1
|
Autosomal dominant polycystic kidney disease (ADPKD) in Tunisia: From molecular genetics to the development of prognostic tools. Gene X 2022; 817:146174. [PMID: 35031424 DOI: 10.1016/j.gene.2021.146174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
A high prevalence of genetic kidney disease in Tunisia has been detected, and their study provides very important clinical and genetic information. Autosomal dominant polycystic kidney disease (ADPKD) is one of the main causes of morbidity and mortality associated with the kidneys in Tunisia. We present here clinical and genetic characteristics of a cohort of Tunisian patients with ADPKD. Nineteen Tunisian patients with ADPKD, among 4 familial cases and 11 sporadic cases, and 50 Healthy individuals were included in this cohort. Genetic studies of PKD1/2 were carried on using Sanger sequencing and MLPA. In our study, the mean age at diagnosis was 47 ± 18 years. In addition, 84.21% of cases present a family history of ADPKD. Overall, 57.89% of the affected individuals had HTA and 26.31% patients had hematuria. 15.78 % of the patient has extra-renal cysts i.e. one patient with splenic cysts and two patients had liver cysts. 57.89 % of patients were diagnosed with various extra-renal clinical presentations i.e. myopia, hernia, deafness, intracranial aneurysm, respiratory distress, hyperthyroidism, urinary tract infection and lower back pains. The PKD1 genotype showed earlier onset of ESRD compared to PKD2 genotype (43 vs. 55 years old). Six mutations have been detected in PKD1 gene. Among them, three were novels e.g. c.688 T>G, p.C230G and c.690C>G, p.C230W among exon 5 and c.8522A>G, p.N2841S among exon 23. In addition, thirteen single nucleotides polymorphisms have been reported in PKD1 gene. Among them, eleven previously reported in heterozygous state and two novel single nucleotides polymorphisms in heterozygous and homozygous state and predicted to be probable polymorphisms by computational tools: c.496C>T, p.L166= among the exon 4, and c.10165G>C and p.E3389Gln among the exon 31. Only three single nucleotides polymorphisms previously reported in ADPKD database have been identified in PKD2 gene. The description and analysis of our cohort can help in rapid and reliable diagnosis for early management of patients in Tunisia. Indeed, predictive genetic testing can facilitate donor evaluation and increase living related kidney transplantation.
Collapse
|
2
|
Khadangi F, Torkamanzehi A, Kerachian MA. Identification of missense and synonymous variants in Iranian patients suffering from autosomal dominant polycystic kidney disease. BMC Nephrol 2020; 21:408. [PMID: 32957937 PMCID: PMC7507688 DOI: 10.1186/s12882-020-02069-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 09/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD), the predominant type of inherited kidney disorder, occurs due to PKD1 and PKD2 gene mutations. ADPKD diagnosis is made primarily by kidney imaging. However, molecular genetic analysis is required to confirm the diagnosis. It is critical to perform a molecular genetic analysis when the imaging diagnosis is uncertain, particularly in simplex cases (i.e. a single occurrence in a family), in people with remarkably mild symptoms, or in individuals with atypical presentations. The main aim of this study is to determine the frequency of PKD1 gene mutations in Iranian patients with ADPKD diagnosis. Methods Genomic DNA was extracted from blood samples from 22 ADPKD patients, who were referred to the Qaem Hospital in Mashhad, Iran. By using appropriate primers, 16 end exons of PKD1 gene that are regional hotspots, were replicated with PCR. Then, PCR products were subjected to DNA directional Sanger sequencing. Results The DNA sequencing in the patients has shown that exons 35, 36 and 37 were non- polymorphic, and that most mutations had occurred in exons 44 and 45. In two patients, an exon-intron boundary mutation had occurred in intron 44. Most of the variants were missense and synonymous types. Conclusion In the present study, we have shown the occurrence of nine novel missense or synonymous variants in PKD1 gene. These data could contribute to an improved diagnostic and genetic counseling in clinical settings.
Collapse
Affiliation(s)
- Fatemeh Khadangi
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Adam Torkamanzehi
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Sun IO, Kwon SH. Extracellular vesicles: a novel window into kidney function and disease. Curr Opin Nephrol Hypertens 2020; 29:613-619. [PMID: 32889979 DOI: 10.1097/mnh.0000000000000641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW There has been an increasing interest in extracellular vesicles as potential diagnostic, prognostic or therapeutic biomarkers for various kidney diseases, as extracellular vesicles mediate cell-cell or intercellular communication. This review explores the current state of knowledge regarding extracellular vesicles as a tool for examining kidney physiology and disease. RECENT FINDINGS Urinary extracellular vesicles may be useful as biomarkers to detect abnormal function in renal endothelial and tubular cells as well as podocytes. Recent studies suggest that urinary extracellular vesicles may facilitate early diagnosis and/or monitoring in acute kidney injury, glomerular disease, autosomal dominanat polycyst kidney disease and urinary tract malignancies. Circulating extracellular vesicles may serve as biomarkers to assess cardiovascular disease. SUMMARY Urinary and circulating extracellular vesicles have gained significant interest as potential biomarkers of renal diseases. Analysis of extracellular vesicles may serve as a logical diagnostic approach for nephrologists as well as provide information about disease pathophysiology.
Collapse
Affiliation(s)
- In O Sun
- Division of Nephrology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju
| | - Soon Hyo Kwon
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| |
Collapse
|
4
|
Bae KT, Zhou W, Shen C, Landsittel DP, Wu Z, Tao C, Chapman AB, Torres VE, Yu ASL, Mrug M, Bennett WM, Harris PC. Growth Pattern of Kidney Cyst Number and Volume in Autosomal Dominant Polycystic Kidney Disease. Clin J Am Soc Nephrol 2019; 14:823-833. [PMID: 31088850 PMCID: PMC6556721 DOI: 10.2215/cjn.10360818] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/22/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND OBJECTIVES To evaluate the growth pattern of kidney cyst number and cyst volume in association with kidney size, demographics, and genotypes in autosomal dominant polycystic kidney disease. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Kidney cyst number and cyst volume were measured from serial magnetic resonance images, giving a maximum follow-up of 14.23 years, from 241 patients with autosomal dominant polycystic kidney disease (15-46 years old at baseline). The growth pattern was analyzed, in association with sex, age, height-adjusted total kidney volume, and genotype, using linear mixed models of repeated measurements and tests of interactions with age (as a time-dependent covariate) to assess rates of change over time. Models were also fit using Irazabal class. Genotypic groups were characterized as either (1) PKD1 truncating, PKD1 nontruncating, and PKD2 plus patients with no mutation detected; or (2) in combination with PKD1 mutation strength groups. RESULTS Imaging and genetic data were collected (at least one visit) for 236 participants. The mean height-adjusted total cyst number increased exponentially over time from a baseline value of 762 to 1715 at the last clinic visit, while the mean height-adjusted total cyst volume increased exponentially from 305 to 770 ml. Height-adjusted total kidney volume, height-adjusted total cyst number, and height-adjusted total cyst volume were all highly correlated over time. Female participants and participants with larger height-adjusted total kidney volume at baseline showed smaller rates of change in the log of height-adjusted total cyst number and cyst volume. PKD1 was associated with significant increases in both cyst number and volume at a given age, but genotype did not significantly affect the rate of growth. CONCLUSIONS Both height-adjusted total cyst number and height-adjusted total cyst volume increased exponentially and more than doubled over 14.23 years of follow-up. Compared with PKD2 plus no mutation detected, PKD1 was associated with a greater cyst number and volume at a given age, but no significant difference in the rate of growth.
Collapse
Affiliation(s)
| | | | - Chengli Shen
- Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Douglas P Landsittel
- Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | | - Arlene B Chapman
- Department of Internal Medicine, University of Chicago School of Medicine, Chicago, Illinois
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Alan S L Yu
- Department of Internal Medicine, Kansas University Medical Center, Kansas City, Kansas
| | - Michal Mrug
- Department of Medicine, The University of Alabama at Birmingham and.,Department of Veterans Affairs Medical Center, Birmingham, Alabama; and
| | | | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | |
Collapse
|
5
|
Abbiss H, Maker GL, Trengove RD. Metabolomics Approaches for the Diagnosis and Understanding of Kidney Diseases. Metabolites 2019; 9:E34. [PMID: 30769897 PMCID: PMC6410198 DOI: 10.3390/metabo9020034] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023] Open
Abstract
Diseases of the kidney are difficult to diagnose and treat. This review summarises the definition, cause, epidemiology and treatment of some of these diseases including chronic kidney disease, diabetic nephropathy, acute kidney injury, kidney cancer, kidney transplantation and polycystic kidney diseases. Numerous studies have adopted a metabolomics approach to uncover new small molecule biomarkers of kidney diseases to improve specificity and sensitivity of diagnosis and to uncover biochemical mechanisms that may elucidate the cause and progression of these diseases. This work includes a description of mass spectrometry-based metabolomics approaches, including some of the currently available tools, and emphasises findings from metabolomics studies of kidney diseases. We have included a varied selection of studies (disease, model, sample number, analytical platform) and focused on metabolites which were commonly reported as discriminating features between kidney disease and a control. These metabolites are likely to be robust indicators of kidney disease processes, and therefore potential biomarkers, warranting further investigation.
Collapse
Affiliation(s)
- Hayley Abbiss
- School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Perth 6150, Australia.
- Separation Science and Metabolomics Laboratory, Murdoch University, 90 South Street, Perth 6150, Australia.
| | - Garth L Maker
- School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Perth 6150, Australia.
- Separation Science and Metabolomics Laboratory, Murdoch University, 90 South Street, Perth 6150, Australia.
| | - Robert D Trengove
- Separation Science and Metabolomics Laboratory, Murdoch University, 90 South Street, Perth 6150, Australia.
- Metabolomics Australia, Murdoch University Node, Murdoch University, 90 South Street, Perth 6150, Australia.
| |
Collapse
|
6
|
Raj S, Singh RG, Das P. Mutational screening of PKD2 gene in the north Indian polycystic kidney disease patients revealed 28 genetic variations. J Genet 2018; 96:885-893. [PMID: 29321346 DOI: 10.1007/s12041-017-0824-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Polycystic kidney disease (PKD) is a systemic disorder which adds majority of renal patients to end stage renal disease. Autosomal dominant polycystic kidney disease (ADPKD) is more prevalent and leading cause of dialysis and kidney transplant. Linkage analysis revealed some closely linked loci, two of which are identified as PKD1, PKD2 and an unidentified locus to ADPKD. This study was performed using PCR and automated DNA sequencing in 84 cases and 80 controls to test potential candidature of PKD2 as underlying cause of PKD by in silico and statistical analyses. Two associated symptoms, hypertension (19%) and liver cyst (31%) havemajor contribution to PKD. Gender-based analysis revealed that familial female patients (27%) and familialmale patients (33%) are more hypertensive. Liver cyst, the second major contributing symptom presented by large percentage of sporadic males (46%). Genetic screening of all 15 exons of PKD2 revealed eight pathogenic (c.854_854delG, c.915C>A, c.973C>T, c.1050_1050delC, c.1604_1604delT, c.1790T>C, c.2182_2183delAG, c.2224C>T) and eight likely pathogenic (g.11732A>G, c.646T>C, c.1354A>G, g.39212G>C, c.1789C>A, c.1849C>A, c.2164G>T, c.2494A>G)DNA sequence variants. In our study, 27.38% (23/84) cases shown pathogenic / likely pathogenic variants in PKD2 gene. Some regions of PKD2 prone for genetic variation suggested to be linked with disease pathogenesis. This noticeable hot spot regions hold higher frequency (50%) of pathogenic / likely pathogenic genetic variants constituting single nucleotide variants than large deletion and insertion that actually represents only 41.08% of coding sequence of PKD2. Statistically significant association for IVS3-22AA genotype was observed with PKD, while association of IVS4+62C>T was found insignificant.
Collapse
Affiliation(s)
- Sonam Raj
- Center for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | | | | |
Collapse
|
7
|
Fang Z, Xu S, Wang Y, Sun L, Feng Y, Guo Y, Li H, Jiang W. Pathogenicity analysis of novel variations in Chinese Han patients with polycystic kidney disease. Gene 2017; 626:433-441. [PMID: 28578020 DOI: 10.1016/j.gene.2017.05.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/24/2017] [Accepted: 05/22/2017] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Locus and allellic heterogeneity in polycystic kidney disease (PKD) is a great challenge in precision diagnosis. We aim to establish comprehensive methods to distinguish the pathogenic mutations from the variations in PKD1, PKD2 and PKHD1 genes in a limited time and lay the foundation for precisely prenatal diagnosis, preimplantation genetic diagnosis and presymptom diagnosis of PKD. METHODS Nested PCR combined with direct DNA sequencing were used to screen variations in PKD1, PKD2 and PKHD1 genes. The pathogenicity of de novel variations was assessed by the comprehensive methods including clinic data and literature review, databases query, analysis of co-segregation of the variants with the disease, variant frequency screening in the population, evolution conservation comparison, protein structure analysis and splice sites predictions. RESULTS 17 novel mutations from 15 Chinese Han families were clarified including 10 mutations in PKD1 gene and 7 mutations in PKHD1 gene. The novel mutations were classified as 4 definite pathogenic, 2 highly likely pathogenic, 4 likely pathogenic, 7 indeterminate by the comprehensive analysis. The results were verified the truth by the follow-up visits. CONCLUSIONS The comprehensive methods may be useful in distinguishing the pathogenic mutations from the variations in PKD1, PKD2 and PKHD1 genes for prenatal diagnosis and presymptom diagnosis of PKD. Our results also enriched PKD genes mutation spectrum and evolved possible genotype-phenotype correlations of Chinese Han population.
Collapse
Affiliation(s)
- Zishui Fang
- Department of Medical Genetics, ZhongShan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shiyan Xu
- Department of Medical Genetics, ZhongShan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; ShenZhen People's Hospital, China
| | - Yonghua Wang
- Department of Medical Genetics, ZhongShan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Liwei Sun
- Department of Medical Genetics, ZhongShan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yi Feng
- Department of Medical Genetics, ZhongShan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yibin Guo
- Department of Medical Genetics, ZhongShan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongyi Li
- Department of Medical Genetics, ZhongShan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Weiying Jiang
- Department of Medical Genetics, ZhongShan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
8
|
Sweeney WE, Avner ED. Emerging Therapies for Childhood Polycystic Kidney Disease. Front Pediatr 2017; 5:77. [PMID: 28473970 PMCID: PMC5395658 DOI: 10.3389/fped.2017.00077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/30/2017] [Indexed: 12/28/2022] Open
Abstract
Cystic kidney diseases comprise a varied collection of hereditary disorders, where renal cysts comprise a major element of their pleiotropic phenotype. In pediatric patients, the term polycystic kidney disease (PKD) commonly refers to two specific hereditary diseases, autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD). Remarkable progress has been made in understanding the complex molecular and cellular mechanisms of renal cyst formation in ARPKD and ADPKD. One of the most important discoveries is that both the genes and proteins products of ARPKD and ADPKD interact in a complex network of genetic and functional interactions. These interactions and the shared phenotypic abnormalities of ARPKD and ADPKD, the "cystic phenotypes" suggest that many of the therapies developed and tested for ADPKD may be effective in ARPKD as well. Successful therapeutic interventions for childhood PKD will, therefore, be guided by knowledge of these molecular interactions, as well as a number of clinical parameters, such as the stage of the disease and the rate of disease progression.
Collapse
Affiliation(s)
- William E Sweeney
- Department of Pediatrics, Medical College of Wisconsin, Children's Research Institute, Children's Hospital Health System of Wisconsin, Milwaukee, WI, USA
| | - Ellis D Avner
- Department of Pediatrics, Medical College of Wisconsin, Children's Research Institute, Children's Hospital Health System of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
9
|
PKD2 mutation in an Iranian autosomal dominant polycystic kidney disease family with misleading linkage analysis data. Kidney Res Clin Pract 2016; 35:96-101. [PMID: 27366664 PMCID: PMC4919558 DOI: 10.1016/j.krcp.2016.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/18/2016] [Accepted: 02/13/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic renal disorder caused by mutation in 2 genes PKD1 and PKD2. Thus far, no mutation is identified in approximately 10% of ADPKD families, which can suggest further locus heterogeneity. Owing to the complexity of direct mutation detection, linkage analysis can initially identify the responsible gene in appropriate affected families. Here, we evaluated an Iranian ADPKD family apparently unlinked to both PKD1 and PKD2 genes. This is one of the pioneer studies in genetic analysis of ADPKD in Iranian population. METHODS Linkage reanalysis was performed by regenotyping of flanking microsatellite markers in 8 individuals of the ADPKD family. Direct mutation analysis was performed by Sanger sequencing. RESULTS Mutation analysis revealed a pathogenic mutation (c.1094+1G>A) in the PKD2 gene in the proband. Analyzing 2 healthy and 4 clinically affected members confirmed the correct segregation of the mutation within the family and also ruled out the disease in 1 suspected individual. Misinterpretation of the linkage data was due to the occurrence of 1 crossing over between the PKD2 intragenic and the nearest downstream marker (D4S2929). Homozygosity of upstream markers caused the recombination indistinguishable. CONCLUSION Although analysis of additive informative polymorphic markers can overcome the misleading haplotype data, it is limited because of the lack of other highly polymorphic microsatellite markers closer to the gene. Direct mutation screening can identify the causative mutation in the apparently unlinked pedigree; moreover, it is the only approach to achieve the confirmed diagnosis in individuals with equivocal imaging results.
Collapse
|
10
|
Cornec-Le Gall E, Audrézet MP, Le Meur Y, Chen JM, Férec C. Genetics and pathogenesis of autosomal dominant polycystic kidney disease: 20 years on. Hum Mutat 2015; 35:1393-406. [PMID: 25263802 DOI: 10.1002/humu.22708] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/22/2014] [Indexed: 12/27/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited kidney disorder, is characterized by the progressive development and expansion of bilateral fluid-filled cysts derived from the renal tubule epithelial cells. Although typically leading to end-stage renal disease in late middle age, ADPKD represents a continuum, from neonates with hugely enlarged cystic kidneys to cases with adequate kidney function into old age. Since the identification of the first causative gene (i.e., PKD1, encoding polycystin 1) 20 years ago, genetic studies have uncovered a large part of the key factors that underlie the phenotype variability. Here, we provide a comprehensive review of these significant advances as well as those related to disease pathogenesis models, including mutation analysis of PKD1 and PKD2 (encoding polycystin 2), current mutation detection rate, allelic heterogeneity, genotype and phenotype relationships (in terms of three different inheritance patterns: classical autosomal dominant inheritance, complex inheritance, and somatic and germline mosaicism), modifier genes, the role of second somatic mutation hit in renal cystogenesis, and findings from mouse models of polycystic kidney disease. Based upon a combined consideration of the current knowledge, we attempted to propose a unifying framework for explaining the phenotype variability in ADPKD.
Collapse
Affiliation(s)
- Emilie Cornec-Le Gall
- Institut National de la Santé et de la Recherche Médicale (INSERM), Brest, France; Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France; Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre Hospitalier Régional Universitaire, Hôpital de la Cavale Blanche, Brest, France
| | | | | | | | | |
Collapse
|
11
|
Litvinchuk T, Tao Y, Singh R, Vasylyeva TL. A Case of New Familiar Genetic Variant of Autosomal Dominant Polycystic Kidney Disease-2: A Case Study. Front Pediatr 2015; 3:82. [PMID: 26501044 PMCID: PMC4598801 DOI: 10.3389/fped.2015.00082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/22/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is characterized by renal cyst formation due to mutations in genes coding for polycystin-1 [PKD1 (85-90% of cases), on ch 16p13.3] and polycystin-2 [PKD2 (10-15% of cases), on ch 4q13-23] and PKD3 gene (gene unmapped). It is also associated with TSC2/PKD1 contiguous gene syndrome. ADPKD is usually inherited, but new mutations without a family history occur in approximately 10% of the cases. CASE PRESENTATION A 17-year-old boy was followed up for bilateral cystic kidney disease, hypertension, and obesity since he was 13 years old. The diagnosis was an accidental finding during abdominal CT at age 13 to rule out appendicitis. A renal ultrasonogram also demonstrated a multiple bilateral cysts. Because of parental history of bilateral renal cysts, PKD1 and PKD2, genetic testing was ordered. Results showed, PKD2 variant 1:3 bp deletion of TGT; nucleotide position: 1602-1604; codon position: 512-513; mRNA reading frame maintained. The same mutation was later identified in his father. CONCLUSION A smaller number of patients have a defect in the PKD2 locus on chromosome 4 (resulting in PKD2 disease). There are no known published cases on this familiar genetic variant of ADPKD-2 cystic kidney disease. In this case, the disease is present unusually early in life.
Collapse
Affiliation(s)
- Tetiana Litvinchuk
- Department of Pediatrics, Texas Tech Health Sciences Center , Amarillo, TX , USA
| | - Yunxia Tao
- Department of Internal Medicine, Texas Tech Health Sciences Center , Amarillo, TX , USA
| | - Ruchi Singh
- Department of Pediatrics, Texas Tech Health Sciences Center , Amarillo, TX , USA
| | - Tetyana L Vasylyeva
- Department of Pediatrics, Texas Tech Health Sciences Center , Amarillo, TX , USA
| |
Collapse
|
12
|
Kurschat CE, Müller RU, Franke M, Maintz D, Schermer B, Benzing T. An approach to cystic kidney diseases: the clinician's view. Nat Rev Nephrol 2014; 10:687-99. [DOI: 10.1038/nrneph.2014.173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Polycystic liver disease: an overview of pathogenesis, clinical manifestations and management. Orphanet J Rare Dis 2014; 9:69. [PMID: 24886261 PMCID: PMC4030533 DOI: 10.1186/1750-1172-9-69] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/17/2014] [Indexed: 02/07/2023] Open
Abstract
Polycystic liver disease (PLD) is the result of embryonic ductal plate malformation of the intrahepatic biliary tree. The phenotype consists of numerous cysts spread throughout the liver parenchyma. Cystic bile duct malformations originating from the peripheral biliary tree are called Von Meyenburg complexes (VMC). In these patients embryonic remnants develop into small hepatic cysts and usually remain silent during life. Symptomatic PLD occurs mainly in the context of isolated polycystic liver disease (PCLD) and autosomal dominant polycystic kidney disease (ADPKD). In advanced stages, PCLD and ADPKD patients have massively enlarged livers which cause a spectrum of clinical features and complications. Major complaints include abdominal pain, abdominal distension and atypical symptoms because of voluminous cysts resulting in compression of adjacent tissue or failure of the affected organ. Renal failure due to polycystic kidneys and non-renal extra-hepatic features are common in ADPKD in contrast to VMC and PCLD. In general, liver function remains prolonged preserved in PLD. Ultrasonography is the first instrument to assess liver phenotype. Indeed, PCLD and ADPKD diagnostic criteria rely on detection of hepatorenal cystogenesis, and secondly a positive family history compatible with an autosomal dominant inheritance pattern. Ambiguous imaging or screening may be assisted by genetic counseling and molecular diagnostics. Screening mutations of the genes causing PCLD (PRKCSH and SEC63) or ADPKD (PKD1 and PKD2) confirm the clinical diagnosis. Genetic studies showed that accumulation of somatic hits in cyst epithelium determine the rate-limiting step for cyst formation. Management of adult PLD is based on liver phenotype, severity of clinical features and quality of life. Conservative treatment is recommended for the majority of PLD patients. The primary aim is to halt cyst growth to allow abdominal decompression and ameliorate symptoms. Invasive procedures are required in a selective patient group with advanced PCLD, ADPKD or liver failure. Pharmacological therapy by somatostatin analogues lead to beneficial outcome of PLD in terms of symptom relief and liver volume reduction.
Collapse
|
14
|
Novel mutations of PKD genes in the Czech population with autosomal dominant polycystic kidney disease. BMC MEDICAL GENETICS 2014; 15:41. [PMID: 24694054 PMCID: PMC3992149 DOI: 10.1186/1471-2350-15-41] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 03/10/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disorder caused by mutation in either one of two genes, PKD1 and PKD2. High structural and sequence complexity of PKD genes makes the mutational diagnostics of ADPKD challenging. The present study is the first detailed analysis of both PKD genes in a cohort of Czech patients with ADPKD using High Resolution Melting analysis (HRM) and Multiplex Ligation-dependent Probe Amplification (MLPA). METHODS The mutational analysis of PKD genes was performed in a set of 56 unrelated patients. For mutational screening of the PKD1 gene, the long-range PCR (LR-PCR) strategy followed by nested PCR was used. Resulting PCR fragments were analyzed by HRM; the positive cases were reanalyzed and confirmed by direct sequencing. Negative samples were further examined for sequence changes in the PKD2 gene by the method of HRM and for large rearrangements of both PKD1 and PKD2 genes by MLPA. RESULTS Screening of the PKD1 gene revealed 36 different likely pathogenic germline sequence changes in 37 unrelated families/individuals. Twenty-five of these sequence changes were described for the first time. Moreover, a novel large deletion was found within the PKD1 gene in one patient. Via the mutational analysis of the PKD2 gene, two additional likely pathogenic mutations were detected. CONCLUSIONS Probable pathogenic mutation was detected in 71% of screened patients. Determination of PKD mutations and their type and localization within corresponding genes could help to assess clinical prognosis of ADPKD patients and has major benefit for prenatal and/or presymptomatic or preimplantational diagnostics in affected families as well.
Collapse
|
15
|
Evidence of a third ADPKD locus is not supported by re-analysis of designated PKD3 families. Kidney Int 2013; 85:383-92. [PMID: 23760289 PMCID: PMC3883953 DOI: 10.1038/ki.2013.227] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/29/2013] [Accepted: 05/02/2013] [Indexed: 01/18/2023]
Abstract
Mutations to PKD1 and PKD2 are associated with autosomal dominant polycystic kidney disease (ADPKD). The absence of apparent PKD1/PKD2 linkage in five published European or North American families with ADPKD suggested a third locus, designated PKD3. Here we re-evaluated these families by updating clinical information, re-sampling where possible, and mutation screening for PKD1/PKD2. In the French-Canadian family we identified PKD1: p.D3782_V3783insD, with misdiagnoses in two individuals and sample contamination explaining the lack of linkage. In the Portuguese family, PKD1: p.G3818A segregated with the disease in 10 individuals in three generations with likely misdiagnosis in one individual, sample contamination, and use of distant microsatellite markers explaining the linkage discrepancy. The mutation, PKD2: c.213delC, was found in the Bulgarian family, with linkage failure attributed to false positive diagnoses in two individuals. An affected son but not the mother, in the Italian family had the nonsense mutation, PKD1: p.R4228X, which appeared de novo in the son; with simple cysts probably explaining the mother’s phenotype. No likely mutation was found in the Spanish family, but the phenotype was atypical with kidney atrophy in one case. Thus, re-analysis does not support the existence of a PKD3 in ADPKD. False positive diagnoses by ultrasound in all resolved families shows the value of mutation screening, but not linkage, to understand families with discrepant data.
Collapse
|
16
|
Goyal NK, Goel A, Yadav R, Sankhwar S. Pelvi-ureteric junction obstruction in autosomal-dominant polycystic kidney disease: an association yet to be reported. BMJ Case Rep 2012; 2012:bcr-2012-006229. [PMID: 22778470 DOI: 10.1136/bcr-2012-006229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is the most common inherited renal cystic disease. It is characterised by the development of renal parenchymal cysts and a variety of other extrarenal manifestations. Pelvi-ureteric junction (PUJ) obstruction has not been described in association with ADPKD in the literature. We present a case of a 23-year-old man presenting with bilateral flank pain. On evaluation he was diagnosed to have ADPKD with bilateral renal calculi and left-sided PUJ obstruction. He underwent successful right percutaneous nephrolithotomy and left laparoscopic dismembered pyeloplasty with simultaneous stone removal.
Collapse
Affiliation(s)
- Neeraj Kumar Goyal
- Department of Urology, CSM Medical University (Upgraded KGMC), Lucknow, Uttar Pradesh, India
| | | | | | | |
Collapse
|
17
|
The TRPP Signaling Module: TRPP2/Polycystin-1 and TRPP2/PKD1L1. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2012. [DOI: 10.1007/978-1-62703-077-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Bataille S, Berland Y, Fontes M, Burtey S. High Resolution Melt analysis for mutation screening in PKD1 and PKD2. BMC Nephrol 2011; 12:57. [PMID: 22008521 PMCID: PMC3206831 DOI: 10.1186/1471-2369-12-57] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 10/18/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disorder. It is characterized by focal development and progressive enlargement of renal cysts leading to end-stage renal disease. PKD1 and PKD2 have been implicated in ADPKD pathogenesis but genetic features and the size of PKD1 make genetic diagnosis tedious. METHODS We aim to prove that high resolution melt analysis (HRM), a recent technique in molecular biology, can facilitate molecular diagnosis of ADPKD. We screened for mutations in PKD1 and PKD2 with HRM in 37 unrelated patients with ADPKD. RESULTS We identified 440 sequence variants in the 37 patients. One hundred and thirty eight were different. We found 28 pathogenic mutations (25 in PKD1 and 3 in PKD2 ) within 28 different patients, which is a diagnosis rate of 75% consistent with literature mean direct sequencing diagnosis rate. We describe 52 new sequence variants in PKD1 and two in PKD2. CONCLUSION HRM analysis is a sensitive and specific method for molecular diagnosis of ADPKD. HRM analysis is also costless and time sparing. Thus, this method is efficient and might be used for mutation pre-screening in ADPKD genes.
Collapse
Affiliation(s)
- Stanislas Bataille
- EA 4263 Thérapie des Maladies Génétiques, Faculté de Médecine, Université de la Méditerranée, Boulevard Jean Moulin 13005 Marseille, France
| | | | | | | |
Collapse
|
19
|
Sweeney WE, Avner ED. Diagnosis and management of childhood polycystic kidney disease. Pediatr Nephrol 2011; 26:675-92. [PMID: 21046169 DOI: 10.1007/s00467-010-1656-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 08/17/2010] [Accepted: 08/27/2010] [Indexed: 01/31/2023]
Abstract
A number of syndromic disorders have renal cysts as a component of their phenotypes. These disorders can generally be distinguished from autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) by imaging studies of their characteristic, predominantly non-renal associated abnormalities. Therefore, a major distinction in the differential diagnosis of enlarge echogenic kidneys is delineating ARPKD from ADPKD. ADPKD and ARPKD can be diagnosed by imaging the kidney with ultrasound, computed tomography, or magnetic resonance imaging (MRI), although ultrasound is still the method of choice for diagnosis in utero and in young children due to ease of use, cost, and safety. Differences in ultrasound characteristics, the presence or absence of associated extrarenal abnormalities, and the screening of the parents >40 years of age usually allow the clinician to make an accurate diagnosis. Early diagnosis of ADPKD and ARPKD affords the opportunity for maximal anticipatory care (i.e. blood pressure control) and in the not-too-distant future, the opportunity to benefit from new therapies currently being developed. If results are equivocal, genetic testing is available for both ARPKD and ADPKD. Specialized centers are now offering preimplantation genetic diagnosis and in vitro fertilization for parents who have previously had a child with ARPKD. For ADPKD patients, a number of therapeutic interventions are currently in clinical trial and may soon be available.
Collapse
Affiliation(s)
- William E Sweeney
- Department of Pediatrics, Children's Hospital Health System of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
20
|
Tan YC, Blumenfeld J, Rennert H. Autosomal dominant polycystic kidney disease: genetics, mutations and microRNAs. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1202-12. [PMID: 21392578 DOI: 10.1016/j.bbadis.2011.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 02/26/2011] [Accepted: 03/01/2011] [Indexed: 12/20/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common, monogenic multi-systemic disorder characterized by the development of renal cysts and various extrarenal manifestations. Worldwide, it is a common cause of end-stage renal disease. ADPKD is caused by mutation in either one of two principal genes, PKD1 and PKD2, but has large phenotypic variability among affected individuals, attributable to PKD genic and allelic variability and, possibly, modifier gene effects. Recent studies have generated considerable information regarding the genetic basis and molecular diagnosis of this disease, its pathogenesis, and potential strategies for targeted treatment. The purpose of this article is to provide a comprehensive review of the genetics of ADPKD, including mechanisms responsible for disease development, the role of gene variations and mutations in disease presentation, and the putative role of microRNAs in ADPKD etiology. The emerging and important role of genetic testing and the advent of novel molecular diagnostic applications also are reviewed. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
Affiliation(s)
- Ying-Cai Tan
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | |
Collapse
|
21
|
Wang Q, Yin H, He J, Ye J, Ding F, Wang S, Hu X, Meng Q, Li N. cDNA cloning of porcine PKD2 gene and RNA interference in LLC-PK1 cells. Gene 2011; 476:38-45. [PMID: 21277361 DOI: 10.1016/j.gene.2011.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/11/2011] [Accepted: 01/24/2011] [Indexed: 11/16/2022]
Abstract
Mutations in the PKD2 gene cause autosomal dominant polycystic kidney disease (ADPKD), a common, inherited disease that frequently leads to end-stage renal disease (ESRD). Swine show substantial similarity to humans physiologically and anatomically, and are therefore a good model system in which to decipher the structure and function of the PKD2 gene and to identify potential therapeutic targets. Here we report the cloning and characterization of the porcine PKD2 cDNA showing that the full-length gene (3370 bases) is highly expressed in kidney, with minimal expression in the liver. RNA interference (RNAi) is a promising tool to enable identification of the essential components necessary for exploitation of the pathway involved in cellular processes. We therefore designed four shRNAs and nine siRNAs targeting the region of the porcine PKD2 gene from exons 3 to 9, which is supposed to be a critical region contributing to the severity of ADPKD. The results from HeLa cells with the dual-luciferase reporter system and porcine kidney cells (LLC-PK1) showed that sh12 could efficiently knock down the PKD2 gene with an efficiency of 51% and P1 and P2 were the most effective siRNAs inhibiting 85% and 77% respectively of PKD2 expression compared with untreated controls. A subsequent functional study of the transient receptor potential polycystic (TRPP) 2 channel protein indicated that the decreased expression of TRPP2 induced by siRNA P1 and P2 could release the arrest of the cell cycle from G0/G1 promoting progression to S and G2 phases. Our data, therefore, provides evidence of potential knock-down target sites in the PKD2 gene and paves the way for the future generation of transgenic ADPKD knock-down animal models.
Collapse
Affiliation(s)
- Qingsong Wang
- Tianjin Research Centre of Basic Medical Science, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The founding member of the TRPP family, TRPP2, was identified as one of the disease genes causing autosomal dominant polycystic kidney disease (ADPKD). ADPKD is the most prevalent, potentially lethal, monogenic disorder in humans, with an average incidence of one in 400 to one in 1,000 individuals worldwide. Here we give an overview of TRPP ion channels and Polycystin-1 receptor proteins focusing on more recent studies. We include the Polycystin-1 family since these proteins are functionally linked to TRPP channels.
Collapse
|
23
|
Takiar V, Caplan MJ. Polycystic kidney disease: pathogenesis and potential therapies. Biochim Biophys Acta Mol Basis Dis 2010; 1812:1337-43. [PMID: 21146605 DOI: 10.1016/j.bbadis.2010.11.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 11/23/2010] [Accepted: 11/26/2010] [Indexed: 10/18/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a prevalent, inherited condition for which there is currently no effective specific clinical therapy. The disease is characterized by the progressive development of fluid-filled cysts derived from renal tubular epithelial cells which gradually compress the parenchyma and compromise renal function. Current interests in the field focus on understanding and exploiting signaling mechanisms underlying disease pathogenesis as well as delineating the role of the primary cilium in cystogenesis. This review highlights the pathogenetic pathways underlying renal cyst formation as well as novel therapeutic targets for the treatment of PKD. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
Affiliation(s)
- Vinita Takiar
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
24
|
Hoefele J, Mayer K, Scholz M, Klein HG. Novel PKD1 and PKD2 mutations in autosomal dominant polycystic kidney disease (ADPKD). Nephrol Dial Transplant 2010; 26:2181-8. [PMID: 21115670 DOI: 10.1093/ndt/gfq720] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic renal disorder with an incidence of 1:1000. Mutations in two genes (PKD1 and PKD2) have been identified as causative. Eighty-five percent of patients with ADPKD carry their mutation in the PKD1 gene. So far, > 500 mutations for PKD1 and > 120 mutations for PKD2, respectively, are known. METHODS In this study, we performed mutation analysis of PKD1 and PKD2 by exon sequencing in patients during routine molecular diagnostics for ADPKD. RESULTS In total, 60 mutations were identified in 93 patients representing a mutation detection efficiency of 64.5%. Fifty-two mutations were identified in PKD1 (86.7%) and 8 in PKD2 (13.3%). These include 41 novel mutations detected in PKD1 and 5 novel mutations in PKD2. Accordingly, our data expand the spectrum of known PKD mutations by 8% for PKD1 (41/513) and 4.2% for PKD2 (5/120). These results are in agreement with the detection ranges of 42%, 63% and 64% for definitive disease-causing mutations, and 78%, 86% and 89% for all identified variants reported in several comprehensive mutation screening reports. CONCLUSIONS The increased number of known mutations will facilitate future studies into genotype-phenotype correlations.
Collapse
Affiliation(s)
- Julia Hoefele
- Center for Human Genetics and Laboratory Medicine Dr Klein and Dr Rost, Martinsried, Germany.
| | | | | | | |
Collapse
|
25
|
Lee YJ, Chen HY, Hsu WL, Ou CM, Wong ML. Diagnosis of feline polycystic kidney disease by a combination of ultrasonographic examination and PKD1
gene analysis. Vet Rec 2010; 167:614-8. [DOI: 10.1136/vr.c4605] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Y-J. Lee
- Veterinary Medical Teaching Hospital
| | | | - W-L. Hsu
- Graduate Institute of Microbiology and Public Health; College of Veterinary Medicine; National Chung Hsing University; 250 Kuo Kuang Road Taichung 402 Taiwan
| | - C-M. Ou
- Department of Veterinary Medicine
| | | |
Collapse
|
26
|
Halvorson CR, Bremmer MS, Jacobs SC. Polycystic kidney disease: inheritance, pathophysiology, prognosis, and treatment. Int J Nephrol Renovasc Dis 2010; 3:69-83. [PMID: 21694932 PMCID: PMC3108786 DOI: 10.2147/ijnrd.s6939] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Indexed: 01/09/2023] Open
Abstract
Both autosomal dominant and recessive polycystic kidney disease are conditions with severe associated morbidity and mortality. Recent advances in the understanding of the genetic and molecular pathogenesis of both ADPKD and ARPKD have resulted in new, targeted therapies designed to disrupt cell signaling pathways responsible for the abnormal cell proliferation, dedifferentiation, apoptosis, and fluid secretion characteristic of the disease. Herein we review the current understanding of the pathophysiology of these conditions, as well as the current treatments derived from our understanding of the mechanisms of these diseases.
Collapse
Affiliation(s)
- Christian R Halvorson
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
27
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common nephropathy caused by mutations in either PKD1 or PKD2. Mutations in PKD1 account for approximately 85% of cases and cause more severe disease than mutations in PKD2. Diagnosis of ADPKD before the onset of symptoms is usually performed using renal imaging by either ultrasonography, CT or MRI. In general, these modalities are reliable for the diagnosis of ADPKD in older individuals. However, molecular testing can be valuable when a definite diagnosis is required in young individuals, in individuals with a negative family history of ADPKD, and to facilitate preimplantation genetic diagnosis. Although linkage-based diagnostic approaches are feasible in large families, direct mutation screening is generally more applicable. As ADPKD displays a high level of allelic heterogeneity, complete screening of both genes is required. Consequently, such screening approaches are expensive. Screening of individuals with ADPKD detects mutations in up to 91% of cases. However, only approximately 65% of patients have definite mutations with approximately 26% having nondefinite changes that require further evaluation. Collation of known variants in the ADPKD mutation database and systematic scoring of nondefinite variants is increasing the diagnostic value of molecular screening. Genic information can be of prognostic value and recent investigation of hypomorphic PKD1 alleles suggests that allelic information may also be valuable in some atypical cases. In the future, when effective therapies are developed for ADPKD, molecular testing may become increasingly widespread. Rapid developments in DNA sequencing may also revolutionize testing.
Collapse
Affiliation(s)
- Peter C Harris
- Division of Nephrology and Hypertension and Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
28
|
Pei Y, Watnick T. Diagnosis and screening of autosomal dominant polycystic kidney disease. Adv Chronic Kidney Dis 2010; 17:140-52. [PMID: 20219617 DOI: 10.1053/j.ackd.2009.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 12/13/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of kidney failure and accounts for approximately 5% of ESRD population in the United States. The disorder is characterized by the focal and sporadic development of renal cysts, which increase in size and number with age. Mutations of PKD1 and PKD2 account for most of the cases. Although the clinical manifestations of both gene types overlap completely, PKD1 is associated with more severe disease than PKD2, with larger kidneys and earlier onset of ESRD. In general, renal ultrasonography is commonly used for the diagnosis of ADPKD, and age-dependent criteria have been defined for subjects at risk of PKD1. However, the utility of the PKD1 ultrasound criteria in the clinic setting is unclear because their performance characteristics have not been defined for the milder PKD2 and the gene type for most test subjects is unknown. Recently, highly predictive ultrasound diagnostic criteria have been derived for at-risk subjects of unknown gene type. Additionally, both DNA linkage or gene-based direct sequencing are now available for the diagnosis of ADPKD, especially in subjects with equivocal imaging results, subjects with a negative or indeterminate family history, or in younger at-risk individuals being evaluated as potential living-related kidney donors. Here, we review the clinical utilities and limitations of both imaging- and molecular-based diagnostic tests and outline our approach for the evaluation of individuals suspected to have ADPKD.
Collapse
|
29
|
Harris PC, Rossetti S. Determinants of renal disease variability in ADPKD. Adv Chronic Kidney Dis 2010; 17:131-9. [PMID: 20219616 DOI: 10.1053/j.ackd.2009.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 12/23/2009] [Accepted: 12/23/2009] [Indexed: 12/22/2022]
Abstract
In common with other Mendelian diseases, the presentation and progression of autosomal dominant polycystic kidney disease (ADPKD) vary widely in the population. The typical course is of adult-onset disease with ESRD in the 6th decade. However, a small proportion has adequate renal function into the 9th decade, whereas others present with enlarged kidneys as neonates. ADPKD is genetically heterogeneous, and the disease gene is a major determinant of severity; PKD1 on average is associated with ESRD 20 years earlier than PKD2. The majority of PKD1 and PKD2 mutations are likely fully inactivating although recent studies indicate that some alleles retain partial activity (hypomorphic alleles). Homozygotes for such alleles are viable and in combination with an inactivating allele can result in early-onset disease. Hypomorphic alleles and mosaicism may also account for some cases with unusually mild disease. The degree of phenotypic variation detected in families indicates that genetic background influences disease severity. Genome-wide association studies are planned to map common variants associated with severity. Although ADPKD is a simple genetic disease, fully understanding the phenotypic variability requires consideration of influences at the genic, allelic, and genetic background level, and so, ultimately, it is complex.
Collapse
|
30
|
New mutations in the PKD1 gene in Czech population with autosomal dominant polycystic kidney disease. BMC MEDICAL GENETICS 2009; 10:78. [PMID: 19686598 PMCID: PMC2736583 DOI: 10.1186/1471-2350-10-78] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 08/17/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease. The disease is caused by mutations of the PKD1 (affecting roughly 85% of ADPKD patients) and PKD2 (affecting roughly 14% of ADPKD patients) genes, although in several ADPKD families, the PKD1 and/or PKD2 linkage was not found. Mutation analysis of the PKD1 gene is complicated by the presence of highly homologous genomic duplications of the first two thirds of the gene. METHODS The direct detection of mutations in the non-duplicated region of the PKD1 gene was performed in 90 unrelated individuals, consisting of 58 patients with end-stage renal failure (manifesting before their 50th year of life) and 32 individuals from families where the disease was clearly linked to the PKD1 gene. Mutation screening was performed using denaturing gradient gel electrophoresis (DGGE). DNA fragments showing an aberrant electrophoretic banding pattern were sequenced. RESULTS In the non-duplicated region of the PKD1 gene, 19 different likely pathogenic germline sequence changes were identified in 19 unrelated families/individuals. Fifteen likely pathogenic sequence changes are unique for the Czech population. The following probable mutations were identified: 9 nonsense mutations, 6 likely pathogenic missense mutations, 2 frameshifting mutations, one in-frame deletion and probable splice site mutation. In the non-duplicated region of the PKD1 gene, 16 different polymorphisms or unclassified variants were detected. CONCLUSION Twenty probable mutations of the PKD1 gene in 90 Czech individuals (fifteen new probable mutations) were detected. The establishment of localization and the type of causal mutations and their genotype phenotype correlation in ADPKD families will improve DNA diagnosis and could help in the assessment of the clinical prognosis of ADPKD patients.
Collapse
|
31
|
Chang MY, Chou YHW, Fang JT, Huang CC, Wu IW. Mutations of thePKD2Gene in Taiwanese Patients with Autosomal Dominant Polycystic Kidney Disease. Ren Fail 2009. [DOI: 10.1081/jdi-42731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
32
|
Fencl F, Janda J, Bláhová K, Hríbal Z, Stekrová J, Puchmajerová A, Seeman T. Genotype-phenotype correlation in children with autosomal dominant polycystic kidney disease. Pediatr Nephrol 2009; 24:983-9. [PMID: 19194729 DOI: 10.1007/s00467-008-1090-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 11/19/2008] [Accepted: 11/20/2008] [Indexed: 11/29/2022]
Abstract
Adults with autosomal dominant polycystic kidney disease (ADPKD) and PKD1 mutations have a more severe disease than do patients with PKD2 mutations. The aim of this study was to compare phenotypes between children with mutations in the PKD1/PKD2 genes. Fifty PKD1 children and ten PKD2 children were investigated. Their mean age was similar (8.6 +/- 5.4 years and 8.9 +/- 5.6 years). Renal ultrasound was performed, and office blood pressure (BP), ambulatory BP, creatinine clearance and proteinuria were measured. The PKD1 children had, in comparison with those with PKD2, significantly greater total of renal cysts (13.3 +/- 12.5 vs 3.0 +/- 2.1, P = 0.004), larger kidneys [right/left kidney length 0.89 +/- 1.22 standard deviation score (SDS) vs 0.17 +/- 1.03 SDS, P = 0.045, and 1.19 +/- 1.42 SDS vs 0.12 +/- 1.09 SDS, P = 0.014, successively] and higher ambulatory day-time and night-time systolic BP (day-time/night-time BP index 0.93 +/- 0.10 vs 0.86 +/- 0.05, P = 0.021 and 0.94 +/- 0.07 vs 0.89 +/- 0.04, P = 0.037, successively). There were no significant differences in office BP, creatinine clearance or proteinuria. Prenatal renal cysts (14%), hypertension defined by ambulatory BP (27%) and enlarged kidneys (32%) were observed only in the PKD1 children. This is the first study on genotype-phenotype correlation in children with ADPKD. PKD1 children have more and larger renal cysts, larger kidneys and higher ambulatory BP than do PKD2 children. Renal cysts and enlarged kidneys detected prenatally are highly specific for children with PKD1.
Collapse
Affiliation(s)
- Filip Fencl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
33
|
Rossetti S, Kubly VJ, Consugar MB, Hopp K, Roy S, Horsley SW, Chauveau D, Rees L, Barratt TM, van't Hoff WG, Niaudet P, Niaudet WP, Torres VE, Harris PC. Incompletely penetrant PKD1 alleles suggest a role for gene dosage in cyst initiation in polycystic kidney disease. Kidney Int 2009; 75:848-55. [PMID: 19165178 DOI: 10.1038/ki.2008.686] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) caused by mutations in PKD1 is significantly more severe than PKD2. Typically, ADPKD presents in adulthood but is rarely diagnosed in utero with enlarged, echogenic kidneys. Somatic mutations are thought crucial for cyst development, but gene dosage is also important since animal models with hypomorphic alleles develop cysts, but are viable as homozygotes. We screened for mutations in PKD1 and PKD2 in two consanguineous families and found PKD1 missense variants predicted to be pathogenic. In one family, two siblings homozygous for R3277C developed end stage renal disease at ages 75 and 62 years, while six heterozygotes had few cysts. In the other family, the father and two children with moderate to severe disease were homozygous for N3188S. In both families homozygous disease was associated with small cysts of relatively uniform size while marked cyst heterogeneity is typical of ADPKD. In another family, one patient diagnosed in childhood was found to be a compound heterozygote for the PKD1 variants R3105W and R2765C. All three families had evidence of developmental defects of the collecting system. Three additional ADPKD families with in utero onset had a truncating mutation in trans with either R3277C or R2765C. These cases suggest the presence of incompletely penetrant PKD1 alleles. The alleles alone may result in mild cystic disease; two such alleles cause typical to severe disease; and, in combination with an inactivating allele, are associated with early onset disease. Our study indicates that the dosage of functional PKD1 protein may be critical for cyst initiation.
Collapse
Affiliation(s)
- Sandro Rossetti
- Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Endreffy E, Maróti Z, Bereczki C, Túri S. Usefulness of combined genetic data in Hungarian families affected by autosomal dominant polycystic kidney disease. Mol Cell Probes 2008; 23:39-43. [PMID: 19056484 DOI: 10.1016/j.mcp.2008.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 11/04/2008] [Accepted: 11/11/2008] [Indexed: 11/17/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common hereditary diseases. Mutations of two known genetic loci (PKD1: 16p13.3 and PKD2: 4q21.2) can lead to bilateral renal cysts. The PKD1 locus is the more common ( approximately 85%), with a more severe phenotype. Because of the genetic complexity of ADPKD and the size and complexity of the PKD1 gene, pedigree-based linkage analysis is a useful tool for the genetic diagnosis in families with more than one subject affected. We tested linkage or non-linkage to the closely linked DNA markers flanking the PKD1 (D16S663 and D16S291) and one intragenic D16S3252 and PKD2 (D4S1563 and D4S2462) in 30 ADPKD-affected families, to determine the distributions of alleles and the degree of microsatellite polymorphisms (in 91 patients and 125 healthy subjects). To characterize the markers, used heterozygosity levels, polymorphism information content and LOD scores were calculated. The D16S663 marker included 12 kinds of alleles, while D16S291 had 10 alleles and D16S3252 had 8. D4S1563 had 12 alleles and D4S2462 had 11. In a search for a common ancestral relationship, we considered the patients' alleles with the same repeat number. Only one haplotype was detected in more than one (2) unrelated families. The calculated two-point LOD scores indicated a linkage to PKD1 in 22 families (74%). In four families (13%) with a linkage to PKD2, the patients reached the end-stage renal disease after the age of 65years. One family was linked to neither gene (3%), and in three families (10%) a linkage to both genes was possible. In the latter three families, the numbers of analyzed subjects were small (4-5), and/or some markers were only partially or non-informative. However, the elderly affected family members exhibited the clinical signs of the PKD1 form in these cases. The new Hungarian population genetic information was compared with available data on other populations.
Collapse
Affiliation(s)
- Emoke Endreffy
- Pediatric Department and Pediatric Health Center, Faculty of Medicine, A. Szent-Györgyi Clinical Center, University of Szeged, Korányi fasor 14-15, H-6720 Szeged, Hungary.
| | | | | | | |
Collapse
|
35
|
Pei Y, Obaji J, Dupuis A, Paterson AD, Magistroni R, Dicks E, Parfrey P, Cramer B, Coto E, Torra R, San Millan JL, Gibson R, Breuning M, Peters D, Ravine D. Unified criteria for ultrasonographic diagnosis of ADPKD. J Am Soc Nephrol 2008; 20:205-12. [PMID: 18945943 DOI: 10.1681/asn.2008050507] [Citation(s) in RCA: 466] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Individuals who are at risk for autosomal dominant polycystic kidney disease are often screened by ultrasound using diagnostic criteria derived from individuals with mutations in PKD1. Families with mutations in PKD2 typically have less severe disease, suggesting a potential need for different diagnostic criteria. In this study, 577 and 371 at-risk individuals from 58 PKD1 and 39 PKD2 families, respectively, were assessed by renal ultrasound and molecular genotyping. Using sensitivity data derived from genetically affected individuals and specificity data derived from genetically unaffected individuals, various diagnostic criteria were compared. In addition, data sets were created to simulate the PKD1 and PKD2 case mix expected in practice to evaluate the performance of diagnostic criteria for families of unknown genotype. The diagnostic criteria currently in use performed suboptimally for individuals with mutations in PKD2 as a result of reduced test sensitivity. In families of unknown genotype, the presence of three or more (unilateral or bilateral) renal cysts is sufficient for establishing the diagnosis in individuals aged 15 to 39 y, two or more cysts in each kidney is sufficient for individuals aged 40 to 59 y, and four or more cysts in each kidney is required for individuals > or = 60 yr. Conversely, fewer than two renal cysts in at-risk individuals aged > or = 40 yr is sufficient to exclude the disease. These unified diagnostic criteria will be useful for testing individuals who are at risk for autosomal dominant polycystic kidney disease in the usual clinical setting in which molecular genotyping is seldom performed.
Collapse
Affiliation(s)
- York Pei
- Division of Nephrology, University of Toronto, 8N838, 585 University Avenue, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pei Y, Zhao X. Diagnosis of autosomal dominant polycystic kidney disease. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2008; 2:763-72. [PMID: 23495816 DOI: 10.1517/17530059.2.7.763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and accounts for 5 - 10% of end stage renal disease. Mutations of two genes, PKD1 and PKD2, account for ∼ 85 and ∼ 15% of cases, respectively. OBJECTIVE This paper reviews the clinical features of ADPKD, highlights the current roles for image- and molecular-based diagnostics, and the potential for new innovations to improve the clinical diagnostics for ADPKD. METHODS This paper reviews the literature on the clinical features, differential diagnosis, and image- and molecular-based diagnostics for ADPKD. RESULTS/CONCLUSION At present, presymptomatic diagnosis of ADPKD in subjects born with 50% risk is typically performed by renal ultrasonography. Renal MRI, with improved sensitivity for detecting smaller cysts, is a promising modality. There is also a clear role for molecular diagnostics, especially in patients with equivocal imaging results, in those with a negative family history and in younger at-risk subjects with a negative ultrasound study being evaluated as a living-related kidney donor. Also, several classes of promising disease-modifying drugs are being tested in clinical trials and, if proved effective, some of them will be used in early disease. Therefore, it is likely that there will be an increased demand for accurate and early diagnosis of ADPKD in the not so distant future.
Collapse
Affiliation(s)
- York Pei
- University Health Network and University of Toronto, Divisons of Nephrology and Genomic Medicine, Department of Medicine, 8N838, 585 University Avenue, Toronto, Ontario, M5G2N2, Canada +1 416 340 4257 ; +1 416 340 4999 ;
| | | |
Collapse
|
37
|
Kaisaki PJ, Bergmann C, Brown JH, Outeda P, Lens XM, Peters DJM, Gretz N, Gauguier D, Bihoreau MT. Genomic organization and mutation screening of the human ortholog of Pkdr1 associated with polycystic kidney disease in the rat. Eur J Med Genet 2008; 51:325-31. [PMID: 18434273 DOI: 10.1016/j.ejmg.2008.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common inherited disorders in humans. Although disease-causing mutations have been found in two genes, PKD1 and PKD2, a small number of ADPKD families exist that are unlinked to either of these genes, suggesting involvement of a third, as yet unidentified PKD3 gene. Susceptibility to renal cyst formation in the (cy/+) rat is caused by a missense mutation in Pkdr1 encoding the novel protein SamCystin. To initiate studies of the human orthologous gene, we determined the location and the organization of human PKDR1. We genotyped microsatellite markers flanking the human ortholog in PKD families that either are unlinked to known PKD genes, or in which mutations have not yet been identified and carried out mutation analysis in PKD patients. We identified eight novel single nucleotide polymorphisms, including three leading to amino acid changes. These variants are unlikely to account for PKD in these patients, yet the screening of other affected populations may provide information about the involvement of PKDR1 as a modifier gene in cystic kidney disease.
Collapse
Affiliation(s)
- Pamela J Kaisaki
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dedoussis GVZ, Luo Y, Starremans P, Rossetti S, Ramos AJ, Cantiello HF, Katsareli E, Ziroyannis P, Lamnissou K, Harris PC, Zhou J. Co-inheritance of a PKD1 mutation and homozygous PKD2 variant: a potential modifier in autosomal dominant polycystic kidney disease. Eur J Clin Invest 2008; 38:180-90. [PMID: 18257781 DOI: 10.1111/j.1365-2362.2007.01913.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD), which is caused by mutations in polycystins 1 (PC1) and 2 (PC2), is one of the most commonly inherited renal diseases, affecting ~1 : 1000 Caucasians. MATERIALS AND METHODS We screened Greek ADPKD patients with the denaturing gradient gel electrophoresis (DGGE) assay and direct sequencing. RESULTS We identified a patient homozygous for a nucleotide change c.1445T > G, resulting in a novel homozygous substitution of the non-polar hydrophobic phenylalanine to the polar hydrophilic cysteine in exon 6 at codon 482 (p.F482C) of the PKD2 gene and a de-novo PKD1 splice-site variant IVS21-2delAG. We did not find this PKD2 variant in a screen of 280 chromosomes of healthy subjects, supporting its pathogenicity. The proband's parents did not have the PKD1 mutation. Real-time PCR of the PKD2 transcript from a skin biopsy revealed 20-fold higher expression in the patient than in a healthy subject and was higher in the patient's peripheral blood mononuclear cells (PBMCs) than in those of her heterozygote daughter and a healthy subject. The greater gene expression was also supported by Western blotting. Inner medullar collecting duct (IMCD) cells transfected with the mutant PKD2 mouse gene presented a perinuclear and diffuse cytoplasmic localization compared with the wild type ER localization. Patch-clamping of PBMCs from the p.F482C homozygous and heterozygous subjects revealed lower polycystin-2 channel function than in controls. CONCLUSIONS We report for the first time a patient with ADPKD who is heterozygous for a de novo PKD1 variant and homozygous for a novel PKD2 mutation.
Collapse
Affiliation(s)
- G V Z Dedoussis
- Department of Science Dietetics-Nutrition, Harokopio University of Athens, Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The adult forms of polycystic liver disease are characterized by autosomal dominant inheritance and numerous hepatic cysts, with or without renal involvement. Mutations in two distinct genes predispose to renal and liver cysts (PKD1 and PKD2), and mutations in two different genes yield isolated liver cysts (PRKCSH and SEC63). Mutations at certain loci of PKD1 may predispose to more severe renal cystic disease or cerebral aneurysms. Risk factors for severe hepatic cystic disease include aging, female sex, pregnancy, use of exogenous female steroid hormones, degree of renal cystic disease, or severity of renal dysfunction (in patients with mutations in PKD1 or PKD2). Although liver failure or complications of advanced liver disease is rare, some patients develop massive hepatic cystic disease and become clinically symptomatic. There is no effective medical therapy. Treatment options include cyst aspiration and sclerosis, open or laparoscopic cyst fenestration, hepatic resection, and liver transplantation.
Collapse
Affiliation(s)
- Gregory T Everson
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, 4200 East Ninth Avenue, B-154, Denver, CO 80262, USA.
| | | |
Collapse
|
40
|
Rossetti S, Consugar MB, Chapman AB, Torres VE, Guay-Woodford LM, Grantham JJ, Bennett WM, Meyers CM, Walker DL, Bae K, Zhang QJ, Thompson PA, Miller JP, Harris PC. Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 2007; 18:2143-60. [PMID: 17582161 DOI: 10.1681/asn.2006121387] [Citation(s) in RCA: 306] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutation-based molecular diagnostics of autosomal dominant polycystic kidney disease (ADPKD) is complicated by genetic and allelic heterogeneity, large multi-exon genes, duplication of PKD1, and a high level of unclassified variants (UCV). Present mutation detection levels are 60 to 70%, and PKD1 and PKD2 UCV have not been systematically classified. This study analyzed the uniquely characterized Consortium for Radiologic Imaging Study of PKD (CRISP) ADPKD population by molecular analysis. A cohort of 202 probands was screened by denaturing HPLC, followed by direct sequencing using a clinical test of 121 with no definite mutation (plus controls). A subset was also screened for larger deletions, and reverse transcription-PCR was used to test abnormal splicing. Definite mutations were identified in 127 (62.9%) probands, and all UCV were assessed for their potential pathogenicity. The Grantham Matrix Score was used to score the significance of the substitution and the conservation of the residue in orthologs and defined domains. The likelihood for aberrant splicing and contextual information about the UCV within the patient (including segregation analysis) was used in combination to define a variant score. From this analysis, 44 missense plus two atypical splicing and seven small in-frame changes were defined as probably pathogenic and assigned to a mutation group. Mutations were thus defined in 180 (89.1%) probands: 153 (85.0%) PKD1 and 27 (15.0%) PKD2. The majority were unique to a single family, but recurrent mutations accounted for 30.0% of the total. A total of 190 polymorphic variants were identified in PKD1 (average of 10.1 per patient) and eight in PKD2. Although nondefinite mutation data must be treated with care in the clinical setting, this study shows the potential for molecular diagnostics in ADPKD that is likely to become increasingly important as therapies become available.
Collapse
Affiliation(s)
- Sandro Rossetti
- Division of Nephrology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rossetti S, Harris PC. Genotype-phenotype correlations in autosomal dominant and autosomal recessive polycystic kidney disease. J Am Soc Nephrol 2007; 18:1374-80. [PMID: 17429049 DOI: 10.1681/asn.2007010125] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The phenotypes that are associated with the common forms of polycystic kidney disease (PKD)--autosomal dominant (ADPKD) and autosomal recessive (ARPKD)--are highly variable in penetrance. This is in terms of severity of renal disease, which can range from neonatal death to adequate function into old age, characteristics of the liver disease, and other extrarenal manifestations in ADPKD. Influences of the germline mutation are at the genic and allelic levels, but intrafamilial variability indicates that genetic background and environmental factors are also key. In ADPKD, the gene involved, PKD1 or PKD2, is a major factor, with ESRD occurring 20 yr later in PKD2. Mutation position may also be significant, especially in terms of the likelihood of vascular events, with 5' mutations most detrimental. Variance component analysis in ADPKD populations indicates that genetic modifiers are important, but few such factors (beyond co-inheritance of a TSC2 mutation) have been identified. Hormonal influences, especially associated with more severe liver disease in female individuals, indicate a role for nongenetic factors. In ARPKD, the combination of mutations is critical to the phenotypic outcome. Patients with two truncating mutations have a lethal phenotype, whereas the presence of at least one missense change can be compatible with life, indicating that many missense changes are hypomorphic alleles that generate partially functional protein. Clues from animal models and other forms of PKD highlight potential modifiers. The information that is now available on both genes is of considerable prognostic value with the prospects from the ongoing genetic revolution that additional risk factors will be revealed.
Collapse
Affiliation(s)
- Sandro Rossetti
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
42
|
Chung W, Kim H, Hwang YH, Kim SY, Ko AR, Ro H, Lee KB, Lee JS, Oh KH, Ahn C. PKD2 gene mutation analysis in Korean autosomal dominant polycystic kidney disease patients using two-dimensional gene scanning. Clin Genet 2007; 70:502-8. [PMID: 17100995 DOI: 10.1111/j.1399-0004.2006.00721.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is genetically heterogeneous and is caused by mutations in the PKD1 or PKD2 genes. ADPKD caused by PKD2 mutations is characterized by a longer survival and a later onset of end-stage renal disease than ADPKD caused by PKD1 mutations. PKD2 encodes a 2.9-kb messenger RNA and is derived from 15 exons. Two-dimensional gene scanning (TDGS) is more efficient in detecting mutations in genes such as PKD2 because it can scan the whole coding regions simultaneously. In order to determine the prevalence of Korean PKD2 patients, all the coding sequences of PKD2 were screened using TDGS and direct sequencing in 46 randomly selected ADPKD patients (group 1). Another 45 ADPKD patients (group 2), who were presumed to be PKD2 patients, were screened in order to identify the type of mutation in the Korean PKD2 patients. Eight novel different mutations and three known mutations in the PKD2 gene were detected in 17 patients: 6 patients (13.0%) in group 1 and 11 patients (24.4%) in group 2. Considering the sensitivity of TDGS, the prevalence of PKD2 in Korean population might be greater than 18.6%. Both known and novel mutations were identified by TDGS in Korean PKD2 patients. Overall, these results showed that TDGS might be useful for diagnosing PKD2.
Collapse
Affiliation(s)
- W Chung
- Department of Internal Medicine, Gil Medical Center, Gachon University, Incheon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Harris PC, Bae KT, Rossetti S, Torres VE, Grantham JJ, Chapman AB, Guay-Woodford LM, King BF, Wetzel LH, Baumgarten DA, Kenney PJ, Consugar M, Klahr S, Bennett WM, Meyers CM, Zhang QJ, Thompson PA, Zhu F, Miller JP. Cyst number but not the rate of cystic growth is associated with the mutated gene in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 2006; 17:3013-9. [PMID: 17035604 DOI: 10.1681/asn.2006080835] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Data from serial renal magnetic resonance imaging of the Consortium of Radiologic Imaging Study of PKD (CRISP) autosomal dominant polycystic kidney disease (PKD) population showed that cystic expansion occurs at a consistent rate per individual, although it is heterogeneous in the population, and that larger kidneys are associated with more rapid disease progression. The significance of gene type to disease progression is analyzed in this study of the CRISP cohort. Gene type was determined in 183 families (219 cases); 156 (85.2%) had PKD1, and 27 (14.8%) had PKD2. PKD1 kidneys were significantly larger, but the rate of cystic growth (PKD1 5.68%/yr; PKD2 4.82%/yr) was not different (P = 0.24). Cyst number increased with age, and more cysts were detected in PKD1 kidneys (P < 0.0001). PKD1 is more severe because more cysts develop earlier, not because they grow faster, implicating the disease gene in cyst initiation but not expansion. These insights will inform the development of targeted therapies in autosomal dominant PKD.
Collapse
Affiliation(s)
- Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common Mendelian disorder of the kidney and affects all racial groups worldwide. It is characterized by focal development of renal and extrarenal cysts in an age-dependent manner. Typically, only a few renal cysts are detected in most affected individuals before 30 yr of age. However, by the fifth decade of life, hundreds to thousands of renal cysts will be found in the majority of patients. ADPKD is genetically heterogeneous. Mutations of two genes, PKD1 and PKD2, account for approximately 85 and 15% of cases, respectively. Although the clinical manifestations of these two genotypes overlap completely, patients with PKD1 have much more severe renal disease compared with those with PKD2, as evidenced by their ESRD occurring approximately 15 yr earlier. Renal ultrasonography commonly is used for the assessment of ADPKD, and age-dependent ultrasound diagnostic criteria with high sensitivity and specificity have been established for individuals who are born with 50% risk for PKD1. Although these diagnostic criteria are used widely for genetic counseling and for the evaluation of at-risk individuals as living-related kidney donors to their affected relatives, their application to individuals who are at risk for PKD2 or have undefined genotype needs to be refined further. Molecular genetic testing is available for ADPKD and may be useful for evaluation of at-risk individuals with equivocal imaging results, younger at-risk individuals as a living-related kidney donor, and individuals with atypical or de novo renal cystic disease.
Collapse
Affiliation(s)
- York Pei
- Division of Nephrology, Department of Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada M5G2N2.
| |
Collapse
|
45
|
Pietrzak-Nowacka M, Rózanski J, Safranow K, Kedzierska K, Dutkiewicz G, Ciechanowski K. Autosomal Dominant Polycystic Kidney Disease Reduces the Risk of Diabetes Mellitus. Arch Med Res 2006; 37:360-4. [PMID: 16513485 DOI: 10.1016/j.arcmed.2005.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2005] [Accepted: 07/11/2005] [Indexed: 11/22/2022]
Abstract
BACKGROUND Patients with autosomal dominant polycystic kidney disease (ADPKD) are at greater risk of new-onset diabetes after transplantation as compared with other renal graft recipients. METHODS We mailed questionnaires to 459 ADPKD patients retrieved from the Polish Registry of ADPKD. We analyzed data from 291 respondents and 271 siblings with a known status of ADPKD and diabetes. RESULTS The prevalence of transplant-unrelated diabetes was significantly higher in siblings without ADPKD (8.2%) than in respondents (1.7%; p = 0.0028) and their ADPKD siblings (2.0%; p = 0.023). Univariate logistic regression demonstrated that the prevalence odds ratio (POR) for transplant-unrelated diabetes in the pooled ADPKD group vs. siblings without ADPKD was 0.21 (95% CI: 0.08-0.54, p = 0.0013). Multivariate regression accounting for age and gender disclosed an even smaller POR for diabetes (0.18) in ADPKD patients (95% CI: 0.07-0.47, p = 0.00049). Age was a significant risk factor for diabetes (POR 1.05, 95% CI: 1.01-1.09 per year of life; p = 0.025) and gender was without effect. The prevalence of diabetes in females and males with vs. without ADPKD was similar (1.6% vs. 8.3%, p = 0.0091 for females; 2.2% vs. 8.0%, p = 0.069 for males). Age and gender were not inter-related. In the group of siblings without ADPKD diabetes was associated with higher age (62.2 +/- 15.6 vs. 47.0 +/- 16.3 years, p = 0.0053). CONCLUSIONS Our findings demonstrate lower prevalence of transplant-unrelated diabetes among ADPKD patients. We hypothesize that metabolic disturbances in polycystic kidneys suppress the synthesis of endogenous glucose and reduce renal breakdown of insulin.
Collapse
Affiliation(s)
- Maria Pietrzak-Nowacka
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | | | | | | | | | | |
Collapse
|
46
|
Vouk K, Strmecki L, Stekrova J, Reiterova J, Bidovec M, Hudler P, Kenig A, Jereb S, Zupanic-Pajnic I, Balazic J, Haarpaintner G, Leskovar B, Adamlje A, Skoflic A, Dovc R, Hojs R, Komel R. PKD1 and PKD2 mutations in Slovenian families with autosomal dominant polycystic kidney disease. BMC MEDICAL GENETICS 2006; 7:6. [PMID: 16430766 PMCID: PMC1434729 DOI: 10.1186/1471-2350-7-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 01/23/2006] [Indexed: 11/13/2022]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is a genetically heterogeneous disorder caused by mutations in at least two different loci. Prior to performing mutation screening, if DNA samples of sufficient number of family members are available, it is worthwhile to assign the gene involved in disease progression by the genetic linkage analysis. Methods We collected samples from 36 Slovene ADPKD families and performed linkage analysis in 16 of them. Linkage was assessed by the use of microsatellite polymorphic markers, four in the case of PKD1 (KG8, AC2.5, CW3 and CW2) and five for PKD2 (D4S1534, D4S2929, D4S1542, D4S1563 and D4S423). Partial PKD1 mutation screening was undertaken by analysing exons 23 and 31–46 and PKD2 . Results Lod scores indicated linkage to PKD1 in six families and to PKD2 in two families. One family was linked to none and in seven families linkage to both genes was possible. Partial PKD1 mutation screening was performed in 33 patients (including 20 patients from the families where linkage analysis could not be performed). We analysed PKD2 in 2 patients where lod scores indicated linkage to PKD2 and in 7 families where linkage to both genes was possible. We detected six mutations and eight polymorphisms in PKD1 and one mutation and three polymorphisms in PKD2. Conclusion In our study group of ADPKD patients we detected seven mutations: three frameshift, one missense, two nonsense and one putative splicing mutation. Three have been described previously and 4 are novel. Three newly described framesfift mutations in PKD1 seem to be associated with more severe clinical course of ADPKD. Previously described nonsense mutation in PKD2 seems to be associated with cysts in liver and milder clinical course.
Collapse
Affiliation(s)
- Katja Vouk
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Lana Strmecki
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Jitka Stekrova
- Department of Medical Genetics and Department of Nephrology,1Faculty of Medicine, Charles University, Albertov 2, 12800 Prague 2, Czech Republic
| | - Jana Reiterova
- Department of Medical Genetics and Department of Nephrology,1Faculty of Medicine, Charles University, Albertov 2, 12800 Prague 2, Czech Republic
| | - Matjaz Bidovec
- Children's Hospital Ljubljana, Clinic for Paediatric Nephrology and Radiology Unit, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Anton Kenig
- Children's Hospital Ljubljana, Clinic for Paediatric Nephrology and Radiology Unit, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Simona Jereb
- Children's Hospital Ljubljana, Clinic for Paediatric Nephrology and Radiology Unit, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Irena Zupanic-Pajnic
- Institute of Forensic Medicine, Faculty of Medicine, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Joze Balazic
- Institute of Forensic Medicine, Faculty of Medicine, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Guido Haarpaintner
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Bostjan Leskovar
- Trbovlje General Hospital, Dialysis Department, Rudarska 7, Trbovlje, Slovenia
| | - Anton Adamlje
- Trbovlje General Hospital, Dialysis Department, Rudarska 7, Trbovlje, Slovenia
| | - Antun Skoflic
- Celje General Hospital, Nephrology Department and Dialysis Centre, Oblakova 5, 3000 Celje, Slovenia
| | - Reina Dovc
- Celje General Hospital, Nephrology Department and Dialysis Centre, Oblakova 5, 3000 Celje, Slovenia
| | - Radovan Hojs
- Maribor General Hospital, Clinical Department for Internal Medicine, Nephrology Department, 2000 Maribor, Slovenia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
47
|
Ader T, Norel R, Levoci L, Rogler LE. Transcriptional profiling implicates TGFbeta/BMP and Notch signaling pathways in ductular differentiation of fetal murine hepatoblasts. Mech Dev 2006; 123:177-94. [PMID: 16412614 DOI: 10.1016/j.mod.2005.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 09/30/2005] [Accepted: 10/14/2005] [Indexed: 12/19/2022]
Abstract
Bile duct morphogenesis involves sequential induction of biliary specific gene expression, bilayer generation, cell proliferation, remodeling and apoptosis. HBC-3 cells are a model system to study differentiation of hepatoblasts along the hepatocytic or bile ductular lineage in vitro and in vivo. We used microarray to define molecular pathways during ductular differentiation in response to Matrigel. The temporal pattern of expression of marker genes induced was similar to that observed during bile duct formation in vivo. Notch, HNF1beta, Polycystic kidney disease 2, Bicaudal C 1 and beta-catenin were up regulated during the time course. Functional clustering analysis revealed significant up regulation of clusters of genes involved in extracellular matrix remodeling, ion transport, vacuoles, lytic vacuoles, pro-apoptotic and anti-apoptotic genes, transcription factors and negative regulators of the cell proliferation, while genes involved in the cell cycle were significantly down regulated. Notch signaling pathway was activated by treatment with Matrigel. In addition, TGFbeta/BMP signaling pathway members including the type I TGFbeta receptor and Smads 3, 4 and 5 were significantly up regulated, as were several TGFbeta/BMP responsive genes including Hey 1, a regulator of Notch pathway signaling. SMADS 3, 4 and 5 were present in the nuclear fraction of HBC-3 cells during ductular differentiation in vitro, but not during hepatocyte differentiation. SMAD 5 was preferentially expressed in hepatoblasts undergoing bile duct morphogenesis in the fetal liver, while the TGFbeta/BMP signaling antagonist chordin, was expressed throughout the liver suggesting a mechanism by which TGFbeta/BMP signaling is limited to hepatoblasts that contact portal mesenchyme in vivo.
Collapse
Affiliation(s)
- Tammy Ader
- Marion Bessin Liver Research Center, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
48
|
Hackmann K, Markoff A, Qian F, Bogdanova N, Germino GG, Pennekamp P, Dworniczak B, Horst J, Gerke V. A splice form of polycystin-2, lacking exon 7, does not interact with polycystin-1. Hum Mol Genet 2005; 14:3249-62. [PMID: 16192288 DOI: 10.1093/hmg/ddi356] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polycystin-2 (or polycystic kidney disease gene 2 product, PKD2) and its homologues are calcium-regulated ion channels. Mutations in PKD2 are causative for autosomal dominant polycystic kidney disease. Alternative splicing has been documented for the 'PKD2-like' genes as a naturally occurring event and for PKD2 in pathologic context. Here we studied naturally occurring PKD2/Pkd2 (human/murine) splice forms on the mRNA and protein levels. Systematic scanning of PKD2/Pkd2 cDNAs obtained through RT-PCR from murine tissues and human cell lines revealed alternative splice forms that were sequenced and checked for translation. We identified three major alternative transcripts of PKD2/Pkd2, PKD2/Pkd2Delta6, PKD2/Pkd2Delta7 and PKD2/Pkd2Delta9, and one minor splice form, PKD2/Pkd2Delta12-13, numbered according to deleted exons or parts thereof. A transcript lacking exon 7 (PKD2/Pkd2Delta7) generated significantly altered protein variant. This polycystin-2Delta7 protein appeared stable, when expressed in cell culture and apparently did not interact with polycyctin-1, which should be due to the reversed topology (extracellular) of the interacting C-terminus (intracellular in polycystin-2). Pkd2Delta7 transcript was predominantly expressed in brain and amounted to 3-6.4% of Pkd2 transcripts in the relevant organ. Moreover, both Pkd2 and Pkd2Delta7 were developmentally regulated. Polycystin-2Delta7 adds on to the number of identified polycystin molecules. The predominant expression in brain indicates a function in this organ. The inability to interact with polycystin-1 expands further the PKD1-independent functions of polycystin-2 forms.
Collapse
Affiliation(s)
- Karl Hackmann
- Institut für Humangenetik, Universitätsklinikum Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kim H, Bae Y, Jeong W, Ahn C, Kang S. Depletion of PKD1 by an antisense oligodeoxynucleotide induces premature G1/S-phase transition. Eur J Hum Genet 2004; 12:433-40. [PMID: 15054393 DOI: 10.1038/sj.ejhg.5201136] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the growth of epithelial cells and the influx of cyst fluid. The 14-kb mRNA of the polycystic kidney disease gene, PKD1, encodes the polycystin-1 protein, whose function remains unknown. In this study, we observed that polycystin-1 localized in epithelial cell-cell contacts of 293 cells. We found, by bromodeoxyuridine (BrdU) incorporation experiments and Western blot analysis of S-phase-specific cyclins, that the depletion of polycystin-1 led to an increased cell proliferation rate and caused a premature G1/S-phase transition. In addition, we showed that the depletion of polycystin-1 reduced the amount of p53 in 293 cells irradiated by UV light, suggesting that polycystin-1 acts as a regulator of G1 checkpoint, which controls entry into the S phase and prevents the replication of damaged DNA. Our results might provide an insight into the formation and progression of ADPKD cysts.
Collapse
Affiliation(s)
- Hyunho Kim
- Graduate School of Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | |
Collapse
|
50
|
Murakami M, Ohba T, Xu F, Shida S, Satoh E, Ono K, Miyoshi I, Watanabe H, Ito H, Iijima T. Genomic organization and functional analysis of murine PKD2L1. J Biol Chem 2004; 280:5626-35. [PMID: 15548533 DOI: 10.1074/jbc.m411496200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mutations in genes that encode polycystins 1 or 2 cause polycystic kidney disease (PKD). Here, we report the genomic organization and functional expression of murine orthologue of human polycystin-2L1 (PKD2L1). The murine PKD2L1 gene comprises 15 exons in chromosome 19C3. Coexpression of PKD2L1 together with polycystin-1 (PKD1) resulted in the expression of PKD2L1 channels on the cell surface, whereas PKD2L1 expressed alone was retained within the endoplasmic reticulum (ER). This suggested that interaction between PKD1 and PKD2L1 is essential for PKD2L1 trafficking and channel formation. Deletion analysis at the cytoplasmic tail of PKD2L1 revealed that the coiled-coil domain was important for trafficking by PKD1. Mutagenesis within two newly identified ER retention signal-like amino acid sequences caused PKD2L1 to be expressed at the cell surface. This indicated that the coiled-coil domain was responsible for retaining PKD2L1 within the ER. Functional analysis of murine PKD2L1 expressed in HEK 293 cells was undertaken using calcium imaging. Coexpression of PKD1 and PKD2L1 resulted in the formation of functional cation channels that were opened by hypo-osmotic stimulation, whereas neither molecule formed functional channels when expressed alone. We conclude that PKD2L1 forms functional cation channels on the plasma membrane by interacting with PKD1. These findings raise the possibility that PKD2L1 represents the third genetic locus that is responsible for PKD.
Collapse
Affiliation(s)
- Manabu Murakami
- Department of Pharmacology, Akita University School of Medicine, Akita 010-8543, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|