1
|
Chakraborti S, Dhalla NS, Catarino SJ, Messias-Reason IJ. Serine Proteases in the Lectin Pathway of the Complement System. PROTEASES IN PHYSIOLOGY AND PATHOLOGY 2017. [PMCID: PMC7120406 DOI: 10.1007/978-981-10-2513-6_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The complement system plays a crucial role in host defense against pathogen infections and in the recognition and removal of damaged or altered self-components. Complement system activation can be initiated by three different pathways—classical, alternative, and lectin pathways—resulting in a proteolytic cascade, which culminates in multiple biological processes including opsonization and phagocytosis of intruders, inflammation, cell lysis, and removal of immune complexes and apoptotic cells. Furthermore, it also functions as a link between the innate and adaptive immune responses. The lectin pathway (LP) activation is mediated by serine proteases, termed mannan-binding lectin (MBL)-associated serine proteases (MASPs), which are associated with the pattern recognition molecules (PRMs) that recognize carbohydrates or acetylated compounds on surfaces of pathogens or apoptotic cells. These result in the proteolysis of complement C2 and C4 generating C3 convertase (C4b2a), which carries forward the activation cascade of complements, culminating in the elimination of foreign molecules. This chapter presents an overview of the complement system focusing on the characterization of MASPs and its genes, as well as its functions in the immune response.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal India
| | - Naranjan S. Dhalla
- St. Boniface Hospital Research Centre, University of Manitoba, Faculty of Health Sciences, College of Medicine, Institute of Cardiovascular Sciences, Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
2
|
Krogh SS, Holt CB, Steffensen R, Funck KL, Høyem P, Laugesen E, Poulsen PL, Thiel S, Hansen TK. Plasma levels of MASP-1, MASP-3 and MAp44 in patients with type 2 diabetes: influence of glycaemic control, body composition and polymorphisms in the MASP1 gene. Clin Exp Immunol 2017; 189:103-112. [PMID: 28318015 DOI: 10.1111/cei.12963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Mounting evidence indicates that adverse activation of the complement system plays a role in the development of diabetic vascular complications. Plasma levels of the complement proteins mannan-binding lectin (MBL) and its associated serine proteases (MASP-1 and MASP-2) are elevated in diabetes. We hypothesized that single nucleotide polymorphisms (SNPs) in the MASP1 gene may contribute to altered plasma levels of the belonging gene products; MASP-1, MASP-3 and mannan-binding lectin-associated protein of 44 kDa (MAp44) in patients with type 2 diabetes. To investigate this, we compared plasma levels of MASP-1, MASP-3 and MAp44 in 100 patients with type 2 diabetes and 100 sex- and age-matched controls. Ten carefully selected SNPs were analysed using TaqMan® genotyping assay. Additionally, we included a streptozotocin-induced diabetes mouse model to directly examine the effect of inducing diabetes on MASP-1 levels. MASP-1 levels were significantly higher among patients with type 2 diabetes compared with healthy controls (P = 0·017). Five SNPs (rs874603, rs72549254, rs3774275, rs67143992, rs850312) in the MASP1 gene were associated with plasma levels of MASP-1, MASP-3 and MAp44. In the diabetes mouse model, diabetic mice had significantly higher MASP-1 levels than control mice (P = 0·003). In conclusion, MASP-1 levels were higher among patients with type 2 diabetes and diabetic mice. The mechanism behind this increase remains elusive.
Collapse
Affiliation(s)
- S S Krogh
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - C B Holt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - R Steffensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - K L Funck
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - P Høyem
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - E Laugesen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - P L Poulsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - S Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - T K Hansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Abstract
The complement system, which consists of three independent but interacting pathways, constitutes a powerful arm of innate immunity. Its major function is to recognize and destroy pathogenic microorganisms as well as eliminate modified self-antigens. Although it is a fine-tuned system with innate capacity to discriminate self from non-self as well as danger from non-danger signals, an unwarranted activation can nonetheless occur and cause tissue destruction. To prevent such activation, specific regulators present both in plasma and on the cell surface tightly control it. Data accumulated over the past four decades have also shown that the complement system is capable of not only cross-talk with the activation cascades of plasma––i.e. blood coagulation, contact activation, and the kinin/kallikrein system––but also serving as a bridge between innate and adaptive immunity. It is for these reasons that the various activation steps of the complement system have been recently targeted for therapy to treat diseases in which the role of complement is beyond doubt. This trend will certainly continue for years to come, especially as novel concepts guiding the field into areas never contemplated before are continuing to be discovered.
Collapse
Affiliation(s)
- Berhane Ghebrehiwet
- The Departments of Medicine and Pathology, Stony Brook University School of Medicine, Health Sciences Center, New York, USA
| |
Collapse
|
4
|
Beltrame MH, Boldt ABW, Catarino SJ, Mendes HC, Boschmann SE, Goeldner I, Messias-Reason I. MBL-associated serine proteases (MASPs) and infectious diseases. Mol Immunol 2015; 67:85-100. [PMID: 25862418 PMCID: PMC7112674 DOI: 10.1016/j.molimm.2015.03.245] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/16/2022]
Abstract
MASP-1 and MASP-2 are central players of the lectin pathway of complement. MASP1 and MASP2 gene polymorphisms regulate protein serum levels and activity. MASP deficiencies are associated with increased infection susceptibility. MASP polymorphisms and serum levels are associated with disease progression.
The lectin pathway of the complement system has a pivotal role in the defense against infectious organisms. After binding of mannan-binding lectin (MBL), ficolins or collectin 11 to carbohydrates or acetylated residues on pathogen surfaces, dimers of MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2) activate a proteolytic cascade, which culminates in the formation of the membrane attack complex and pathogen lysis. Alternative splicing of the pre-mRNA encoding MASP-1 results in two other products, MASP-3 and MAp44, which regulate activation of the cascade. A similar mechanism allows the gene encoding MASP-2 to produce the truncated MAp19 protein. Polymorphisms in MASP1 and MASP2 genes are associated with protein serum levels and functional activity. Since the first report of a MASP deficiency in 2003, deficiencies in lectin pathway proteins have been associated with recurrent infections and several polymorphisms were associated with the susceptibility or protection to infectious diseases. In this review, we summarize the findings on the role of MASP polymorphisms and serum levels in bacterial, viral and protozoan infectious diseases.
Collapse
Affiliation(s)
- Marcia H Beltrame
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Angelica B W Boldt
- Department of Genetics, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Sandra J Catarino
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Hellen C Mendes
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Stefanie E Boschmann
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Isabela Goeldner
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Iara Messias-Reason
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil.
| |
Collapse
|
5
|
Boldt ABW, Goeldner I, de Messias-Reason IJT. Relevance of the lectin pathway of complement in rheumatic diseases. Adv Clin Chem 2012; 56:105-53. [PMID: 22397030 DOI: 10.1016/b978-0-12-394317-0.00012-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to its importance both in the clearance of pathogens that contribute as rheumatic etiological agents and in the disposal of apoptotic bodies and potential autoimmune initiators, deficiencies of the components of the lectin pathway of complement have been found to increase susceptibility and modulate the severity of most rheumatic disorders. This chapter introduces the general aspects of the structure, function, and genetics of lectin pathway components and summarizes current knowledge of the field regarding rheumatic diseases predisposition and modulation.
Collapse
Affiliation(s)
- Angelica B W Boldt
- Molecular Immunopathology Laboratory, Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
| | | | | |
Collapse
|
6
|
|
7
|
Degn S, Jensenius J, Thiel S. Disease-causing mutations in genes of the complement system. Am J Hum Genet 2011; 88:689-705. [PMID: 21664996 DOI: 10.1016/j.ajhg.2011.05.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/19/2011] [Accepted: 05/08/2011] [Indexed: 02/08/2023] Open
Abstract
Recent studies have revealed profound developmental consequences of mutations in genes encoding proteins of the lectin pathway of complement activation, a central component of the innate immune system. Apart from impairment of immunity against microorganisms, it is known that hereditary deficiencies of this system predispose one to autoimmune conditions. Polymorphisms in complement genes are linked to, for example, atypical hemolytic uremia and age-dependent macular degeneration. The complement system comprises three convergent pathways of activation: the classical, the alternative, and the lectin pathway. The recently discovered lectin pathway is less studied, but polymorphisms in the plasma pattern-recognition molecule mannan-binding lectin (MBL) are known to impact its level, and polymorphisms in the MBL-associated serine protease-2 (MASP-2) result in defects of complement activation. Recent studies have described roles outside complement and immunity of another MBL-associated serine protease, MASP-3, in the etiology of 3MC syndrome, an autosomal-recessive disorder involving a spectrum of developmental features, including characteristic facial dysmorphism. Syndrome-causing mutations were identified in MASP1, encoding MASP-3 and two additional proteins, MASP-1 and MAp44. Furthermore, an association was discovered between 3MC syndrome and mutations in COLEC11, encoding CL-K1, another molecule of the lectin pathway. The findings were confirmed in zebrafish, indicating that MASP-3 and CL-K1 underlie an evolutionarily conserved pathway of embryonic development. Along with the discovery of a role of C1q in pruning synapses in mice, these recent advances point toward a broader role of complement in development. Here, we compare the functional immunologic consequences of "conventional" complement deficiencies with these newly described developmental roles.
Collapse
|
8
|
Mannose-binding lectin serine proteases and associated proteins of the lectin pathway of complement: two genes, five proteins and many functions? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:253-62. [PMID: 21664989 DOI: 10.1016/j.bbapap.2011.05.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/27/2011] [Accepted: 05/27/2011] [Indexed: 10/18/2022]
Abstract
The lectin pathway of the complement system is activated following the binding of carbohydrate-based ligands by recognition molecules such as mannose-binding lectin (MBL) or ficolins. Engagement of the recognition molecules causes activation of associated MBL-associated serine proteases or MASPs, which in turn activate downstream complement molecules to activate the system. Two MASP genes are alternatively spliced during expression to yield 5 proteins, including three proteases (MASP-1, -2 and -3) and two truncated proteins, MAp19 and MAp44. Here we discuss what is currently known about these proteins in terms of their structure and function. MASP-2 is autoactivated following the initial binding events of the pathway and is able to subsequently activate the C4 and C2 substrates required to activate the rest of the pathway. MASP-1 is able to augment MASP-2 activation, but also appears to play other roles, although the physiological significance of these is not yet clear. The roles of the truncated Map19 and Map44 proteins and the MASP-3 protease are currently unknown. The proteases form an interesting sub-family of proteins that clearly should be the focus of future research in order to establish their biological roles. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
|
9
|
Takahashi M, Mori S, Shigeta S, Fujita T. Role of MBL-associated serine protease (MASP) on activation of the lectin complement pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 598:93-104. [PMID: 17892207 DOI: 10.1007/978-0-387-71767-8_8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mannose-binding lectin (MBL) and ficolin are pattern recognition molecules in the complex with the MBL-associated serine proteases (MASPs). Three kinds of MASPs, termed as MASP-1, MASP-2 and MASP-3 have been identified. When MBL or ficolins binds to carbohydrates on the surface of microbes, conformational modifications of these molecules trigger to activate zymogens of MASPs, followed by consequential complement activation. MASP-2 cleaves C4 and C2 to make a C3 convertase, C4b2a. MASP-1 has an ability to cleave C3 directly, although this activity has not been detected in physiological conditions. Natural target molecules for MASP-3 are still discussible. To elucidate the physiological meanings of MASPs, we generated MASPs-deficient mice. Not only MASP-2-deficient mouse but also MASP-1-/MASP-3-deficient mouse reduced activities for C3 deposition on the surface of mannan and zymosan, suggesting MASP-1/3 also contribute the activation of complement by the lectin pathway. Also, MASP-1/3-deficient mice showed the susceptible to an influenza virus.
Collapse
Affiliation(s)
- Minoru Takahashi
- Department of Immunology, Fukushima Medical University School of Medicine, Japan.
| | | | | | | |
Collapse
|
10
|
Stover CM, Lynch NJ, Dahl MR, Hanson S, Takahashi M, Frankenberger M, Ziegler-Heitbrock L, Eperon I, Thiel S, Schwaeble WJ. Murine serine proteases MASP-1 and MASP-3, components of the lectin pathway activation complex of complement, are encoded by a single structural gene. Genes Immun 2003; 4:374-84. [PMID: 12847554 DOI: 10.1038/sj.gene.6363970] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activation of the lectin pathway of complement is initiated by the binding to microbial carbohydrate structures of a multimolecular fluid-phase complex composed of a carbohydrate recognition subcomponent that associates with three specific serine proteases and an enzymatically inert protein of 19 kDa. The first carbohydrate recognition subcomponent of the lectin pathway identified was mannan-binding lectin (MBL), hence the serine proteases were named MBL-associated serine proteases (MASPs) and numbered according to the sequence of their discovery. Here we describe the primary structures of the two distinct serine proteases MASP-1 and MASP-3 in the rat (and of MASP-3 in the mouse), show their association with plasma MBL complexes, and demonstrate that in rat and mouse, as in man, MASP-1 and MASP-3 are encoded by a single structural gene. For both species, we present the genomic region and regulatory elements responsible for the processing of either MASP-1 or MASP-3 mRNA by alternative splicing/alternative polyadenylation. Furthermore, we demonstrate the evolutionary conservation of MASP-3 mRNA in cDNA transcripts from guinea pig, rabbit, pufferfish, and cow.
Collapse
Affiliation(s)
- C M Stover
- Department of Microbiology and Immunology, University of Leicester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vorup-Jensen T, Petersen SV, Hansen AG, Poulsen K, Schwaeble W, Sim RB, Reid KB, Davis SJ, Thiel S, Jensenius JC. Distinct pathways of mannan-binding lectin (MBL)- and C1-complex autoactivation revealed by reconstitution of MBL with recombinant MBL-associated serine protease-2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2093-100. [PMID: 10925294 DOI: 10.4049/jimmunol.165.4.2093] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mannan-binding lectin (MBL) plays a pivotal role in innate immunity by activating complement after binding carbohydrate moieties on pathogenic bacteria and viruses. Structural similarities shared by MBL and C1 complexes and by the MBL- and C1q-associated serine proteases, MBL-associated serine protease (MASP)-1 and MASP-2, and C1r and C1s, respectively, have led to the expectation that the pathways of complement activation by MBL and C1 complexes are likely to be very similar. We have expressed rMASP-2 and show that, whereas C1 complex autoactivation proceeds via a two-step mechanism requiring proteolytic activation of both C1r and C1s, reconstitution with MASP-2 alone is sufficient for complement activation by MBL. The results suggest that the catalytic activities of MASP-2 split between the two proteases of the C1 complex during the course of vertebrate complement evolution.
Collapse
Affiliation(s)
- T Vorup-Jensen
- Department of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Takahashi M, Arita Y, Yamagata K, Matsukawa Y, Okutomi K, Horie M, Shimomura I, Hotta K, Kuriyama H, Kihara S, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Genomic structure and mutations in adipose-specific gene, adiponectin. Int J Obes (Lond) 2000; 24:861-8. [PMID: 10918532 DOI: 10.1038/sj.ijo.0801244] [Citation(s) in RCA: 275] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Adiponectin is a collagen-like plasma protein specifically synthesized in adipose tissue. Plasma adiponectin concentrations are decreased in obesity whereas it is adipose-specific. OBJECTIVE To clarify the significance of the genetic variations in adiponectin gene on its plasma concentrations and obesity. SUBJECTS Two hundred and nineteen unrelated adult Japanese subjects (123 men and 96 women, age: 20-83 y, BMI: 16-43 kg/m2) including 77 obese subjects (BMI>26.4 kg/m2). MEASUREMENT Human adiponectin gene was isolated from PAC DNA pools. Mutations in the adiponectin gene were screened by direct sequencing or restriction-fragment polymorphism. The levels of plasma adiponectin were determined by the enzyme-linked immunosorbent assay (ELISA). RESULTS Adiponectin gene spanned 17 kb on chromosome 3q27, consisting of three exons and two introns. Within 2.1 kb of the 5'-flanking region, there were two octamer elements present in the promoter of adipsin. Two nucleotide changes were identified. One was a polymorphism (G/T) occurring in exon 2, and the other was a missense mutation (R112C) in exon 3. The mean plasma adiponectin levels of the subjects carrying G allele were low (G/G: 4.5 microg/ml; G/T: 5.9 microg/ml; and T/T: 6.3 microg/ml), but were not statistically significant. The allelic frequency between the obese and the non-obese showed no significant difference. The subject carrying R112C mutation showed markedly low concentration of plasma adiponectin. CONCLUSION Two nucleotide changes have been identified in the adiponectin gene. G/T polymorphism in exon 2 was associated with neither plasma adiponectin concentrations nor the presence of obesity. A subject carrying missense mutation (R112C) showed markedly low plasma adiponectin concentration.
Collapse
Affiliation(s)
- M Takahashi
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lawson PR, Reid KB. A novel PCR-based technique using expressed sequence tags and gene homology for murine genetic mapping: localization of the complement genes. Int Immunol 2000; 12:231-40. [PMID: 10700458 DOI: 10.1093/intimm/12.3.231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The complement system is a cascade of serum proteins and receptors which forms a vital arm of innate immunity and enhances the adaptive immune response. This work establishes the chromosomal localization of four key genes of the murine complement system. Mapping was performed using a novel and rapid PCR restriction length polymorphism method which was developed to exploit the murine expressed sequence tag (EST) database. This technique circumvents the laborious cDNA or genomic cloning steps of other mapping methods by relying on EST data and the prediction of exon-intron boundaries. This method can be easily applied to the genes of other systems, ranging from the interests of the individual researcher to large-scale gene localization projects. Here the complement system, probably one of the most well-characterized areas of immunology, was used as a model system. It was shown that the C3a receptor C1r and C1s genes form an unexpected complement gene cluster towards the telomeric end of chromosome 6. The second mannose binding lectin-associated serine protease gene was mapped to the telomeric end of chromosome 4, which is distinct from other complement-activating serine proteases. These results provide new insights into the evolution of this group of proteins.
Collapse
Affiliation(s)
- P R Lawson
- MRC Immunochemistry Unit, Department of Biochemistry, South Parks Road, Oxford University, Oxford OX1 3QU, UK
| | | |
Collapse
|
14
|
Wong NK, Kojima M, Dobó J, Ambrus G, Sim RB. Activities of the MBL-associated serine proteases (MASPs) and their regulation by natural inhibitors. Mol Immunol 1999; 36:853-61. [PMID: 10698339 DOI: 10.1016/s0161-5890(99)00106-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There has been rapid progress in determining the mechanism by which complement is activated by the complex formed between Mannose-Binding Lectin and its associated proteases (MASPs). MBL and the MASPs are of low abundance, but are similar to the more abundant C1q-C1r2s2 complex (C1), which has been extensively investigated. In this review we summarise recent findings on MBL-MASPs' structure. enzymic activity and regulation, and compare MBL-MASPs with C1.
Collapse
Affiliation(s)
- N K Wong
- Department of Biochemistry, University of Oxford, UK
| | | | | | | | | |
Collapse
|
15
|
Stover CM, Thiel S, Thelen M, Lynch NJ, Vorup-Jensen T, Jensenius JC, Schwaeble WJ. Two Constituents of the Initiation Complex of the Mannan-Binding Lectin Activation Pathway of Complement Are Encoded by a Single Structural Gene. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.6.3481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Mannan-binding lectin (MBL) forms a multimolecular complex with at least two MBL-associated serine proteases, MASP-1 and MASP-2. This complex initiates the MBL pathway of complement activation by binding to carbohydrate structures present on bacteria, yeast, and viruses. MASP-1 and MASP-2 are composed of modular structural motifs similar to those of the C1q-associated serine proteases C1r and C1s. Another protein of 19 kDa with the same N-terminal sequence as the 76-kDa MASP-2 protein is consistently detected as part of the MBL/MASP complex. In this study, we present the primary structure of this novel MBL-associated plasma protein of 19 kDa, MAp19, and demonstrate that MAp19 and MASP-2 are encoded by two different mRNA species generated by alternative splicing/polyadenylation from one structural gene.
Collapse
Affiliation(s)
- Cordula M. Stover
- *Department of Microbiology and Immunology, University of Leicester, Leicester, United Kingdom
| | - Steffen Thiel
- †Department of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | - Marcus Thelen
- ‡Theodor-Kocher-Institute, University of Bern, Bern, Switzerland; and
| | - Nicholas J. Lynch
- §Institute for Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Thomas Vorup-Jensen
- †Department of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | - Jens C. Jensenius
- †Department of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | - Wilhelm J. Schwaeble
- *Department of Microbiology and Immunology, University of Leicester, Leicester, United Kingdom
- §Institute for Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| |
Collapse
|
16
|
The Atypical Serine Proteases of the Complement System**Received for publication on October 7, 1997. Adv Immunol 1998. [DOI: 10.1016/s0065-2776(08)60609-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Janicic N, Soliman E, Pausova Z, Seldin MF, Rivière M, Szpirer J, Szpirer C, Hendy GN. Mapping of the calcium-sensing receptor gene (CASR) to human chromosome 3q13.3-21 by fluorescence in situ hybridization, and localization to rat chromosome 11 and mouse chromosome 16. Mamm Genome 1995; 6:798-801. [PMID: 8597637 DOI: 10.1007/bf00539007] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The calcium-sensing receptor (CASR), a member of the G-protein coupled receptor family, is expressed in both parathyroid and kidney, and aids these organs in sensing extracellular calcium levels. Inactivating mutations in the CASR gene have been described in familial hypocalciuric hypercalcemia (FHH) and neonatal severe hyperparathyroidism (NSHPT). Activating mutations in the CASR gene have been described in autosomal dominant hypoparathyroidism and familial hypocalcemia. The human CASR gene was mapped to Chromosome (Chr) 3q13.3-21 by fluorescence in situ hybridization (FISH). By somatic cell hybrid analysis, the gene was localized to human Chr 3 (hybridization to other chromosomes was not observed) and rat Chr 11. By interspecific backcross analysis, the Casr gene segregated with D16Mit4 on mouse Chr 16. These findings extend our knowledge of the synteny conservation of human Chr 3, rat Chr 11, and mouse Chr 16.
Collapse
Affiliation(s)
- N Janicic
- Calcium Research Laboratory, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|