A Najor
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Kathleen J Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
7
|
Abstract
Desmosomes are morphologically and biochemically defined cell-cell junctions that are required for maintaining the mechanical integrity of skin and the heart in adult mammals. Furthermore, since mice with null mutations in desmosomal plaque proteins (plakoglobin and desmoplakin) die in utero, it is also evident that desmosomes are indispensable for normal embryonic development. This review focuses on the role of desmosomes in vivo. We will summarize the effects of mutations in desmosomal genes on pre- and post-embryonic development of mouse and man and discuss recent findings relating to the specific role of desmosomal cadherins in skin differentiation and homeostasis.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Dermatology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
8
|
Abstract
Desmosomes anchor intermediate filaments at sites of cell contact established by the interaction of cadherins extending from opposing cells. The incorporation of cadherins, catenin adaptors, and cytoskeletal elements resembles the closely related adherens junction. However, the recruitment of intermediate filaments distinguishes desmosomes and imparts a unique function. By linking the load-bearing intermediate filaments of neighboring cells, desmosomes create mechanically contiguous cell sheets and, in so doing, confer structural integrity to the tissues they populate. This trait and a well-established role in human disease have long captured the attention of cell biologists, as evidenced by a publication record dating back to the mid-1860s. Likewise, emerging data implicating the desmosome in signaling events pertinent to organismal development, carcinogenesis, and genetic disorders will secure a prominent role for desmosomes in future biological and biomedical investigations.
Collapse
Affiliation(s)
- Robert M Harmon
- Department of Pathology, Northwestern University Feinberg, School of Medicine , Chicago, IL , USA
| | | |
Collapse
|
9
|
Oliveira Júnior JV, Maruta CW, Sousa JX, Santi CG, Valente NYS, Ichimura LMF, Périgo AM, Aoki V. Clinical and immunological profile of umbilical involvement in pemphigus vulgaris and pemphigus foliaceus. Clin Exp Dermatol 2012; 38:20-4. [PMID: 23083306 DOI: 10.1111/j.1365-2230.2012.04468.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pemphigus vulgaris (PV) and pemphigus foliaceus (PF) are autoimmune vesicobullous disorders with IgG autoantibodies directed against desmoglein (Dsg)1 and 3, which lead to intraepidermal acantholysis. AIM To characterize the clinical and immunological profile of patients with PF or PV with umbilical involvement. METHODS In total, 10 patients (7 women, 3 men; age range 24-70 years, disease duration 3-16 years) diagnosed with either PV (n = 5) or mucocutaneous PF (n = 5) were assessed according to their clinical features, histopathology and immunological findings [direct and indirect immunofluorescence (DIF and IIF) and ELISA with recombinant Dsg1 and Dsg3]. RESULTS Erythema, erosions, crusts and vegetating skin lesions were the main clinical features of the umbilical region. DIF of the umbilical region gave positive results for intercellular epidermal IgG and C3 deposits in eight patients and for IgG alone in the other two. Indirect immunofluorescence with IgG conjugate showing the typical pemphigus pattern was positive in all 10 patients, with titres varying from 1 : 160 to 1 : 2560. ELISA with recombinant Dsg1 gave scores of 24-266 in PF and 0-270 in PV. Reactivity to recombinant Dsg3 was positive in all five patients with PV (ELISA 22-98) and was negative in all PF sera. CONCLUSIONS All 10 patients with pemphigus with umbilical presentation had the clinical and immunopathological features of either PF or PV. This peculiar presentation, not yet completely elucidated, has rarely been reported in the literature. A possible explanation for this unique presentation may be the presence of either novel epitopes or an association with embryonic or scar tissue located in the umbilical-cord region.
Collapse
Affiliation(s)
- J V Oliveira Júnior
- Department of Dermatology, Hospital do Servidor Público Estadual de São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Desmosomes are intercellular adhesive junctions that are particularly prominent in tissues experiencing mechanical stress, such as the heart and epidermis. Whereas the related adherens junction links actin to calcium-dependent adhesion molecules known as classical cadherins, desmosomes link intermediate filaments (IF) to the related subfamily of desmosomal cadherins. By tethering these stress-bearing cytoskeletal filaments to the plasma membrane, desmosomes serve as integrators of the IF cytoskeleton throughout a tissue. Recent evidence suggests that IF attachment in turn strengthens desmosomal adhesion. This collaborative arrangement results in formation of a supracellular network, which is critical for imparting mechanical integrity to tissues. Diseases and animal models targeting desmosomal components highlight the importance of desmosomes in development and tissue integrity, while the downregulation of individual protein components in cancer metastasis and wound healing suggests their importance in cell homeostasis. This chapter will provide an update on desmosome composition, function, and regulation, and will also discuss recent work which raises the possibility that desmosome proteins do more than play a structural role in tissues where they reside.
Collapse
|
11
|
Altered desmoplakin expression at transcriptional and protein levels provides prognostic information in human oropharyngeal cancer. Hum Pathol 2009; 40:1320-9. [PMID: 19386346 DOI: 10.1016/j.humpath.2009.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 11/23/2022]
Abstract
Desmoplakin, a desmosomal component, is a key protein involved in cell-cell adhesion. Down-regulation of desmosomal proteins is associated with the invasive and metastatic ability of tumor cells. We examined 37 cases of human primary oropharyngeal squamous cell carcinomas lacking overt distant metastases to gain further insights on the potential role of desmoplakin in oral cancer. Desmoplakin expression was evaluated using reverse transcriptase-polymerase chain reaction and immunohistochemistry on frozen unfixed sections. Western blotting was performed to characterize the relative expression levels for each of the 2 desmoplakin protein isoforms, I and II. Desmoplakin expression was compared with histopathological grade, clinical stage, and patient outcome. Desmoplakin expression was prominent in highly differentiated tumors and reduced or absent in poorly differentiated tumors that developed distant metastases within the 3 years of follow-up period. Desmoplakin mRNA levels tracked with protein levels, suggesting that lack of desmoplakin protein expression is due to down-regulation of mRNA expression at the transcription level. Western blot analysis demonstrated that the 2 desmoplakin isoforms displayed different patterns of subcellular distribution in tumors, with the desmoplakin II detected only in patients in which desmoplakin immunoreactivity displayed an abnormal cytoplasmic localization. Our findings suggest that down-regulation of desmoplakin expression may represent a useful marker for evaluating the risk of distant metastasis formation in oropharyngeal squamous cell carcinomas. Interestingly, desmoplakin II was detected only in tumors associated with a poor clinical outcome, suggesting a potential specific function for this isoform in oral carcinogenesis. Characterizing DSP expression may improve evaluation risk of distant metastasis formation in oral cancer patients.
Collapse
|
12
|
Abstract
Desmosomes are patch-like intercellular adhering junctions ("maculae adherentes"), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca(2+)-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required.
Collapse
Affiliation(s)
- Jens Waschke
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr. 6, 97070, Würzburg, Germany.
| |
Collapse
|
13
|
Cotreau MM, Chennathukuzhi VM, Harris HA, Han L, Dorner AJ, Apseloff G, Varadarajan U, Hatstat E, Zakaria M, Strahs AL, Crabtree JS, Winneker RC, Jelinsky SA. A study of 17beta-estradiol-regulated genes in the vagina of postmenopausal women with vaginal atrophy. Maturitas 2007; 58:366-76. [PMID: 17997058 DOI: 10.1016/j.maturitas.2007.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 09/11/2007] [Accepted: 09/17/2007] [Indexed: 11/17/2022]
Abstract
BACKGROUND Vaginal atrophy (VA) is a prevalent disorder in postmenopausal women that is characterized by decreased epithelial thickness, reduced vaginal maturation index (VMI) and increased vaginal pH. Current medical therapy consists of local or systemic replacement of estrogens. OBJECTIVE The goal of this study was to understand, at a molecular level, the effect of estradiol (E2) on the vaginal epithelium. METHODS Nineteen women were treated with E2 delivered through a skin patch at a dose of 0.05mg/day for 12 weeks. The diagnosis of VA was confirmed by a VMI with < or =5% superficial cells and vaginal pH>5.0. Vaginal biopsy samples were collected at baseline and after treatment. Differentially expressed mRNA transcripts in these biopsies were determined by microarray analysis. RESULTS All 19 subjects had increased VMI (>5%) and/or reduced pH (< or =5) following treatment. Most subjects also had increased serum E2 levels and reduced serum FSH levels. Transcriptional profiling of vaginal biopsies identified over 3000 E2-regulated genes, including those involved in several key pathways known to regulate cell growth and proliferation, barrier function and pathogen defense. CONCLUSIONS E2 controls a plethora of cellular pathways that are concordant with its profound effect on vaginal physiology. The data presented here are a useful step toward understanding the role of E2 in vaginal tissue and the development of novel therapeutics for the treatment of VA.
Collapse
Affiliation(s)
- Monette M Cotreau
- Discovery Translational Medicine, Wyeth Research, Cambridge, MA, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Desmosomes are essential adhesion structures in most epithelia that link the intermediate filament network of one cell to its neighbor, thereby forming a strong bond. The molecular components of desmosomes belong to the cadherin superfamily, the plakin family, and the armadillo repeat protein family. The desmosomal cadherins are calcium-dependent transmembrane adhesion molecules and comprise the desmogleins and desmocollins. To date, three human desmoglein isoforms have been characterized, namely desmogleins 1, 2, and 3 that are expressed in a tissue- and differentiation-specific manner. Here we have identified and characterized, at the genetic level, a novel human desmoglein cDNA sharing homology with desmogleins 1, 2, 3 and we name this desmoglein 4. The human desmoglein 4 cDNA (3.6 kb) contains an open reading frame of 3120 bp that encodes a precursor protein of 1040 amino acids. The predicted mature protein comprises 991 amino acids with a molecular weight of 107822 Da at pI 4.38. Human desmoglein 4 shares 41% identity with human desmoglein 1, 37% with human desmoglein 2, and 50% with human desmoglein 3. Analysis of the exon/intron organization of the human desmoglein 4 gene (DSG4) demonstrates that it is composed of 16 exons spanning approximately 37 kb of 18q12 and is situated between DSG1 and DSG3. We have demonstrated using RT-PCR on multiple tissue cDNA samples that desmoglein 4 has very specific tissue expression in salivary gland, testis, prostate, and skin.
Collapse
Affiliation(s)
- Neil V Whittock
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, United Kingdom.
| | | |
Collapse
|
15
|
Djabali K, Martinez-Mir A, Horev L, Christiano AM, Zlotogorski A. Evidence for extensive locus heterogeneity in Naxos disease. J Invest Dermatol 2002; 118:557-60. [PMID: 11874502 DOI: 10.1046/j.0022-202x.2001.01627.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Hunt DM, Rickman L, Whittock NV, Eady RA, Simrak D, Dopping-Hepenstal PJ, Stevens HP, Armstrong DK, Hennies HC, Küster W, Hughes AE, Arnemann J, Leigh IM, McGrath JA, Kelsell DP, Buxton RS. Spectrum of dominant mutations in the desmosomal cadherin desmoglein 1, causing the skin disease striate palmoplantar keratoderma. Eur J Hum Genet 2001; 9:197-203. [PMID: 11313759 DOI: 10.1038/sj.ejhg.5200605] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2000] [Revised: 10/27/2000] [Accepted: 11/01/2000] [Indexed: 11/09/2022] Open
Abstract
The adhesive proteins of the desmosome type of cell junction consist of two types of cadherin found exclusively in that structure, the desmogleins and desmocollins, coded by two closely linked loci on human chromosome 18q12.1. Recently we have identified a mutation in the DSG1 gene coding for desmoglein 1 as the cause of the autosomal dominant skin disease striate palmoplantar keratoderma (SPPK) in which affected individuals have marked hyperkeratotic bands on the palms and soles. In the present study we present the complete exon-intron structure of the DSG1 gene, which occupies approximately 43 kb, and intron primers sufficient to amplify all the exons. Using these we have analysed the mutational changes in this gene in five further cases of SPPK. All were heterozygotic mutations in the extracellular domain leading to a truncated protein, due either to an addition or deletion of a single base, or a base change resulting in a stop codon. Three mutations were in exon 9 and one in exon 11, both of which code for part of the third and fourth extracellular domains, and one was in exon 2 coding for part of the prosequence of this processed protein. This latter mutation thus results in the mutant allele synthesising only 25 amino acid residues of the prosequence of the protein so that this is effectively a null mutation implying that dominance in the case of this mutation was caused by haploinsufficiency. The most severe consequences of SPPK mutations are in regions of the body where pressure and abrasion are greatest and where desmosome function is most necessary. SPPK therefore provides a very sensitive measure of desmosomal function.
Collapse
Affiliation(s)
- D M Hunt
- Division of Membrane Biology, National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Over recent years cadherins have emerged as a growing superfamily of molecules, and a complex picture of their structure and their biological functions is becoming apparent. Variation in their extracellular region leads to the large potential for recognition properties of this superfamily. This is demonstrated strikingly by the recently discovered FYN-binding CNR-protocadherins; these exhibit alternative expression of the extracellular portion, which could lead to distinct cell recognition in different neuronal populations, whereas their cytoplasmic part, and therefore intracellular interactions, is constant. Diversity in the cytoplasmic moiety of the cadherins imparts specificity to their interactions with cytoplasmic components; for example, classical cadherins interact with catenins and the actin filament network, desmosomal cadherins interact with catenins and the intermediate filament system and CNR-cadherins interact with the SRC-family kinase FYN. Recent evidence suggests that CNR-cadherins, 7TM-cadherins and T-cadherin, which is tethered to the membrane by a GPI anchor, all localise to lipid rafts, specialised cell membrane domains rich in signalling molecules. Originally thought of as cell adhesion molecules, cadherin superfamily molecules are now known to be involved in many biological processes, such as cell recognition, cell signalling, cell communication, morphogenesis, angiogenesis and possibly even neurotransmission.
Collapse
Affiliation(s)
- B D Angst
- Division of Membrane Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | | | |
Collapse
|
18
|
Hakuno M, Shimizu H, Akiyama M, Amagai M, Wahl JK, Wheelock MJ, Nishikawa T. Dissociation of intra- and extracellular domains of desmosomal cadherins and E-cadherin in Hailey-Hailey disease and Darier's disease. Br J Dermatol 2000; 142:702-11. [PMID: 10792220 DOI: 10.1046/j.1365-2133.2000.03415.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to clarify the pathomechanism of acantholysis in Hailey-Hailey disease (HHD) and Darier's disease (DD), the distribution of desmosomal and adherens junction-associated proteins was studied in the skin of patients with HHD (n = 4) and DD (n = 3). Domain-specific antibodies were used to determine the cellular localization of the desmosomal transmembrane glycoproteins (desmogleins 1 and 3 and desmocollin), desmosomal plaque proteins (desmoplakin, plakophilin and plakoglobin) and adherens junction-associated proteins (E-cadherin, alpha-catenin, beta-catenin and actin). A significant difference in staining patterns between intra- and extracellular domains of desmosomal cadherins and E-cadherin was demonstrated in acantholytic cells in both HHD and DD, but not in those in pemphigus vulgaris and pemphigus foliaceus samples used as controls. In acantholytic cells in HHD and DD, antibodies against attachment plaque proteins and intracellular epitopes of desmosomal cadherins exhibited diffuse cytoplasmic staining, whereas markedly reduced staining was observed with antibodies against extracellular epitopes of the desmogleins. Similarly, membrane staining of an intracellular epitope of E-cadherin was preserved, while immunoreactivity of an extracellular epitope of E-cadherin was destroyed. While the DD gene has been identified as ATP2A2, the gene for HHD has not been clarified. The dissociation of intra- and extracellular domains of desmosomal cadherin and E-cadherin is characteristic of the acantholytic cells in HHD and DD, and not of pemphigus. This common phenomenon in HHD and DD might be closely related to the pathophysiological mechanisms in both conditions.
Collapse
Affiliation(s)
- M Hakuno
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Hunt DM, Sahota VK, Taylor K, Simrak D, Hornigold N, Arnemann J, Wolfe J, Buxton RS. Clustered cadherin genes: a sequence-ready contig for the desmosomal cadherin locus on human chromosome 18. Genomics 1999; 62:445-55. [PMID: 10644442 DOI: 10.1006/geno.1999.6036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe the assembly of a cosmid and PAC contig of approximately 700 kb on human chromosome 18q12 spanning the DSC and DSG genes coding for the desmocollins and desmogleins. These are members of the cadherin superfamily of calcium-dependent cell adhesion proteins present in the desmosome type of cell junction found especially in epithelial cells. They provide the strong cell-cell adhesion generated by this type of cell junction for which expression of both a desmocollin and a desmoglein is required. In the autoimmune skin diseases pemphigus foliaceous and pemphigus vulgaris (PV), where the autoantigens are, respectively, encoded by the DSG1 and DSG3 genes, severe areas of acantholysis (cell separation), potentially life-threatening in the case of PV, are evident. Dominant mutations in the DSG1 gene causing striate palmoplantar keratoderma result in hyperkeratosis of the skin on the parts of the body where pressure and abrasion are greatest, viz., on the palms and soles. These genes are also candidate tumor suppressor genes in squamous cell carcinomas and other epithelial cancers. We have screened two chromosome 18-specific cosmid libraries by hybridization with previously isolated YAC clones and DSC and DSG cDNAs, and a whole genome PAC library, both by hybridization with the YACs and by screening by PCR using cDNA sequences and YAC end sequence. The contigs were extended by further PCR screens using STSs generated by vectorette walking from the ends of the cosmids and PACs, together with sequence from PAC ends. Despite screening of two libraries, the cosmid contig still had four gaps. The PAC contig filled these gaps and in fact covered the whole locus. The positions of 45 STSs covering the whole of this region are presented. The desmocollin and desmoglein genes, which are about 30-35 kb in size, are quite well separated at approximately 20-30 kb apart and are arranged in two clusters, one DSC cluster and one DSG cluster, which are transcribed outward from the interlocus region. The order of the genes is correlated with the spatial order of gene expression in the developing mouse embryo, and this, and previous transgenic experiments, suggests that long-range genetic elements that coordinate expression of these genes may be present. The complete bacterial clone contig described in this paper is thus a resource not only for future sequencing but also for investigations into the control of expression of these clustered genes.
Collapse
Affiliation(s)
- D M Hunt
- Division of Membrane Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Green KJ, Guy SG, Cserhalmi-Friedman PB, McLean WH, Christiano AM, Wagner RM. Analysis of the desmoplakin gene reveals striking conservation with other members of the plakin family of cytolinkers. Exp Dermatol 1999; 8:462-70. [PMID: 10597135 DOI: 10.1111/j.1600-0625.1999.tb00304.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Members of the plakin family of cytolinker proteins integrate filaments into cellular networks and anchor these networks to the plasma membrane. Their importance is supported by the existence of cell and tissue fragility disorders caused by mutations in certain family members. In this study, the human gene encoding desmoplakin (DSP) was characterized and its structure compared with the related family members: plectin, bullous pemphigoid antigen 1 (BPAG1), envoplakin (EVPL) and periplakin (PPL). Sequence analysis of genomic clones was carried out in combination with a PCR-based strategy to define intron-exon borders. DSP was mapped using the GB4 radiation hybrid mapping panel to the interval between markers D6S296 and AFM043 x f2, corresponding to cytogenetic band 6p24. In addition, the murine gene (Dsp) was mapped to mouse chromosome 13 by interspecific backcross mapping. DSP encompasses approximately 45 kb organized into 24 exons and 23 introns, and the pattern of intron-exon borders bears a striking resemblance to other members of the plakin family. Notable features include the fact that a single large exon encodes the entire C-terminus of each gene. In contrast, the N-termini comprise numerous smaller exons with conservation of many intron-exon borders. Detailed characterization and mapping of these genes will facilitate their further evaluation as targets of genetic disorders and provide insights into the evolutionary relationships among molecules in this emerging gene family.
Collapse
Affiliation(s)
- K J Green
- Department of Pathology, R. H. Lurie Cancer Center, Northwestern University Medical School, Chicago, IL 60611, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Desmosomes are key adhesion complexes in most epithelia, including epidermis. Although structural components of desmosomes have been identified as target antigens in several of the autoimmune blistering skin diseases, there are relatively few data on inherited disorders arising from mutations in genes encoding these proteins and glycoproteins. For example, an association between an inherited abnormality of desmosomes and Darier disease and Hailey Hailey disease has been proposed on histopathological grounds, but genetic linkage studies have not invoked known desmosomal gene loci. However, linkage analyses have implicated one or more of the desmosomal cadherins (desmogleins 1-3, desmocollins 1-3), the genes for which are tightly clustered within a 650-kb region on 18q12.1, in the pathogenesis of a different autosomal dominant genodermatosis, striate palmoplantar keratoderma. In addition, a rare autosomal recessive skin fragility-ectodermal dysplasia syndrome has recently been recognised which results from total ablation of plakophilin 1, an intracellular desmosomal plaque protein that reinforces adhesion between the cytoskeleton and the cell membrane in terminally differentiating keratinocytes. In the future, it is likely that a number of other desmosome genodermatoses will be identified, each resulting from dominant or recessively inherited mutations in component structural proteins.
Collapse
Affiliation(s)
- J A McGrath
- Department of Cell and Molecular Pathology, St John's Institute of Dermatology, The Guy's, King's College and St Thomas' Hospitals' Medical School, St Thomas's Hospital, London, UK.
| |
Collapse
|
22
|
McGrath JA, Hoeger PH, Christiano AM, McMillan JR, Mellerio JE, Ashton GH, Dopping-Hepenstal PJ, Lake BD, Leigh IM, Harper JI, Eady RA. Skin fragility and hypohidrotic ectodermal dysplasia resulting from ablation of plakophilin 1. Br J Dermatol 1999; 140:297-307. [PMID: 10233227 DOI: 10.1046/j.1365-2133.1999.02667.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report a 2-year-old boy with an unusual autosomal recessively inherited skin disease comprising trauma-induced skin fragility and congenital ectodermal dysplasia affecting hair, nails and sweat glands. Skin biopsy showed widening of intercellular spaces between keratinocytes and ultrastructural findings of small, poorly formed desmosomes with reduced connections to the keratin filament cytoskeleton. Immunohistochemical analysis revealed a complete absence of staining for the accessory desmosomal plaque protein plakophilin 1 (PKP1; band 6 protein). The affected individual was a compound heterozygote for null mutations on both alleles of the PKP1 gene. Both mutations occurred within the amino terminus of PKP1, the domain which normally binds the cytoskeletal keratin filament network to the cell membrane. Apart from its localization within desmosomal plaques, PKP1 may also be present within the cytoplasm and nucleus and has putative roles in signal transduction and regulation of gene activity. The clinicopathological observations in this patient demonstrate the relevance of PKP1 to desmosome formation, cutaneous cell-cell adhesion and epidermal development and demonstrate the specific manifestations of human functional knockout mutations in this gene.
Collapse
Affiliation(s)
- J A McGrath
- Department of Cell and Molecular Pathology, St John's Institute of Dermatology (Guy's, Kings College and St Thomas' Hospitals' Medical School), St Thomas' Hospital, London SE1 7EH, U.K.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Roberts GA, Burdett ID, Pidsley SC, King IA, Magee AI, Buxton RS. Antisense expression of a desmocollin gene in MDCK cells alters desmosome plaque assembly but does not affect desmoglein expression. Eur J Cell Biol 1998; 76:192-203. [PMID: 9716266 DOI: 10.1016/s0171-9335(98)80034-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The desmocollins are one of two types of putative adhesive proteins present in the desmosome type of cell junctions, the other type being the desmogleins; both are members of the cadherin superfamily. Each type of desmosomal cadherin occurs as a number of isoforms which have differing tissue distribution; within stratifying epithelia some isoforms occur only suprabasally. We have sought to analyse desmocollin function by reducing the amount of protein using antisense gene expression in the widely studied Madin-Darby canine kidney (MDCK) cell line. Although this is a simple epithelial cell line, we show by Northern blot analysis that it expresses multiple isoforms of the desmosomal cadherins. Desmocollins DSC2 and DSC3 and desmogleins DSG2 and DSG3 (the pemphigus vulgaris antigen PVA) were detected, but DSC1 and DSG1, which are present exclusively in the suprabasal layers of the epidermis, were absent. The major desmocollin isoform was the type 2 (DSC2). A DSC2 clone isolated from a MDCK cDNA library had the same cell adhesion recognition sequence (Phe-Ala-Thr) as human, bovine and mouse type 2 isoforms. This sequence appears diagnostic for the three desmocollin isoforms. This cDNA clone was used to isolate a genomic DSC2 clone; antisense expression of this clone in MDCK cells resulted in a drastic reduction of desmocollin protein as judged by Western blots; Dsc3 was not upregulated to compensate for the loss of Dsc2. This antisense expression significantly altered desmosome assembly. There was a loss of punctate staining evident when using a desmosome plaque protein (desmoplakin) antibody. Electron microscopy revealed that there was a reduction in the number of desmosomes and a notable increase in the asymmetry of plaques between adjacent cells. Immunolabelling showed that similar levels of desmogleins and E-cadherin were present. Immunoelectron microscopy also showed that many vesicular structures were labelled, at intervals along the lateral membranes between cells. The distinctive loose organization of the remaining desmosomes may originate in modifications to the targeting and incorporation of proteins into fully assembled plaques. Other junctions were unaffected and the cells maintained their integrity as a confluent monolayer.
Collapse
Affiliation(s)
- G A Roberts
- Division of Membrane Biology, National Institute for Medical Research, London/United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
Ruhrberg C, Williamson JA, Määttä A, Watt FM. The periplakin gene maps to 16p13.3 in human and 16A-B1 in mouse. Genomics 1998; 49:157-9. [PMID: 9570964 DOI: 10.1006/geno.1997.5206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- C Ruhrberg
- Keratinocyte Laboratory, Imperial Cancer Research Fund, London, United Kingdom
| | | | | | | |
Collapse
|
25
|
Adams MJ, Reichel MB, King IA, Marsden MD, Greenwood MD, Thirlwell H, Arnemann J, Buxton RS, Ali RR. Characterization of the regulatory regions in the human desmoglein genes encoding the pemphigus foliaceous and pemphigus vulgaris antigens. Biochem J 1998; 329 ( Pt 1):165-74. [PMID: 9405290 PMCID: PMC1219028 DOI: 10.1042/bj3290165] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The adhesive proteins in the desmosome type of cell junction consist of two members of the cadherin superfamily, the desmogleins and desmocollins. Both desmogleins and desmocollins occur as at least three different isoforms with various patterns of expression. The molecular mechanisms controlling the differential expression of the desmosomal cadherin isoforms are not yet known. We have begun an investigation of desmoglein gene expression by cloning and analysing the promoters of the human genes coding for the type 1 and type 3 desmogleins (DSG1 and DSG3). The type 1 isoform is restricted to the suprabasal layers of the epidermis and is the autoantigen in the autoimmune blistering skin disease pemphigus foliaceous. The type 3 desmoglein isoform is also expressed in the epidermis, but in lower layers than the type 1 isoform, and is the autoantigen in pemphigus vulgaris. Phage lambda genomic clones were obtained containing 4.2 kb upstream of the translation start site of DSG1 and 517 bp upstream of the DSG3 start site. Sequencing of 660 bp upstream of DSG1 and 517 bp upstream of DSG3 revealed that there was no obvious TATA box, but a possible CAAT box was present at -238 in DSG1 and at -193 in DSG3 relative to the translation start site. Primer extension analysis and RNase protection experiments revealed four putative transcription initiation sites for DSG1 at positions -163, -151, -148 and -141, and seven closely linked sites for DSG3, the longest being at -140 relative to the translation start site. The sequences at these possible sites at -166 to -159 in DSG1 (TTCAGTCC) and at -124 to -117 in DSG3 (CTTAGACT) have some similarity to the initiator sequence (CTCANTCT) described for a TATA-less promoter often from -3 to +5, and the true transcription initiator site might therefore be the A residue in these sequences. There were two regions of similarity between the DSG1 and DSG3 promoters just upstream of the transcription initiation sites, of 20 and 13 bp, separated by 41 bp in DSG1 and 36 bp in DSG3. The significance of these regions of similarity remains to be elucidated, but the results suggest that they represent a point at which these two desmoglein genes are co-ordinately regulated. Analysis of the upstream sequences revealed GC-rich regions and consensus binding sites for transcription factors including AP-1 and AP-2. Exon boundaries were conserved compared with the classical cadherin E-cadherin, but the equivalent of the second cadherin intron was lacking. A 4.2 kb region of the human DSG1 promoter sequence was linked to the lacZ gene reporter gene in such a way that there was only one translation start site, and this construct was used to generate transgenic mice. We present the first transgenic analysis of a promoter region taken from a desmosomal cadherin gene. Our results suggest that the 4.2 kb upstream region of DSG1 does not contain all the regulatory elements necessary for correct expression of this gene but might have elements that regulate activity during hair growth.
Collapse
Affiliation(s)
- M J Adams
- Division of Membrane Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
King IA, Angst BD, Hunt DM, Kruger M, Arnemann J, Buxton RS. Hierarchical expression of desmosomal cadherins during stratified epithelial morphogenesis in the mouse. Differentiation 1997; 62:83-96. [PMID: 9404003 DOI: 10.1046/j.1432-0436.1997.6220083.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Desmosomes contain two heterogeneous families of specialized cadherins (desmogleins or Dsgs and desmocollins or Dscs), subtypes of which are known to be expressed in tissue-specific and differentiation-dependent patterns in adult epithelial tissues. To examine the temporal and spatial order in which the individual desmosomal cadherins are expressed during stratified epithelial development we have obtained partial cDNA clones of all six murine desmosomal cadherins and have carried out in situ hybridization analysis on E12.5 to E16.5 mouse embryos. The results indicate that the type 2, type 3 and type 1 desmosomal cadherin messages are not obligatorily expressed as pairs during stratified epithelial morphogenesis. Instead the individual genes appear to be transcribed in hierarchical, overlapping temporal and spatial patterns extending from DSG2 to DSC1. DSG2 was the most uniformly expressed message in all E12.5 epithelia, gradually becoming confined to the basal cell layers during epithelial stratification indicating that its transcription was restricted to undifferentiated cells. In contrast, DSC2 message was expressed variably in early epithelia and was strongly upregulated in the suprabasal cell layers during the stratification of wet-surfaced epithelia. DSC3 message was expressed before that of DSG3 in the dental and lingual epithelium where its spatial distribution matched that of DSG2, but after DSG3 in the non-glandular gastric epithelium. DSC3 transcripts became confined to the lower layers of stratifying epithelia but were usually less basally restricted than those of DSG2. Like DSC2, DSG3 mRNA was strongly upregulated in the suprabasal layers of wet-surfaced epithelia as they stratified. Upregulation of DSG1 message was temporally linked to that of DSG3 in all tissues apart from the non-glandular gastric epithelium.
Collapse
Affiliation(s)
- I A King
- Division of Membrane Biology, National Institute for Medical Research, London, UK
| | | | | | | | | | | |
Collapse
|
27
|
Greenwood MD, Marsden MD, Cowley CM, Sahota VK, Buxton RS. Exon-intron organization of the human type 2 desmocollin gene (DSC2): desmocollin gene structure is closer to "classical" cadherins than to desmogleins. Genomics 1997; 44:330-5. [PMID: 9325054 DOI: 10.1006/geno.1997.4894] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cadherins are a superfamily of calcium-dependent glycoproteins that are cell adhesion molecules. Two families of cadherins, the desmocollins (Dsc) and desmogleins (Dsg), are found only in the desmosome type of cell-cell junction. They are each present in at least three different isoforms with differing spatial and temporal distributions and are specified by two clusters of closely linked genes on human chromosome 18q12.1. The human DSC2 gene, coding for the most widely distributed form of the desmocollins, has been found to consist of more than 32 kb of DNA. By using PCR we have determined the exon-intron organization. The gene is arranged into 17 exons ranging in size from 46 to 258 bp; exon 16 is alternatively spliced, giving rise to the a and b forms of the protein. This has revealed a remarkable degree of conservation of intron position with other cadherins. The desmocollin exon-intron organization is more similar to the so-called classical cadherins than to the desmogleins, especially in the cytoplasmic domain. Intron 1 is the largest in DSC2, as it is in the desmogleins, in contrast to the classical cadherins, where intron 2 is extremely large; this latter intron is missing from the desmogleins.
Collapse
Affiliation(s)
- M D Greenwood
- Division of Membrane Biology, National Institute for Medical Research, London, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Starfield M, Hennies HC, Jung M, Jenkins T, Wienker T, Hull P, Spurdle A, Küster W, Ramsay M, Reis A. Localization of the gene causing keratolytic winter erythema to chromosome 8p22-p23, and evidence for a founder effect in South African Afrikaans-speakers. Am J Hum Genet 1997; 61:370-8. [PMID: 9311742 PMCID: PMC1715911 DOI: 10.1086/514848] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Keratolytic winter erythema (KWE), also known as "Oudtshoorn skin disease," or "erythrokeratolysis hiemalis," is an autosomal dominant skin disorder of unknown etiology characterized by a cyclical erythema, hyperkeratosis, and recurrent and intermittent peeling of the palms and soles, particularly during winter. Initially KWE was believed to be unique to South Africa, but recently a large pedigree of German origin has been identified. The disorder occurs with a prevalence of 1/7,000 in the South African Afrikaans-speaking Caucasoid population, and this high frequency has been attributed to founder effect. After a number of candidate regions were excluded from linkage to KWE in both the German family and several South African families, a genomewide analysis was embarked on. Linkage to the microsatellite marker D8S550 on chromosome 8p22-p23 was initially observed, with a maximum LOD score (Z(max)) of 9.2 at a maximum recombination fraction (theta(max)) of .0 in the German family. Linkage was also demonstrated in five of the larger South African families, with Z(max) = 7.4 at theta(max) = .02. When haplotypes were constructed, 11 of 14 South African KWE families had the complete "ancestral" haplotype, and 3 demonstrated conservation of parts of this haplotype, supporting the hypothesis of founder effect. The chromosome segregating with the disease in the German family demonstrated a different haplotype, suggesting that these chromosomes do not have a common origin. Recombination events place the KWE gene in a 6-cM interval between D8S550 and D8S552. If it is assumed that there was a single South African founder, a proposed ancestral recombinant suggests that the gene is most likely in a 1-cM interval between D8S550 and D8S265.
Collapse
Affiliation(s)
- M Starfield
- Department of Human Genetics, School of Pathology, South African Institute for Medical Research and University of the Witwatersrand, Johannesburg
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cowley CM, Simrak D, Marsden MD, King IA, Arnemann J, Buxton RS. A YAC contig joining the desmocollin and desmoglein loci on human chromosome 18 and ordering of the desmocollin genes. Genomics 1997; 42:208-16. [PMID: 9192840 DOI: 10.1006/geno.1997.4718] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The desmocollins and desmogleins are members of the cadherin family of adhesive proteins present in the desmosome type of cell-cell junction. All of the known desmoglein and desmocollin isoforms, which have differing tissue and developmental distributions, are coded by very closely linked genes at 18q12.1. We have previously described YAC clones carrying all three known desmoglein (DSG) genes. We have now isolated YAC clones that carry all three known desmocollin genes (DSC1, 2, and 3) from two libraries and also isolated clones that join the DSC locus to the DSG locus, forming a complete contig for the region. Absence of chimeric ends for some of the YACs was confirmed by isolating Vectorette PCR products for the YAC ends and mapping the derived DNA sequences back to other YACs from CEPH. The whole DSC/DSG gene complex occupies no more than about 700 kb, and the genes are arranged in the order cen-3'-DSC3-DSC2-DSC1-5'-5'-DSG1-DSG3-D SG2-3'-tel, so that the two gene clusters are transcribed outward from the interlocus region. A P1 clone carrying part of DSC2 and DSC3 confirmed the relative orientation of transcription of these two genes. The conservation of close genetic linkage may be of trivial importance related to the recent duplication of these genes or may be because there is a region within the locus that is involved in coordinating the expression of the desmoglein and desmocollin genes.
Collapse
Affiliation(s)
- C M Cowley
- Division of Membrane Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
30
|
King IA, O'Brien TJ, Buxton RS. Expression of the "skin-type" desmosomal cadherin DSC1 is closely linked to the keratinization of epithelial tissues during mouse development. J Invest Dermatol 1996; 107:531-8. [PMID: 8823356 DOI: 10.1111/1523-1747.ep12582790] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Desmosomal junctions contain two classes of desmosomal cadherin, the desmocollins and the desmogleins, each of which occurs as three distinct isoforms. To investigate the role of the "skin-type" desmosomal cadherins (desmocollin 1 and desmoglein 1) in the formation of keratinized epithelial structures, we have now cloned full-length mouse desmocollin 1 complementary deoxyribonucleic acid and examined the expression of desmocollin 1 and desmoglein 1 and messages during murine embryonic development by in situ hybridization. In the general body epidermis, desmocollin 1 and desmoglein 1 transcripts both showed considerable upregulation at 15.5 d, which is after the onset of stratification and before the start of keratinization. Before this the epidermis expressed low levels of desmocollin 1 message, although the desmoglein 1 signal was always stronger and more extensive. In the tongue, expression of desmocollin 1 message occurred several days after desmoglein 1 and coincided with the formation of the keratinizing filiform papillae. Desmoglein 1 message was also detected in epithelial tissues in which desmocollin 1 was absent, suggesting that expression of the two "skin-type" desmosomal cadherins was not tightly coupled during embryonic development. Human desmocollin 1 monoclonal antibodies that cross-reacted with mouse skin and tongue indicated that desmocollin 1 protein was first expressed in those outermost epithelial cells destined to form the keratinized layers of the stratum corneum or the papillae. The results suggest that expression of desmocollin 1 is closely associated with the keratinization of epithelial tissues during mouse development.
Collapse
Affiliation(s)
- I A King
- Division of Eukaryotic Molecular Genetics, National Institute for Medical Research, London, U.K
| | | | | |
Collapse
|
31
|
Liu CG, Maercker C, Castañon MJ, Hauptmann R, Wiche G. Human plectin: organization of the gene, sequence analysis, and chromosome localization (8q24). Proc Natl Acad Sci U S A 1996; 93:4278-83. [PMID: 8633055 PMCID: PMC39526 DOI: 10.1073/pnas.93.9.4278] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Plectin, a 500-kDa intermediate filament binding protein, has been proposed to provide mechanical strength to cells and tissues by acting as a cross-linking element of the cytoskeleton. To set the basis for future studies on gene regulation, tissue-specific expression, and pathological conditions involving this protein, we have cloned the human plectin gene, determined its coding sequence, and established its genomic organization. The coding sequence contains 32 exons that extend over 32 kb of the human genome. Most of the introns reside within a region encoding the globular N-terminal domain of the molecule, whereas the entire central rod domain and the entire C-terminal globular domain were found to be encoded by single exons of remarkable length, >3 kb and >6 kb, respectively. Overall, the organization of the human plectin gene was strikingly similar to that of human bullous pemphigoid antigen 1 (BPAG1), confirming that both proteins belong to the same gene family. Comparison of the deduced protein sequences for human and rat plectin revealed that they were 93% identical. By using fluorescence in situ hybridization, we have mapped the plectin gene to the long arm of chromosome 8 within the telomeric region. This gene locus (8q24) has previously been implicated in the human blistering skin disease epidermolysis bullosa simplex Ogna. Detailed knowledge of the structure of the plectin gene and its chromosome localization will aid in the elucidation of whether this or any other pathological conditions are linked to alterations in the plectin gene.
Collapse
Affiliation(s)
- C G Liu
- Institute of Biochemistry and Molecular Cell Biology, University of Vienna-Biocenter, Austria
| | | | | | | | | |
Collapse
|
32
|
Hashimoto K, Fujiwara K, Tada J, Harada M, Setoyama M, Eto H. Desmosomal dissolution in Grover's disease, Hailey-Hailey's disease and Darier's disease. J Cutan Pathol 1995; 22:488-501. [PMID: 8835169 DOI: 10.1111/j.1600-0560.1995.tb01145.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proteins involved in the formation of desmosomes and simpler adherens junctions were studied in three types of non-immune acantholytic diseases; specifically, four cases of Grover's disease (GD), one case of Hailey-Hailey's disease (HHD) and one case of Darier's disease (DD), and these were compared to two cases of immune-mediated acantholytic disease pemphigus vulgaris (PV). The proteins studied included: 1. The intracellular desmosomal proteins, desmoplakin I and II and plakoglobin; 2. The intercellular desmosomal proteins, desmoglein and CD44; and 3. vinculin, which is a major intracellular protein of the simpler aherens junctions. In GD, HHD and DD, immunostaining showed a loss of desmoplakin I and II and plakoglobin from the desmosomes, and a diffuse staining in the cytoplasm. In contrast, in pemphigus vulgaris, these proteins seemed intact and were localized to dot-like spots on the cell surface. Also, desmoglein, and CD44 were slightly affected in GD, and moderately affected in HHD and DD. Absence of desmosomal attachment plaques, the lack of labeling with desmoglein in the affected desmosomes and a diffusion of the labels into cytoplasm were demonstrated with electron microscopy using an immunogold technique. In PV, desmoglein III is one of the target antigens for the autoantibodies in this disease and was only partially preserved in a small number of lesional cells, while CD44 was mostly preserved. Vinculin was intact in GD, HHD and DD, but was lost in PV. This study, our previous work, and that of others, suggest that: 1. In GD, HHD and DD, the proteins of the desmosomal attachment plaque are primarily affected; 2. In PV, the intercellular glycoproteins are primarily involved; and 3. Simple adherens junctions are intact in GD, HHD and DD, but are damaged in PV.
Collapse
Affiliation(s)
- K Hashimoto
- Department of Dermatology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
33
|
King IA, Sullivan KH, Bennett R, Buxton RS. The desmocollins of human foreskin epidermis: identification and chromosomal assignment of a third gene and expression patterns of the three isoforms. J Invest Dermatol 1995; 105:314-21. [PMID: 7665906 DOI: 10.1111/1523-1747.ep12319935] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A third human desmocollin, designated DSC3, was identified in foreskin epidermis by reverse transcriptase-polymerase chain reaction (PCR) using degenerate desmocollin primers. cDNA clones covering the entire coding sequence of the longer DSC3 splice variant were isolated and sequenced. Sequence comparisons indicated that this new desmocollin showed greater homology (67% amino acid identity) with the original human desmocollin (now designated DSC2) than with DSC1 (52% amino acid identity) although it had a unique potential cell adhesion recognition site (YAS). DSC3 was assigned to chromosome 18 by PCR analysis of rodent-human somatic cell hybrids, where it appears to be closely linked to all the other desmosomal cadherin genes. The expression of the three human desmocollins was examined in foreskin epidermis by in situ hybridization with 3'-untranslated riboprobes and by immunofluorescence with isoform-specific anti-peptide antibodies. DSC1 was present in the upper spinous/granular layers but not in the basal/lower spinous layers of the tissue. DSC2 and DSC3 were present in most of the living layers of the epidermis. DSC1 was not detected in any of the nonkeratinizing human epithelia examined (buccal mucosa, cervix, esophagus), indicating that it is specific for the keratinizing epithelium of the epidermis. However, all these internal epithelia expressed DSC2 and DSC3, and both were present in most of the living layers of the tissues including the basal layers.
Collapse
Affiliation(s)
- I A King
- Laboratory of Eukaryotic Molecular Genetics, National Institute for Medical Research, London, UK
| | | | | | | |
Collapse
|
34
|
Solinas-Toldo S, Troyanovsky R, Weitz S, Lichter P, Franke WW, Fries R. Bovine desmocollin genes (DSC1, DSC2, DSC3) cluster on chromosome 24q21/q22. Mamm Genome 1995; 6:484-6. [PMID: 7579894 DOI: 10.1007/bf00360661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- S Solinas-Toldo
- Department of Animal Science, Swiss Federal Institute of Technology, Zurich
| | | | | | | | | | | |
Collapse
|
35
|
Guénet JL, Simon-Chazottes D, Ringwald M, Kemler R. The genes coding for alpha and beta catenin (Catna1 and Catnb) and plakoglobin (Jup) map to mouse chromosomes 18, 9, and 11, respectively. Mamm Genome 1995; 6:363-6. [PMID: 7626889 DOI: 10.1007/bf00364802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J L Guénet
- Unité de Génétique des Mammifères de l'Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
36
|
Affiliation(s)
- B D Angst
- National Institute for Medical Research, London, United Kingdom
| | | | | |
Collapse
|
37
|
Kennedy JL, Berg D, Bassett AS, Roy R, King N, Perkins M. Genetic linkage for Darier disease (keratosis follicularis). AMERICAN JOURNAL OF MEDICAL GENETICS 1995; 55:307-10. [PMID: 7537018 PMCID: PMC3160971 DOI: 10.1002/ajmg.1320550312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Darier disease is an autosomal dominant skin disorder characterized by abnormal keratinocyte adhesion. Recent data have provided evidence for linkage of the Darier disease locus to 12q23-24.1 in British families. We have carried out linkage analysis using the 12q markers D12S58, D12S84, D12S79, D12S86, PLA2, and D12S63 in 6 Canadian families. Pairwise linkage analysis generated positive lod scores at all 6 markers at various recombination fractions, and each family showed positive lod scores with more than one marker. The peak lod score in the multipoint analysis (Zmax) was 5.5 in the interval between markers D12S58 and D12S84. These positive lod scores in North American families of varied European ancestry confirm the location of the Darier disease gene, and suggest genetic homogeneity. The future identification and sequencing of the gene responsible for Darier disease should lead to improved understanding of the disease and of keratinocyte adhesion in general.
Collapse
Affiliation(s)
- J L Kennedy
- Department of Psychiatry, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Simrak D, Cowley CM, Buxton RS, Arnemann J. Tandem arrangement of the closely linked desmoglein genes on human chromosome 18. Genomics 1995; 25:591-4. [PMID: 7790000 DOI: 10.1016/0888-7543(95)80067-v] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The desmogleins, together with the desmocollins, both members of the cadherin superfamily, are the adhesive proteins of the desmosome type of cell junction, characteristically found in epithelial cells. Three different human desmoglein isoforms are encoded by separate genes (DSG1, DSG2, and DSG3) located on chromosome 18q12.1. DSG2 has been shown to be the most widely expressed in all desmosome-containing tissues, whereas DSG1 and DSG3 are expressed only in certain tissues, mostly stratified squamous epithelia. The desmoglein isoforms are expressed in a stratification-related manner in human epidermis, DSG1 being suprabasally expressed and DSG3 at a lower level, while DSG2 expression is weak and basal. Yeast artificial chromosome clones carrying all three known human desmoglein genes have now been isolated. The smallest clone containing all three DSG genes was 275 kb, and the three desmoglein genes were clustered within a region of less than 150 kb. From the types of clone obtained and from restriction enzyme analysis the order of the DSG genes and their orientation was deduced to be 5'-DSG1-DSG3-DSG2-3'. There thus appears to be some correspondence between the order of DSG genes and their expression within tissues, raising the intriguing possibility that the organization of the desmoglein gene cluster is required for properly regulated gene expression.
Collapse
Affiliation(s)
- D Simrak
- Institut für Humangenetik, Universitätsklinik, Frankfurt/M., Germany
| | | | | | | |
Collapse
|
39
|
Amagai M, Wang Y, Minoshima S, Kawamura K, Green KJ, Nishikawa T, Shimizu N. Assignment of the human genes for desmocollin 3 (DSC3) and desmocollin 4 (DSC4) to chromosome 18q12. Genomics 1995; 25:330-2. [PMID: 7774948 DOI: 10.1016/0888-7543(95)80154-e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Amagai M. Adhesion molecules. I: Keratinocyte-keratinocyte interactions; cadherins and pemphigus. J Invest Dermatol 1995; 104:146-52. [PMID: 7798634 DOI: 10.1111/1523-1747.ep12613668] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During the last few years, considerable progress has been made in our understanding of the structure and function of cadherins and of the pathophysiology of pemphigus. Cadherins are a multiple gene family of Ca(++)-dependent cell adhesion molecules with a typical single-spanning transmembrane structure. Cadherins have two major subfamilies, classic cadherin and desmosomal cadherin. Classic cadherins, including E-, P-, and N-cadherins, are characterized by a homophilic binding specificity. They localize at adherens junctions and mediate physiologic interaction with the involvement of cytoplasmic anchoring molecules, catenins, and the actin-based cytoskeleton network. Desmosomal cadherins, the desmocollins and desmogleins, localize at desmosomes and are linked to the intermediate keratin filaments network via plakoglobin and desmoplakin. Molecular cloning has demonstrated that the autoantigens of both pemphigus vulgaris and pemphigus foliaceus are members of the desmoglein subfamily of the cadherin supergene family. Thus, pemphigus is characterized as an anti-cadherin autoimmune disease. Furthermore, a baculovirus recombinant protein of pemphigus vulgaris antigen was capable of absorbing out the pathogenic autoantibodies from patients' sera, providing a possibility of antigen-specific therapeutic strategies for pemphigus.
Collapse
Affiliation(s)
- M Amagai
- Dermatology Division, Tokyo Electric Power Hospital, Japan
| |
Collapse
|
41
|
Lorimer JE, Hall LS, Clarke JP, Collins JE, Fleming TP, Garrod DR. Cloning, sequence analysis and expression pattern of mouse desmocollin 2 (DSC2), a cadherin-like adhesion molecule. Mol Membr Biol 1994; 11:229-36. [PMID: 7711832 DOI: 10.3109/09687689409160432] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Desmocollins are cadherin-like adhesion molecules of desmosomes. We have determined the full cDNA sequence of a murine desmocollin, the homologue of human and bovine type 2 desmocollins (DSC2), and studied its tissue distribution and expression in stratified epithelia. An 8.5 day mouse embryo cDNA library was screened yielding overlapping clones which encoded the mouse DSC2. This gene has an open reading frame of 2710 base pairs (bp) encoding a polypeptide of 902 amino acids (aa). The polypeptide comprises a signal peptide, a precursor peptide, and a mature protein of 766 aa having an extracellular domain of 549 aa, a single transmembrane domain and a cytoplasmic domain of 184 aa. Like other desmocollins, murine DSC2 has two products, Dsc2a and Dsc2b, produced by alternative splicing of a 46 bp exon which encodes 11 COOH-terminal aa followed by an in-frame stop codon. Inclusion of this exon forms Dsc2b which is 54 aa shorter than Dsc2a. Mouse Dsc2a shows 75.7% amino acid identity to human and 63.3% identity to bovine Dsc2a. The mouse desmocollin is also homologous to the cadherins; 32.2% to the most closely related typical cadherin, human N-cadherin. DSC2 is ubiquitously expressed in epithelial tissues and the heart of adult mice and from the blastocyst stage of development. In situ hybridization shows that the gene is most strongly expressed suprabasally in stratified epithelia, similar to the expression of bovine DSC2.
Collapse
Affiliation(s)
- J E Lorimer
- Cancer Research Campaign Epithelial Morphogenesis Research Group, School of Biological Sciences, University of Manchester, UK
| | | | | | | | | | | |
Collapse
|
42
|
Ikeda S, Wakem P, Haake A, Ewing N, Polakowska R, Sarret Y, Trattner A, David M, Shohat M, Schroeder DW. Localization of the gene for Darier disease to a 5-cM interval on chromosome 12q. J Invest Dermatol 1994; 103:478-81. [PMID: 7930670 DOI: 10.1111/1523-1747.ep12395577] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Darier disease is an autosomal dominant abnormality of epidermal differentiation characterized clinically by the presence of hyperkeratotic papules on the skin and histologically by the loss of cell cohesion and by disorderly keratinization. Two groups recently found evidence that the gene whose mutations underlie this disease is located at chromosome 12q23-q24.1, a site on chromosome 12 that clearly is distal to the type II keratin gene cluster. We report here evidence for sublocalization to a 5-cM region of that site in an additional ten families of European and Middle Eastern ancestry with a combined lod score in excess of 20.
Collapse
Affiliation(s)
- S Ikeda
- Department of Dermatology, University of California, San Francisco
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- S Burge
- Department of Dermatology, Stoke Mandeville Hospital, Aylesbury, Bucks, U.K
| |
Collapse
|
44
|
Eversole LR. Immunopathology of oral mucosal ulcerative, desquamative, and bullous diseases. Selective review of the literature. ORAL SURGERY, ORAL MEDICINE, AND ORAL PATHOLOGY 1994; 77:555-71. [PMID: 8065717 DOI: 10.1016/0030-4220(94)90312-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cell/cell and cell/matrix adhesion proteins are responsible for maintaining the integrity of the mucosal lining of the oral cavity. Disease processes that destroy keratinocytes or adversely affect their adhesion to one another or to the subjacent basement membrane will result in erosions, ulcerations, and desquamations. Immunologic processes that have a deleterious effect on the integrity of the epithelial/basement membrane/submucosa complex are reviewed, and current research findings with respect to pathogenesis are discussed. In particular, T-cell-mediated hypersensitivity is involved in recurrent aphthous stomatitis and lichen planus; humoral-mediated immunity to cadherin intercellular adhesion molecules is important in the process of acantholysis in pemphigus vulgaris, and genetic defects and antibody-mediated processes give rise to junctional separation in epidermolysis bullosa and mucous membrane pemphigoid, respectively. An immune complex mechanism appears to underlie the pathogenesis of erythema multiforme.
Collapse
Affiliation(s)
- L R Eversole
- Section of Diagnostic Sciences, UCLA School of Dentistry
| |
Collapse
|
45
|
Buxton RS, Cowin P, Franke WW, Garrod DR, Green KJ, King IA, Koch PJ, Magee AI, Rees DA, Stanley JR. Nomenclature of the desmosomal cadherins. J Biophys Biochem Cytol 1993; 121:481-3. [PMID: 8486729 PMCID: PMC2119574 DOI: 10.1083/jcb.121.3.481] [Citation(s) in RCA: 241] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- R S Buxton
- Laboratory of Eukaryotic Molecular Genetics, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
King IA, Tabiowo A, Purkis P, Leigh I, Magee AI. Expression of distinct desmocollin isoforms in human epidermis. J Invest Dermatol 1993; 100:373-9. [PMID: 7681089 DOI: 10.1111/1523-1747.ep12471843] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous evidence suggested the presence of two distinct desmocollin isoforms in human epidermis. These isoforms have now been distinguished at the protein level using monoclonal and polyclonal antibodies against N-terminal fragments of desmosomal glycoprotein (DG) IV/V isolated from plantar callus and antibodies against a fusion protein containing the extracellular domain of DGII/III. Immune blotting of glycoprotein fractions from whole epidermis, plantar callus, psoriatic scales and cultured keratinocytes showed that intact DGIV/V and its proteolytic fragments consistently migrated faster than DGII/III during SDS-PAGE. The apparent Mr difference between the two isoforms was in the range 2-5 kD. DGIV/V was the predominant species in epidermal tissue but was much less prominent in cultured cells by immune-blotting and immune precipitation. This is consistent with the differentiation-related expression of desmocollins revealed by immunofluorescence. DGIV/V was strongly expressed in the upper spinous/granular layer of the epidermis whereas DGII/III was more prominent in the basal layers of the tissue. The DGIV/V monoclonal (LH50) recognized an N-terminal, Ca(++)-sensitive epitope, because its staining of unfixed epidermal tissue was markedly influenced by Ca++ levels. Ca++ inhibition was observed at concentrations as low as 50 microM, suggesting its possible physiologic significance. Ca++ inhibition of LH50 binding was also observed in an enzyme-linked immunosorbent assay system using denatured glycoproteins although higher concentrations were required. It remains to be seen whether direct effects of Ca++ on desmocollin conformation are involved in the regulation of keratinization by extracellular Ca++.
Collapse
Affiliation(s)
- I A King
- Dermatology Research Centre, Harrow, London, U.K
| | | | | | | | | |
Collapse
|
47
|
Arnemann J, Sullivan KH, Magee AI, King IA, Buxton RS. Stratification-related expression of isoforms of the desmosomal cadherins in human epidermis. J Cell Sci 1993; 104 ( Pt 3):741-50. [PMID: 8314871 DOI: 10.1242/jcs.104.3.741] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Desmosomal junctions are abundant in epidermis and contain two classes of transmembrane glycoprotein, the desmocollins and the desmogleins, which are members of the cadherin superfamily of Ca(2+)-dependent cell adhesion molecules. The desmocollin subfamily includes DGIV/V and DGII/III while the desmoglein subfamily includes DGI, HDGC and the autoantigen of the blistering skin disease pemphigus vulgaris (PVA). There are also several non-glycosylated proteins, including the desmoplakins and plakoglobin, present in the desmosomal plaque, which forms a link between the glycoproteins and the cytokeratin intermediate filaments. To provide a picture of the expression of the desmosomal genes and their products in epidermis, we have used in situ hybridisation and immunofluorescence staining on sections of human foreskin. We find that, as expected, desmoplakin DPI/II and plakoglobin are expressed throughout the epidermis, gradually accumulating during differentiation, which probably reflects the increased numbers of desmosomes. In contrast, while keratin 14 and the hemidesmosomal component bullous pemphigoid antigen I (BPAGI) are basal-specific, desmocollin DGIV/V is expressed only in the upper spinous/granular layers of the epidermis, whereas DGII/III expression is enriched in the basal layers. Amongst the desmogleins, expression of DGI appears similar to desmoplakin and plakoglobin; PVA is more prevalent in the lower spinous layers, whereas HDGC expression is detected basally but not suprabasally. The major desmosomal cadherin transcripts are desmocollin DGIV/V and desmoglein DGI. The resultant changes in desmosomal composition and structure may reflect the maturation of desmosomes, presumably being related to the need for changes in cell adhesion during stratification, terminal differentiation, and desquamation, and point to the desmosome being a key player in epidermal differentiation.
Collapse
Affiliation(s)
- J Arnemann
- Laboratory of Eukaryotic Molecular Genetics, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Abstract
Desmosomes and hemidesmosomes are extremely different in their molecular composition. Most of the protein and glycoprotein components are products of members of multigene families, but show specialization for plaque formation and intermediate filament attachment. Desmosomal glycoproteins are more heterogeneous than previously suspected, with different isoforms showing tissue-specific and differentiation-related expression. Both types of junctions can be modulated in response to extracellular signals and may turn out to be involved in signal transduction.
Collapse
Affiliation(s)
- D R Garrod
- Department of Cell and Structural Biology, University of Manchester, UK
| |
Collapse
|
49
|
Stanley JR. Cell adhesion molecules as targets of autoantibodies in pemphigus and pemphigoid, bullous diseases due to defective epidermal cell adhesion. Adv Immunol 1993; 53:291-325. [PMID: 8512037 DOI: 10.1016/s0065-2776(08)60503-9] [Citation(s) in RCA: 220] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- J R Stanley
- Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
50
|
Nadeau JH, Davisson MT, Doolittle DP, Grant P, Hillyard AL, Kosowsky MR, Roderick TH. Comparative map for mice and humans. Mamm Genome 1992; 3:480-536. [PMID: 1392257 DOI: 10.1007/bf00778825] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J H Nadeau
- Jackson Laboratory, Bar Harbor, Maine 04609
| | | | | | | | | | | | | |
Collapse
|