1
|
van Leeuwen SS. Challenges and Pitfalls in Human Milk Oligosaccharide Analysis. Nutrients 2019; 11:E2684. [PMID: 31698698 PMCID: PMC6893418 DOI: 10.3390/nu11112684] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 01/08/2023] Open
Abstract
Human milk oligosaccharides have been recognized as an important, functional biomolecule in mothers' milk. Moreover, these oligosaccharides have been recognized as the third most abundant component of human milk, ranging from 10-15 g/L in mature milk and up to and over 20 g/L reported in colostrum. Initially, health benefits of human milk oligosaccharides were assigned via observational studies on the differences between breastfed and bottle fed infants. Later, pools of milk oligosaccharides were isolated and used in functional studies and in recent years more specific studies into structure-function relationships have identified some advanced roles for milk oligosaccharides in the healthy development of infants. In other research, the levels, diversity, and complexity of human milk oligosaccharides have been studied, showing a wide variation in results. This review gives a critical overview of challenges in the analysis of human milk oligosaccharides. In view of the myriad functions that can be assigned, often to specific structures or classes of structures, it is very relevant to assess the levels of these structures in the human milk correctly, as well as in other biological sample materials. Ultimately, the review makes a case for a comparative, inter-laboratory study on quantitative human milk oligosaccharide analysis in all relevant biological samples.
Collapse
Affiliation(s)
- Sander S van Leeuwen
- Department of Laboratory Medicine, Cluster Human Nutrition & Health, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
2
|
Liang L, Gao C, Li Y, Sun M, Xu J, Li H, Jia L, Zhao Y. miR-125a-3p/FUT5-FUT6 axis mediates colorectal cancer cell proliferation, migration, invasion and pathological angiogenesis via PI3K-Akt pathway. Cell Death Dis 2017; 8:e2968. [PMID: 28771224 PMCID: PMC5596543 DOI: 10.1038/cddis.2017.352] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022]
Abstract
The fucosyltransferase (FUT) family produces glycans, a fundamental event in several cancers, including colorectal cancer (CRC). miR-125a-3p is a non-coding RNA that can reduce cell proliferation and migration in cancer. In this study, we explored the levels of miR-125a-3p and FUT expression in human CRC tissues and two human CRC cell lines by qPCR. The results showed that miR-125a-3p, FUT5 and FUT6 are differentially expressed in normal and tumour tissues. On the basis of our previous research, FUT can be regulated by miRNA, which influences the proliferation and invasion of breast and hepatocellular cancer cells. We hypothesised that FUT5 and FUT6 may be regulated by miR-125a-3p. Luciferase reporter analyses were applied to identify potential target genes of miR-125a-3p. A functional study showed that miR-125a-3p overexpression can inhibit the proliferation, migration, invasion and angiogenesis of CRC cells via down-regulating FUT5 and FUT6. In addition, regulating miR-125a-3p, FUT5 or FUT6 expression markedly modulated the activity of the PI3K/Akt signalling pathway, and this effect of FUT5 or FUT6 could be reversed by transfection with miR-125a-3p-mimics. Taken together, our data suggest that both FUT5 and FUT6 can promote the development of CRC via the PI3K/Akt signalling pathway, which is regulated by miR-125a-3p. miR-125a-3p may serve as a predictive biomarker and a potential therapeutic target in CRC treatment.
Collapse
Affiliation(s)
- Leilei Liang
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Chengshun Gao
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yang Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, China
| | - Mingming Sun
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jingchao Xu
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Huairui Li
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, China
| | - Yongfu Zhao
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Abstract
Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome.
Collapse
Affiliation(s)
- Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Inhibition of protein deacetylation augments herpes simplex virus type 1-activated transcription of host fucosyltransferase genes associated with virus-induced sLex expression. Arch Virol 2009; 155:305-13. [DOI: 10.1007/s00705-009-0580-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 12/02/2009] [Indexed: 02/03/2023]
|
5
|
Matzhold EM, Helmberg W, Wagner T, Drexler C, Ulrich S, Winkler A, Lanzer G. Identification of 14 new alleles at the fucosyltransferase 1, 2, and 3 loci in Styrian blood donors, Austria. Transfusion 2009; 49:2097-108. [PMID: 19572973 DOI: 10.1111/j.1537-2995.2009.02293.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Genes for fucosyltransferases 1 (FUT1:H), 2 (FUT2:Secretor), and 3 (FUT3:Lewis) encode enzymes crucial for ABH and Lewis blood group antigen synthesis. They are highly polymorphic and ethnically and geographically specific. STUDY DESIGN AND METHODS Genetic variations and allele frequencies of FUT1, FUT2, and FUT3 encoding regions and flanking sequences were analyzed in 100 Styrian blood donors by systematic sequencing. Haplotypes were verified with sequence-specific primers. To identify discrepancies, serologically determined ABO and Lewis blood groups were correlated to respective genotypes. RESULTS Two novel FUT1 alleles were defined by 9C>T (silent) and 991C>A (P331T) mutations, the latter located in the catalytic domain of the enzyme. Five new alleles of FUT2 were found: three were characterized by new variants and two resulted from new combinations of known polymorphisms. The new 412G>A (G138S) mutation also is located in the catalytic domain. A new nonsecretor allele, based on the presence of 428G>A (nonsense), was found. Another FUT2 allele may have resulted from an intragenic crossover event. FUT3 analysis revealed seven novel alleles, partly based on the new mutations 41G>A (R14H), 1060C>G (R354G), 735G>C (silent), and 882C>T (silent). While 41G>A is placed in the cytoplasmic domain and functional, 1060C>G is placed in the catalytic domain. CONCLUSION Multiple common and sporadic sequence variations including 14 new alleles at FUT1, FUT2, and FUT3 loci were identified. Four novel mutations result in amino acid substitution in the protein. Three of them are predicted to have adverse effects on the enzyme activity. A novel nonsecretor allele was found.
Collapse
Affiliation(s)
- Eva Maria Matzhold
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
6
|
Nordén R, Nyström K, Olofsson S. Activation of host antiviral RNA-sensing factors necessary for herpes simplex virus type 1-activated transcription of host cell fucosyltransferase genes FUT3, FUT5, and FUT6 and subsequent expression of sLe(x) in virus-infected cells. Glycobiology 2009; 19:776-88. [PMID: 19349624 DOI: 10.1093/glycob/cwp050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) induces expression of a selectin receptor, the carbohydrate epitope sialyl Lewis X (sLe(x)), at the surface of infected cells. The molecular background to this phenomenon is that a viral immediate early RNA interacts with as yet unidentified host factors, eventually resulting in transcription of three dormant host fucosyltransferase genes (FUT3, FUT5, and FUT6), whose gene products are rate-limiting for synthesis of sLe(x). The aim of the present study was to define the immediate targets for the viral RNA in this process. We found that the Protein Kinase R (PKR) inhibitors 2-aminopurine (2-AP) and C16 inhibited FUT3, FUT5, and FUT6 expression as well as HSV-1-induced expression of sLe(x), indicating a primary role of PKR as a viral RNA target. The PKR-dependent activation of the FUT genes seemed neither to involve PKR effects on translation nor to involve NF-kappaB- or JNK-dependent activation. IMD-0354, known as an inhibitor of the NF-kappaB-activating factor IKK-2, induced FUT transcription via a novel IKK-2-independent mechanism, irrespective of whether the cells were virus-infected or not. Altogether, the results suggested that PKR is the primary target for HSV-1 early RNA during induction of FUT3, FUT5, and FUT6, and that the subsequent steps in the transcriptional activation of these host genes involve a hitherto unknown IMD-0354, yet IKK-2-independent, pathway.
Collapse
Affiliation(s)
- Rickard Nordén
- Department of Virology, University of Gothenburg, Gothenburg, Sweden
| | | | | |
Collapse
|
7
|
Barthel SR, Gavino JD, Wiese GK, Jaynes JM, Siddiqui J, Dimitroff CJ. Analysis of glycosyltransferase expression in metastatic prostate cancer cells capable of rolling activity on microvascular endothelial (E)-selectin. Glycobiology 2008; 18:806-17. [PMID: 18647941 DOI: 10.1093/glycob/cwn070] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PCa) cell tethering and rolling on microvascular endothelium has been proposed to promote the extravasation of PCa cells. We have shown that these adhesive events are mediated through binding interactions between endothelial (E)-selectin and Lewis carbohydrates on PCa cells. Prior data indicate that E-selectin-mediated rolling of bone-metastatic PCa MDA PCa 2b (MDA) cells is dependent on sialyl Lewis X (sLe(X))-bearing glycoproteins. To explore the molecular basis of sLe(X) synthesis and E-selectin ligand (ESL) activity on PCa cells, we compared and contrasted the expression level of glycosyltransferases, characteristically involved in sLe(X) and ESL synthesis, in ESL(+) MDA cells among other ESL(-) metastatic PCa cell lines. We also created and examined ESL(hi) and ESL(lo) variants of MDA cells to provide a direct comparison of the glycosyltransferase expression level. We found that normal prostate tissue and all metastatic PCa cell lines expressed glycosyltransferases required for sialo-lactosamine synthesis, including N-acetylglucosaminyl-, galactosyl-, and sialyltransferases. However, compared with expression in normal prostate tissue, ESL(+) MDA cells expressed a 31- and 10-fold higher level of alpha1,3 fucosyltransferases (FT) 3 and 6, respectively. Moreover, FT3 and FT6 were expressed at 2- to 354-fold lower levels in ESL(-) PCa cell lines. Consistent with these findings, ESL(hi) MDA cells expressed a 131- and 51-fold higher level of FT3 and FT6, respectively, compared with expression in ESL(lo) MDA cells. We also noted that alpha1,3 FT7 was expressed at a 5-fold greater level in ESL(hi) MDA cells. Furthermore, ESL(lo) MDA cells did not display sLe(X) on glycoproteins capable of bearing sLe(X), notably P-selectin glycoprotein ligand-1. These results implicate the importance of alpha1,3 FT3, FT6, and/or FT7 in sLe(X) and ESL synthesis on metastatic PCa cells.
Collapse
Affiliation(s)
- Steven R Barthel
- Department of Dermatology, Brigham and Women's Hospital, Harvard Skin Disease Research Center, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
8
|
Song SY, An SS, Ryu SW, Kim JS, Suh IB. Evaluation of the Genotypes of the Lewis Blood Group in a Korean Population Using Direct Sequencing. THE KOREAN JOURNAL OF HEMATOLOGY 2008. [DOI: 10.5045/kjh.2008.43.1.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Seo Young Song
- Department of Internal Medicine, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - Seong Soo An
- Gachon Bionano Research Institute, Kyungwon University, Seongnam, Korea
| | - Sook Won Ryu
- Department of Laboratory Medicine, College of Medicine, Kangwon National University, Chuncheon, Korea
- Korea Clinical Medicine Center, Chuncheon, Korea
- Institute of Medical Science, Kangwon National University, Chuncheon, Korea
| | - Jang Soo Kim
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea
| | - In Bum Suh
- Department of Laboratory Medicine, College of Medicine, Kangwon National University, Chuncheon, Korea
- Korea Clinical Medicine Center, Chuncheon, Korea
- Institute of Medical Science, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
9
|
Petit D, Maftah A, Julien R, Petit JM. En bloc duplications, mutation rates, and densities of amino acid changes clarify the evolution of vertebrate alpha-1,3/4-fucosyltransferases. J Mol Evol 2006; 63:353-64. [PMID: 16927008 DOI: 10.1007/s00239-005-0189-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 04/20/2006] [Indexed: 11/29/2022]
Abstract
Numerous vertebrates have four alpha-1,3/4-fucosyltransferase genes (FUT9, FUT7, FUT4, and FUT Lewis) belonging to the same family. Until now, studies on the evolution of this family have mainly focused on Lewis genes but how the other alpha-1,3/4-fucosyltransferases have emerged from a common ancestor is not well known. In order to define the respective roles of duplications and mutations, we have compared amino acid sequences representative of bony fish (Takifugu rubripes), amphibians (Xenopus laevis), birds (Gallus gallus), and mammals (Bos taurus). The FUT tree has two fundamental branches, each split into two subfamilies. We found evidence for two duplication events, dated around 710-760 Myr and 590-640 Myr, respectively, compatible with the hypothesis of two rounds of whole genome duplications in chordate genomes, before the emergence of bony vertebrates. Based on the Homo sapiens (human) physical map, we identified blocks of paralogues belonging to regions of FUT9 (6q16), FUT4 (11q21), FUT7 (9q34), and FUT Lewis (19p13) and to a region on HSA1p that is devoid of any FUT. In zebrafish (Danio rerio), an orthologue region of HSA1 harbors an FUT9 specific to bony fish, showing that duplications are not restricted to a single FUT gene but involve blocks of paralogues. In addition, sets of genes within each block clarify the order of duplication events and, as a result, the order of alpha-1,3/4-fucosyltransferase gene emergence. We have also determined the mutation rates and the density of amino acid changes along protein sequences in each alpha-1,3/4-fucosyltransferase subfamily during the main vertebrate transitions. After the emergence of tetrapods, the mutation rate of FUT9 decreased dramatically, suggesting the early acquisition of a crucial fucosyltransferase activity in the first stages of development. The FUT7 mutation rate, which in tetrapod ancestors is about half that in amniote ancestors, may be related to the role of this gene in immune systems. In contrast to other subfamilies, we found a constant mutation rate in FUT Lewis and a rather homogeneous amino acid density change, independently of the vertebrate transition, suggesting that hitherto Lewis epitopes have dispensable functions.
Collapse
Affiliation(s)
- Daniel Petit
- INRA, UMR 1061, Université de Limoges, 123 avenue Albert Thomas, Limoges, F-87060, GDR CNRS 2590, France
| | | | | | | |
Collapse
|
10
|
Kudo T, Kaneko M, Iwasaki H, Togayachi A, Nishihara S, Abe K, Narimatsu H. Normal embryonic and germ cell development in mice lacking alpha 1,3-fucosyltransferase IX (Fut9) which show disappearance of stage-specific embryonic antigen 1. Mol Cell Biol 2004; 24:4221-8. [PMID: 15121843 PMCID: PMC400454 DOI: 10.1128/mcb.24.10.4221-4228.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stage-specific embryonic antigen 1 (SSEA-1), an antigenic epitope defined as a Lewis x carbohydrate structure, is expressed during the 8-cell to blastocyst stages in mouse embryos and in primordial germ cells, undifferentiated embryonic stem cells, and embryonic carcinoma cells. For many years, SSEA-1 has been implicated in the development of mouse embryos as a functional carbohydrate epitope in cell-to-cell interaction during morula compaction. In a previous study, alpha 1,3-fucosyltransferase IX (Fut9) exhibited very strong activity for the synthesis of Lewis x compared to other alpha 1,3-fucosyltransferases in an in vitro substrate specificity assay. Fut4 and Fut9 transcripts were expressed in mouse embryos. The Fut9 transcript was detected in embryonic-day-13.5 gonads containing primordial germ cells, but the Fut4 transcript was not. In order to identify the role of SSEA-1 and determine the key enzyme for SSEA-1 synthesis in vivo, we have generated Fut9-deficient (Fut9(-/-)) mice. Fut9(-/-) mice develop normally, with no gross phenotypic abnormalities, and are fertile. Immunohistochemical analysis revealed an absence of SSEA-1 expression in early embryos and primordial germ cells of Fut9(-/-) mice. Therefore, we conclude that expression of the SSEA-1 epitope in the developing mouse embryo is not essential for embryogenesis in vivo.
Collapse
Affiliation(s)
- Takashi Kudo
- Glycogene Function Team, Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Open Space Laboratory, Tsukuba, Ibaraki 305-8568, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Coullin P, Crooijmans RPMA, Fillon V, Mollicone R, Groenen MAM, Adrien-Dehais C, Bernheim A, Zoorob R, Oriol R, Candelier JJ. Cytogenetics, conserved synteny and evolution of chicken fucosyltransferase genes compared to human. Cytogenet Genome Res 2004; 103:111-21. [PMID: 15004473 DOI: 10.1159/000076298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Accepted: 09/11/2003] [Indexed: 11/19/2022] Open
Abstract
Fucosyltransferases appeared early in evolution, since they are present from bacteria to primates and the genes are well conserved. The aim of this work was to study these genes in the bird group, which is particularly attractive for the comprehension of the evolution of the vertebrate genome. Twelve fucosyltransferase genes have been identified in man. The orthologues of theses genes were looked for in the chicken genome and cytogenetically localized by FISH. Three families of fucosyltransferases: alpha6-fucosyltransferases, alpha3/4-fucosyltransferases, and protein-O-fucosyltransferases, were identified in the chicken with their associated genes. The alpha2-fucosyltransferase family, although present in some invertebrates and amphibians was not found in birds. This absence, also observed in Drosophila, may correspond to a loss of these genes by negative selection. Of the eight chicken genes assigned, six fell on chromosome segments where conservation of synteny between human and chicken was already described. For the two remaining loci, FUT9 and FUT3/5/6, the location may correspond to a new small syntenic area or to an insertion. FUT4 and FUT3/5/6 were found on the same chicken chromosome. These results suggest a duplication of an ancestral gene, initially present on the same chromosome before separation during evolution. By extension, the results are in favour of a common ancestor for the alpha3-fucosyltransferase and the alpha4-fucosyltransferase activities. These observations suggest a general mechanism for the evolution of fucosyltransferase genes in vertebrates by duplication followed by divergent evolution.
Collapse
Affiliation(s)
- P Coullin
- UMR 8125, Cytogénétique et génomique des cancers, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Javaud C, Dupuy F, Maftah A, Julien R, Petit JM. The fucosyltransferase gene family: an amazing summary of the underlying mechanisms of gene evolution. CONTEMPORARY ISSUES IN GENETICS AND EVOLUTION 2003. [DOI: 10.1007/978-94-010-0229-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Shimoda Y, Tajima Y, Osanai T, Katsume A, Kohara M, Kudo T, Narimatsu H, Takashima N, Ishii Y, Nakamura S, Osumi N, Sanai Y. Pax6 controls the expression of Lewis x epitope in the embryonic forebrain by regulating alpha 1,3-fucosyltransferase IX expression. J Biol Chem 2002; 277:2033-9. [PMID: 11675393 DOI: 10.1074/jbc.m108495200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pax6 is a transcription factor involved in brain patterning and neurogenesis. Expression of Pax6 is specifically observed in the developing cerebral cortex, where Lewis x epitope that is thought to play important roles in cell interactions is colocalized. Here we examined whether Pax6 regulates localization of Lewis x using Pax6 mutant rat embryos. The Lewis x epitope disappeared in the Pax6 mutant cortex, and activity of alpha1,3-fucosyltransferase, which catalyzed the last step of Lewis x biosynthesis, drastically decreased in the mutant cortex as compared with the wild type. Furthermore, expression of a fucosyltransferase gene, FucT-IX, specifically decreased in the mutant, while no change was seen for expression of another fucosyltransferase gene, FucT-IV. These results strongly suggest that Pax6 controls Lewis x expression in the embryonic brain by regulating FucT-IX gene expression.
Collapse
Affiliation(s)
- Yasushi Shimoda
- Department of Biochemical Cell Research, Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sarria R, Wagner TA, O'Neill MA, Faik A, Wilkerson CG, Keegstra K, Raikhel NV. Characterization of a family of Arabidopsis genes related to xyloglucan fucosyltransferase1. PLANT PHYSIOLOGY 2001; 127:1595-1606. [PMID: 11743104 DOI: 10.1104/pp.010596] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To understand primary cell wall assembly in Arabidopsis, we have focused on identifying and characterizing enzymes involved in xyloglucan biosynthesis. Nine genes (AtFUT2-10) were identified that share between 47% and 62% amino acid similarity with the xyloglucan-specific fucosyltransferase AtFUT1. Reverse transcriptase-PCR analysis indicates that all these genes are expressed. Bioinformatic analysis predicts that these family members are fucosyltransferases, and we first hypothesized that some may also be involved in xyloglucan biosynthesis. AtFUT3, AtFUT4, and AtFUT5 were expressed in tobacco (Nicotiana tabacum L. cv BY2) suspension culture cells, and the resulting proteins did not transfer fucose (Fuc) from GDP-Fuc to tamarind xyloglucan. AtFUT3, AtFUT4, and AtFUT5 were overexpressed in Arabidopsis plants. Leaves of plants overexpressing AtFUT4 or AtFUT5 contained more Fuc than wild-type plants. Stems of plants overexpressing AtFUT4 or AtFUT5 contained more xylose, less arabinose, and less galactose than wild-type plants. We suggest that the AtFUT family is likely to include fucosyltransferases important for the synthesis of wall carbohydrates. A targeted analysis of isolated cell wall matrix components from plants altered in expression of these proteins will help determine their specificity and biological function.
Collapse
Affiliation(s)
- R Sarria
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
de Vries T, Knegtel RM, Holmes EH, Macher BA. Fucosyltransferases: structure/function studies. Glycobiology 2001; 11:119R-128R. [PMID: 11588153 DOI: 10.1093/glycob/11.10.119r] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alpha3-fucosyltransferases (alpha3-FucTs) catalyze the final step in the synthesis of a range of important glycoconjugates that function in cell adhesion and lymphocyte recirculation. Six members of this family of enzymes have been cloned from the human genome, and their expression pattern has been shown to be highly regulated. Each enzyme has a unique acceptor substrate binding pattern, and each generates a unique range of fucosylated products. Results from a range of studies have provided information on amino acids in the FucT sequence that contribute to the differential acceptor specificity for the FucTs, and to the binding of the nucleotide sugar donor GDP-fucose. These results, in conjunction with results obtained from the analysis of the disulfide bond pattern, have provided useful clues about the spatial distribution of amino acids that influence or directly contribute to substrate binding. This information is reviewed here, and a molecular fold prediction is presented which has been constructed based on the available information and current modeling methodology.
Collapse
Affiliation(s)
- T de Vries
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 94132, USA
| | | | | | | |
Collapse
|
16
|
Koda Y, Tachida H, Pang H, Liu Y, Soejima M, Ghaderi AA, Takenaka O, Kimura H. Contrasting patterns of polymorphisms at the ABO-secretor gene (FUT2) and plasma alpha(1,3)fucosyltransferase gene (FUT6) in human populations. Genetics 2001; 158:747-56. [PMID: 11404338 PMCID: PMC1461689 DOI: 10.1093/genetics/158.2.747] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The coding sequences ( approximately 1 kb) of FUT2 [ABO-Secretor type alpha(1,2)fucosyltransferase] and of FUT6 [plasma alpha(1,3)fucosyltransferase] were analyzed for allelic polymorphism by direct sequencing in five populations. The nucleotide diversities of FUT2 estimated from pairwise sequence differences were 0.0045, 0.0042, 0.0042, 0.0009, and 0.0008 in Africans, European-Africans, Iranians, Chinese, and Japanese, respectively. The nucleotide diversities of FUT6 were 0.0024, 0.0016, 0.0015, 0.0017, and 0.0020 in Africans, European-Africans, Iranians, Chinese, and Japanese, respectively. At FUT2, excesses in pairwise sequence differences compared to the number of polymorphic sites as indicated by a significantly positive Tajima's D were observed in European-Africans and in Iranians. The data do not fit expectations of the equilibrium neutral model with an infinite number of sites. On the other hand, Tajima's D's at FUT6 in each of the five populations and at FUT2 in Africans, Chinese, and Japanese were not significantly different from zero. F(ST) between the Asians and the others measured at FUT2 was higher than at FUT6. These results suggest that natural selection was responsible for the generation of the FUT2 polymorphism in European-Africans and in Iranians.
Collapse
Affiliation(s)
- Y Koda
- Division of Human Genetics, Department of Forensic Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The alpha(1,2)fucosyltransferase Se enzyme regulates the expression of the ABH antigens in secretion. Secretors, who have ABH antigens in their saliva, have at least one functional Se allele in the FUT2 locus, while non-secretors, who fail to express ABH antigens in saliva, are homozygous for the non-functional se allele. Molecular analyses of the FUT2 polymorphism of various populations have indicated the ethnic specificity of null alleles: the null allele se(428) is a common Se enzyme-deficient allele in Africans and Caucasians but does not occur in Asians, whereas the null allele se(357,385) is specific to Asians. The gene frequency of se(428) or se(357,385) is about 0.5 in each respective population. Why the se(428) is absent in Asians is of interest. Also here, we describe the polymorphisms of the fucosyltransferase genes (FUT1, FUT3 and FUT6).
Collapse
Affiliation(s)
- Y Koda
- Department of Forensic Medicine and Human Genetics, Kurume University School of Medicine, Japan
| | | | | |
Collapse
|
18
|
Withers DA, Hakomori SI. Human alpha (1,3)-fucosyltransferase IV (FUTIV) gene expression is regulated by elk-1 in the U937 cell line. J Biol Chem 2000; 275:40588-93. [PMID: 11006292 DOI: 10.1074/jbc.m007262200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha1,3-fucosyltransferase IV (FucTIV) encoded by its gene (FUTIV) is responsible for synthesis of Le(x) (Galbeta4[Fucalpha3]GlcNAcbeta3Galbeta1,R), which causes compaction in the morula stage of the preimplantation mouse embryo, as well as alpha1,3-fucosylation at multiple internal GlcNAc of unbranched poly-N-acetyllactosamine, termed "myeloglycan," the physiological epitope of E-selectin. Since myeloglycan-type structure is also expressed in various types of human cancer and may mediate E-selectin-dependent metastasis, expression of FUTIV is oncodevelopmentally regulated. The mechanisms controlling FUTIV expression remain to be clarified. In this report, we further characterize FUTIV gene structure and define a non-TATA box-dependent transcriptional start region just upstream from the translational start. FUTIV promoter/reporter fusion constructs defined a "full-length" promoter and highly active fragments in the macrophage-derived U937 and myeloid HL60 cell lines. One highly active fragment contains a consensus binding site for the Ets-1 transcription factor (Withers, D. A., and Hakomori, S. (1997) Glycoconj. J. 14, 764). Gel shift analysis shows specific binding to this site in nuclear extracts from U937 cells. Mutation of the Ets consensus site significantly reduces FUTIV promoter activity in both cell lines. Gel supershift and dominant negative cotransfection experiments identified the Ets family member Elk-1 as one component binding and regulating the FUTIV promoter in U937 cells. The significance of FUTIV regulation by Elk-1 is discussed.
Collapse
Affiliation(s)
- D A Withers
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA.
| | | |
Collapse
|
19
|
Miyoshi E, Noda K, Yamaguchi Y, Inoue S, Ikeda Y, Wang W, Ko JH, Uozumi N, Li W, Taniguchi N. The alpha1-6-fucosyltransferase gene and its biological significance. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1473:9-20. [PMID: 10580126 DOI: 10.1016/s0304-4165(99)00166-x] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
GDP-L-Fuc:N-acetyl-beta-D-glucosaminide alpha1-6-fucosyltransferase (alpha1-6FucT) catalyzes the transfer of fucose from GDP-Fuc to N-linked type complex glycoproteins. This enzyme was purified from a human fibroblast cell line, porcine brain, a human gastric cancer cell line and human blood platelets. cDNA cloning of porcine and human alpha1-6FucT was performed from a porcine brain and gastric cancer cell cDNA libraries, respectively. Their homology is 92.2% at the nucleotide level and 95.7% at the amino acid level. No putative N-glycosylation sites were found in the predicted amino acid sequence. No homology to other fucosyltransferases such as alpha1-2FucT, alpha1-3FucT and alpha1-4FucT was found except for a region consisting of nine amino acids. The alpha1-6FucT gene is located at chromosome 14q24.3, which is also a different location from other fucosyltransferases reported to date. The alpha1-6FucT gene is the oldest gene family in the phylogenic trees among the nine cloned fucosyltransferase genes. alpha1-6FucT is widely expressed in various rat tissues and the expression of alpha1-6FucT in the liver is enhanced during hepatocarcinogenesis of LEC rats which develop hereditary hepatitis and hepatomas. In cases of human liver diseases, alpha1-6FucT is expressed in both hepatoma tissues and their surrounding tissues with chronic liver disease, but not in the case of normal liver. Serum alpha1-6-fucosylated alpha-fetoprotein (AFP) has been employed for an early diagnosis of patients with hepatoma. The mechanisms by which alpha1-6 fucosylation of AFP occurs in the hepatoma is not due to the up-regulation of alpha1-6FucT alone. Interestingly, when the alpha1-6FucT gene is transfected into Hep3B, a human hepatoma cell line, tumor formation in the liver of nude mice after splenic injection is dramatically suppressed. In this review, we focus on alpha1-6FucT and summarize its properties, gene expression and biological significance.
Collapse
Affiliation(s)
- E Miyoshi
- Department of Biochemistry, Osaka University Medical School, Room B-1, 2-2 Yamadaoka, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Staudacher E, Altmann F, Wilson IB, März L. Fucose in N-glycans: from plant to man. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1473:216-36. [PMID: 10580141 DOI: 10.1016/s0304-4165(99)00181-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fucosylated oligosaccharides occur throughout nature and many of them play a variety of roles in biology, especially in a number of recognition processes. As reviewed here, much of the recent emphasis in the study of the oligosaccharides in mammals has been on their potential medical importance, particularly in inflammation and cancer. Indeed, changes in fucosylation patterns due to different levels of expression of various fucosyltransferases can be used for diagnoses of some diseases and monitoring the success of therapies. In contrast, there are generally at present only limited data on fucosylation in non-mammalian organisms. Here, the state of current knowledge on the fucosylation abilities of plants, insects, snails, lower eukaryotes and prokaryotes will be summarised.
Collapse
Affiliation(s)
- E Staudacher
- Institut für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190, Vienna, Austria.
| | | | | | | |
Collapse
|
21
|
Tanegashima A, Ushiyama I, Nishi K, Yamamoto H, Fukunaga T. Tissue-specific expression of Le(Y) antigen in high endothelial venules of human lymphoid tissues. Glycoconj J 1999; 16:809-19. [PMID: 11133021 DOI: 10.1023/a:1007136000900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, we demonstrated that the anti-Le(Y) antibody (BM-1) especially reacted with high endothelial venules (HEVs) in peripheral lymph nodes of blood group O individuals. The Le(Y) expression on HEVs showed a unique tissue-specific pattern, i.e., a large amount of the Le(Y) expression in peripheral lymph nodes and no or small amounts in mesenteric lymph node. Statistical analysis showed that there was the significant difference between the percentage of Le(Y)-positive HEVs in peripheral lymph nodes and mesenteric lymph nodes. No expression of Le(Y) was observed in vessels of Payer's patch, thymus, spleen and other non-lymphoid organs. In blood group A or B individuals, the reactivity between HEVs and anti-Le(Y) antibody increased after enzyme digestion with alpha-N-acetylgalactosaminidase or alpha-galactosidase. These findings show that the expression of difucosylated blood group ABH antigens are especially expressed on HEVs in peripheral lymph nodes. Furthermore, the tissue-specific pattern suggests that these antigens may be related to intercellular adhesion between lymphocytes and HEVs.
Collapse
Affiliation(s)
- A Tanegashima
- Department of Forensic Medicine and Sciences, Mie University School of Medicine, Tsu, Japan.
| | | | | | | | | |
Collapse
|
22
|
Weston BW, Hiller KM, Mayben JP, Manousos G, Nelson CM, Klein MB, Goodman JL. A cloned CD15s-negative variant of HL60 cells is deficient in expression of FUT7 and does not adhere to cytokine-stimulated endothelial cells. Eur J Haematol 1999; 63:42-9. [PMID: 10414454 DOI: 10.1111/j.1600-0609.1999.tb01849.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The initial steps of leukocyte adhesion depend on selectin/ligand interactions. Surface ligands on leukocytes are often modified by addition of the sialyl Lewis x (CD15s) determinant. Biosynthesis of CD15s is dependent upon alpha(2,3)sialyltransferases and alpha(1,3)fucosyltransferases. We report the isolation of an HL60 cell line variant, HL60A2, that no longer expresses CD15s. HL60A2 cells do not adhere to cytokine-stimulated endothelial cells. Enzymatic assays reveal that this cell line has normal alpha(2,3)sialyltransferase activity but is deficient in the alpha(1,3)fucosyltransferase responsible for biosynthesis of CD15s (FUT7). The fucosyltransferase that constructs the non-sialylated antigen, Lewis x (CD15), is expressed at high levels (FUT4). Transcript analyses show that FUT7 and FUT4 are inversely expressed in HL60 and variant cell lines. HL60A2 cells provide a tool to study the regulation of selectin ligands and corresponding human fucosyltransferase genes.
Collapse
Affiliation(s)
- B W Weston
- The Lineberger Comprehensive Cancer Center and the Department of Pediatrics, University of North Carolina, Chapel Hill 27599-7220, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhang A, Potvin B, Zaiman A, Chen W, Kumar R, Phillips L, Stanley P. The gain-of-function Chinese hamster ovary mutant LEC11B expresses one of two Chinese hamster FUT6 genes due to the loss of a negative regulatory factor. J Biol Chem 1999; 274:10439-50. [PMID: 10187834 DOI: 10.1074/jbc.274.15.10439] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The LEC11 Chinese hamster ovary (CHO) gain-of-function mutant expresses an alpha(1,3)fucosyltransferase (alpha(1,3)Fuc-T) activity that generates the LeX, sialyl-LeX, and VIM-2 glycan determinants and has been extensively used for studies of E-selectin ligand specificity. In order to identify regulatory mechanisms that control alpha(1,3)Fuc-T expression in mammals, mechanisms of FUT gene expression were investigated in LEC11 cells and two new, independent mutants, LEC11A and LEC11B. Northern and ribonuclease protection analyses, using probes that span the coding region of a cloned CHO FUT gene, detected transcripts in each LEC11 mutant but not in CHO cells or other gain-of-function CHO mutants that express a different alpha(1,3)Fuc-T activity. Coding region sequence analysis and alpha(1,3)Fuc-T acceptor specificity comparisons with recombinant human Fuc-TV and Fuc-TVI showed that the cloned FUT gene is orthologous to the human FUT6 gene. Southern analyses identified two closely related FUT6 genes in the Chinese hamster, whose evolutionary relationships are discussed. The blots showed that rearrangements had occurred in LEC11A and LEC11 genomic DNA, consistent with a cis mechanism of FUT6 gene activation in these mutants. By contrast, somatic cell hybrid analyses revealed that LEC11B cells express FUT6 gene transcripts due to the loss of a trans-acting, negative regulatory factor. Sequencing of reverse transcriptase-polymerase chain reaction products identified unique 5'- and 3'-untranslated region sequences in FUT6 gene transcripts from each LEC11 mutant. Northern and Southern analyses with gene-specific probes showed that LEC11A cells express only the cgFUT6A gene (where cg is Cricetulus griseus), whereas LEC11 and LEC11B cells express only the cgFUT6B gene. In LEC11A x LEC11B hybrid cells, the cgFUT6A gene was predominantly expressed, as predicted if a trans-acting negative regulatory factor functions to suppress cgFUT6B gene expression in CHO cells. This factor is predicted to be a cell type-specific regulator of FUT6 gene expression in mammals.
Collapse
Affiliation(s)
- A Zhang
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, 10461, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Kudo T, Ikehara Y, Togayachi A, Kaneko M, Hiraga T, Sasaki K, Narimatsu H. Expression cloning and characterization of a novel murine alpha1, 3-fucosyltransferase, mFuc-TIX, that synthesizes the Lewis x (CD15) epitope in brain and kidney. J Biol Chem 1998; 273:26729-38. [PMID: 9756916 DOI: 10.1074/jbc.273.41.26729] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 3-fucosyl-N-acetyllactosamine (Lewis x, CD15, SSEA-1) carbohydrate epitope is widely distributed in many tissues and is developmentally expressed in some rodent and human tissues, i.e. brain and lung, and mouse early embryo. In such tissues, the Lewis x epitope is considered to be involved in cell-cell interactions. We isolated a novel mouse alpha1,3-fucosyltransferase gene, named mFuc-TIX, from an adult mouse brain cDNA library using the expression cloning method. On flow cytometric analysis, Namalwa cells transfected stably with the mFuc-TIX gene showed a marked increase in Lewis x epitopes but not sialyl Lewis x epitopes. As seen experiments involving oligosaccharides as acceptor substrates, mFuc-TIX transfers a fucose to lacto-N-neotetraose but not to either alpha2,3-sialyl lacto-N-neotetraose or lacto-N-tetraose. The substrate specificity of mFuc-TIX was similar to that of mouse myeloid-type alpha1,3-fucosyltransferase (mFuc-TIV). The deduced amino acid sequence of mFuc-TIX, consisting of 359 residues, indicated a type II membrane protein and shows low degrees of homology to the previously cloned alpha1,3-fucosyltransferases, i.e. mFuc-TIV (48.4%), mouse Fuc-TVII (39.1%), and human Fuc-TIII (43.0%), at the amino acid sequence level. A phylogenetic tree of the alpha1, 3-fucosyltransferases constructed by the neighbor-joining method showed that mFuc-TIX is quite distant from the other alpha1, 3-fucosyltransferases. Thus, mFuc-TIX does not belong to any subfamilies of known alpha1,3Fuc-Ts. The mFuc-TIX transcript was mainly detected in brain and kidney with the Northern blotting and competitive reverse transcription-polymerase chain reaction methods, whereas the mFuc-TIV transcript was not detected in brain with these methods. On in situ hybridization, the mFuc-TIX transcript was detected in neuronal cells but not in the glial cells including astrocytes. These results strongly indicated that mFuc-TIX participates in the Lewis x synthesis in neurons of the brain and may be developmentally regulated.
Collapse
Affiliation(s)
- T Kudo
- Division of Cell Biology, Institute of Life Science, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Vo L, Lee S, Marcinko MC, Holmes EH, Macher BA. Human alpha1,3/4-fucosyltransferases. II. A single amino acid at the COOH terminus of FucT III and V alters their kinetic properties. J Biol Chem 1998; 273:25250-5. [PMID: 9737989 DOI: 10.1074/jbc.273.39.25250] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An analysis of the acceptor substrate specificity of domain swap mutants of human alpha1,3/4-fucosyltransferases (FucTs) III and V has been carried out. The results demonstrate that changing Asp336 of FucT III to Ala (as in FucT V) produced a protein (III/V1) with a reduced activity with a variety of acceptors. An analysis of the kinetic properties of FucT III and the III/V1 mutant demonstrated that III/V1 had a 40-fold reduction in its affinity for the H-type 1 acceptor substrate (Fucalpha1,2Galbeta1,3GlcNAc) and 4-fold reduction in its affinity for GDP-fucose when compared with FucT III. Further, the overall catalytic efficiency of III/V1 was approximately 100-fold lower than that of FucT III with an H-type 1 acceptor substrate. The complementary domain swap resulting from the change of Ala349 of FucT V to Asp (V/III1) produced a FucT that had higher enzyme activity with a range of acceptor substrates and had a higher affinity for an H-type 2 acceptor substrate (Fucalpha1, 2Galbeta1,4GlcNAc) with an 8-fold higher overall catalytic efficiency than that of FucT V. No significant change occurred in the Km for GDP-fucose for this protein when compared with FucT V. Kinetic parameters of two other FucT domain swaps (III8/V and V8/III), resulting in proteins that differed from FucT III and V at the NH2 terminus of their catalytic domain, were not significantly different from those of the parental enzymes when H-type 1 and H-type 2 acceptor substrates were utilized. Thus, substitution of an acidic amino acid for a nonpolar amino acid (i.e. Asp versus Ala) at the COOH terminus of FucTs produces an enzyme with enhanced enzyme activities. These results, together with the results presented in the accompanying papers (Nguyen, A. T., Holmes, E. H., Whitaker, J. M., Ho, S., Shetterly, S., and Macher, B. A. (1998) J. Biol. Chem. 273, 25244-25249; Sherwood, A. L., Nguyen, A. T., Whitaker, J. M., Macher, B. A., and Holmes, E. H. (1998) J. Biol. Chem. 273, 25256-25260), provide new insights into the structure/function relationships of human alpha1,3/4-FucT enzymes.
Collapse
Affiliation(s)
- L Vo
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132, USA
| | | | | | | | | |
Collapse
|
26
|
Phillips KK, White AE, Hicks DJ, Welch DR, Barrett JC, Wei LL, Weissman BE. Correlation between reduction of metastasis in the MDA-MB-435 model system and increased expression of the Kai-1 protein. Mol Carcinog 1998. [DOI: 10.1002/(sici)1098-2744(199802)21:2<111::aid-mc5>3.0.co;2-q] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Costache M, Apoil PA, Cailleau A, Elmgren A, Larson G, Henry S, Blancher A, Iordachescu D, Oriol R, Mollicone R. Evolution of fucosyltransferase genes in vertebrates. J Biol Chem 1997; 272:29721-8. [PMID: 9368041 DOI: 10.1074/jbc.272.47.29721] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cloning and expression of chimpanzee FUT3, FUT5, and FUT6 genes confirmed the hypothesis that the gene duplications at the origin of the present human cluster of genes occurred between: (i) the great mammalian radiation 80 million years ago and (ii) the separation of man and chimpanzee 10 million years ago. The phylogeny of fucosyltransferase genes was completed by the addition of the FUT8 family of alpha(1,6)fucosyltransferase genes, which are the oldest genes of the fucosyltransferase family. By analysis of data banks, a new FUT8 alternative splice expressed in human retina was identified, which allowed mapping the human FUT8 gene to 14q23. The results suggest that the fucosyltransferase genes have evolved by successive duplications, followed by translocations, and divergent evolution from a single ancestral gene.
Collapse
Affiliation(s)
- M Costache
- INSERM U178, Université de Paris Sud (XI), 94807 Villejuif Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kimura H, Shinya N, Nishihara S, Kaneko M, Irimura T, Narimatsu H. Distinct substrate specificities of five human alpha-1,3-fucosyltransferases for in vivo synthesis of the sialyl Lewis x and Lewis x epitopes. Biochem Biophys Res Commun 1997; 237:131-7. [PMID: 9266844 DOI: 10.1006/bbrc.1997.7100] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Five different human alpha-1,3-fucosyltransferase genes, the Fuc-TIII, Fuc-TIV, Fuc-TV, Fuc-TVI and Fuc-TVII genes, have been cloned to date. We transfected HeLa cells and Namalwa cells with each of the five different genes, and established a series of stable cloned transformant cells. Thin-layer chromatography immunostaining analysis revealed that all five enzymes were able to synthesize sialyl Lewis x (sLe(x)) epitopes on glycolipids in HeLa cells, but each enzyme showed a different preference as to the carbohydrate chain length on glycolipids as acceptor substrates. Fuc-TIII and Fuc-TV showed very similar patterns of sLe(x) positive bands, which indicated that the enzymes have similar acceptor substrate specificities. Fuc-TVI exhibited a little different pattern from those of the former two enzymes. Fuc-TIV and Fuc-TVII showed similarity in the positive bands, however, their patterns were quite different from those of the former three enzymes. Four enzymes except for Fuc-TVII were able to synthesize the Lewis x (Le(x)) epitope on glycolipids in HeLa cells. Fuc-TV alone showed a little different pattern of Le(x) positive bands from those of the other three enzymes. Flow cytometric analysis of HeLa cells and Namalwa cells again demonstrated the similar specificities of Fuc-TIII and Fuc-TV. They exhibited similar stronger staining with FH6 (anti-sLe(x)) antibodies than that with the other enzymes. A phylogenetic tree of the five enzymes constructed using the neighbor-joining method showed good agreement with the similarities in the enzyme substrate specificity.
Collapse
Affiliation(s)
- H Kimura
- Division of Cell Biology, Institute of Life Science, Soka University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Wide Variety of Point Mutations in the H Gene of Bombay and Para-Bombay Individuals That Inactivate H Enzyme. Blood 1997. [DOI: 10.1182/blood.v90.2.839.839_839_849] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The H genes, encoding an α1,2fucosyltransferase, which defines blood groups with the H structure, of four Bombay and 13 para-Bombay Japanese individuals were analyzed for mutations. Four Bombay individuals were homologous for the same null H allele, which is inactivated by a single nonsense mutation at position 695 from G to A (G695A), resulting in termination of H gene translation. The allele inactivated by the G695A was designated h1. The other 13 para-Bombay individuals possessed a trace amount of H antigens on erythrocytes regardless of their secretor status. Sequence analysis of their H genes showed four additional inactivated H gene alleles, h2, h3, h4, and h5. The h2 allele possesed a single base deletion at position 990 G (990-del). The h3 and h4 alleles possessed a single missense mutation, T721C, which changes Tyr 241 to His, and G442T, which changes Asp148 to Tyr, respectively. The h5 allele possessed two missense mutations, T460C (Tyr154 to His) and G1042A (Glu348 to Lys). The h2, h3, h4, and h5 enzymes directed by these alleles were not fully inactivated by the deletion and the missense mutations expressing some residual enzyme activity resulting in synthesis of H antigen on erythrocytes. Thirteen para-Bombay individuals whose erythrocytes retained a trace amount of H antigen were determined to be heterozygous or homozygous for at least one of h2, h3, h4, or h5 alleles. This clarified that the levels (null to trace amount) of H antigen expression on erythrocytes of Bombay and para-Bombay individuals are determined solely by H enzyme activity. These mutations found in the Japanese H alleles differ from a nonsense mutation found in the Indonesian population. To determine the roles of the H, Se, and Le genes in the expression of H antigen in secretions and Lewis blood group antigen on erythrocytes, the Lewis and secretor genes were also examined in these Bombay and para-Bombay individuals. The Lewis blood group phenotype, Le(α- b+), was determined by the combinatorial activity of two fucosyltransferases, the Lewis enzyme and the secretor enzyme, and the secretor status was solely determined by the secretor enzyme activity, not by H enzyme activity. Bombay individuals were confirmed to be homozygous for the inactivated H and Se genes. As expected from the very low frequency of Bombay and para-Bombay individuals in the population, ie, approximately one in two or 300,000, the H gene mutations were found to be very variable, unlike the cases of the point mutations in the other glycosyltransferase genes; the ABO genes, the Lewis gene, and the secretor gene.
Collapse
|
30
|
Wide Variety of Point Mutations in the H Gene of Bombay and Para-Bombay Individuals That Inactivate H Enzyme. Blood 1997. [DOI: 10.1182/blood.v90.2.839] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe H genes, encoding an α1,2fucosyltransferase, which defines blood groups with the H structure, of four Bombay and 13 para-Bombay Japanese individuals were analyzed for mutations. Four Bombay individuals were homologous for the same null H allele, which is inactivated by a single nonsense mutation at position 695 from G to A (G695A), resulting in termination of H gene translation. The allele inactivated by the G695A was designated h1. The other 13 para-Bombay individuals possessed a trace amount of H antigens on erythrocytes regardless of their secretor status. Sequence analysis of their H genes showed four additional inactivated H gene alleles, h2, h3, h4, and h5. The h2 allele possesed a single base deletion at position 990 G (990-del). The h3 and h4 alleles possessed a single missense mutation, T721C, which changes Tyr 241 to His, and G442T, which changes Asp148 to Tyr, respectively. The h5 allele possessed two missense mutations, T460C (Tyr154 to His) and G1042A (Glu348 to Lys). The h2, h3, h4, and h5 enzymes directed by these alleles were not fully inactivated by the deletion and the missense mutations expressing some residual enzyme activity resulting in synthesis of H antigen on erythrocytes. Thirteen para-Bombay individuals whose erythrocytes retained a trace amount of H antigen were determined to be heterozygous or homozygous for at least one of h2, h3, h4, or h5 alleles. This clarified that the levels (null to trace amount) of H antigen expression on erythrocytes of Bombay and para-Bombay individuals are determined solely by H enzyme activity. These mutations found in the Japanese H alleles differ from a nonsense mutation found in the Indonesian population. To determine the roles of the H, Se, and Le genes in the expression of H antigen in secretions and Lewis blood group antigen on erythrocytes, the Lewis and secretor genes were also examined in these Bombay and para-Bombay individuals. The Lewis blood group phenotype, Le(α- b+), was determined by the combinatorial activity of two fucosyltransferases, the Lewis enzyme and the secretor enzyme, and the secretor status was solely determined by the secretor enzyme activity, not by H enzyme activity. Bombay individuals were confirmed to be homozygous for the inactivated H and Se genes. As expected from the very low frequency of Bombay and para-Bombay individuals in the population, ie, approximately one in two or 300,000, the H gene mutations were found to be very variable, unlike the cases of the point mutations in the other glycosyltransferase genes; the ABO genes, the Lewis gene, and the secretor gene.
Collapse
|
31
|
Costache M, Cailleau A, Fernandez-Mateos P, Oriol R, Mollicone R. Advances in molecular genetics of alpha-2- and alpha-3/4-fucosyltransferases. Transfus Clin Biol 1997; 4:367-82. [PMID: 9269717 DOI: 10.1016/s1246-7820(97)80042-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Fucosyltransferases are involved in the last steps of the biosynthesis of ABH and Lewis oligosaccharide antigens. Seven human genes (FUT1 to FUT7) and one pseudogene (Sec 1) have been cloned and localized on different chromosomes (9q34.3; 11q21; 19p13.3 and 19q13.3). Their locations and their high degree of primary sequence identity, suggest that they have appeared by successive duplications followed by translocation and divergent evolution. Their expression is tissue specific and they present a switch during human embryo-foetal development similar to that of hemoglobins. Polymorphic genes FUT1-FUT2 and FUT3-FUT5-FUT6 are organized in two clusters and each gene is partially or totally inactivated by different types of point mutations (nonsense, missense and frame shift), complete gene deletion or a fusion gene. The products of the monomorphic genes FUT4 and FUT7 seem implicated in cell-cell interactions during embryo-foetal development and in the leukocyte adhesion phenomena to endothelial cells in the adult. A phylogenetic tree of the 28 available nucleotide coding sequences of fucosyltransferases has allowed us to situate the duplication events with respect to the separation of species from the main evolutionary path (nematods, birds, mammals, primates and humans). Recently, using a computer approach a general structure of fucosyltransferases has been proposed, inspired from the crystalline structure of the beta-glucosyltransferase of bacteriophage T4. This folding contains two domains with an alternate succession alpha and beta chains. In this model the GDP-fucose binding site would be located between the two domains.
Collapse
Affiliation(s)
- M Costache
- INSERM U178, Université Paris-Sud (XI), Villejuif, France
| | | | | | | | | |
Collapse
|
32
|
Oulmouden A, Wierinckx A, Petit JM, Costache M, Palcic MM, Mollicone R, Oriol R, Julien R. Molecular cloning and expression of a bovine alpha(1,3)-fucosyltransferase gene homologous to a putative ancestor gene of the human FUT3-FUT5-FUT6 cluster. J Biol Chem 1997; 272:8764-73. [PMID: 9079712 DOI: 10.1074/jbc.272.13.8764] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Only one bovine gene, corresponding to the human cluster of genes FUT3-FUT5-FUT6, was found by Southern blot analysis. The cognate bovine alpha(1,3)-fucosyltransferase shares 67.3, 69.0, and 69.3% amino acid sequence identities with human FUC-T3, FUC-T5, and FUC-T6 enzymes, respectively. As revealed by protein sequence alignment, potential sites for asparagine-linked glycosylation and conserved cysteines, the bovine enzyme is an intermediate between FUC-T3, FUC-T5, and FUC-T6 human enzymes. Transfected into COS-7 cells, the bovine gene induced the synthesis of an alpha(1, 3)-fucosyltransferase enzyme with type 2 substrate acceptor pattern specificity and induced expression of fucosylated type 2 epitopes (Lex and sialyl-Lex), but not of type 1 structures (Lea or sialyl-Lea), suggesting that it has an acceptor specificity similar to the human plasma FUC-T6. However, no enzyme activity was detected in bovine plasma. Gene transcripts are detected on tissues such as bovine liver, kidney, lung, and brain. The type 2 sialyl-Lex epitope was found in renal macula densa and biliary ducts, and Lex and Ley epitopes were detected on the brush border of epithelial cells of small and large intestine, suggesting a tissue distribution closer to human FUC-T3, but fucosylated type 1 structures (Lea, Leb, or sialyl-Lea) were not detected at all in any bovine tissue. Analysis of genetic distances on a combined phylogenetic tree of fucosyltransferase genes suggests that the bovine gene is the orthologous homologue of the ancestor of human genes constituting the present FUT3-FUT5-FUT6 cluster.
Collapse
Affiliation(s)
- A Oulmouden
- Institut de Biotechnologie, Faculté des Sciences, Université de Limoges, 87060 Limoges, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The blood group antigens have been dismissed by some researchers as merely 'icing on the cake' of glycoprotein structures. The fact that there are no lethal mutations and individuals have been described lacking ABO, H and Lewis antigens seems to lend weight to the argument. This paper reviews the research which suggests that these antigens do indeed have function and argues that blood group antigens play important roles in modulation of protein activity, infection and cancer. It explores the evidence and poses questions as to the relevance and implications of the results.
Collapse
Affiliation(s)
- P Greenwell
- School of Biological and Health Sciences, University of Westminster, London, UK
| |
Collapse
|
34
|
Murray BW, Wittmann V, Burkart MD, Hung SC, Wong CH. Mechanism of human alpha-1,3-fucosyltransferase V: glycosidic cleavage occurs prior to nucleophilic attack. Biochemistry 1997; 36:823-31. [PMID: 9020780 DOI: 10.1021/bi962284z] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
alpha-1,3-Fucosyltransferase V (FucT V) catalyzes the transfer of 1-fucose from the donor sugar guanosine 5'-diphospho-beta-1-fucose (GDP-Fuc) to an acceptor sugar. A secondary isotope effect on the fucosyltransfer reaction with guanosine 5'-diphospho-[1-2H]-beta-1-fucose (GDP-[1-2H]-Fuc) as the substrate was observed and determined to be Dv = 1.32 +/- 0.13 and DV/K = 1.27 +/- 0.07. Competitive inhibition of FucT V by guanosine 5'-diphospho-2-deoxy-2-fluoro-beta-1-fucose (GDP-2F-Fuc) was observed with an inhibition constant of 4.2 microM which represents the most potent inhibitor of this enzyme to date. Incubation of GDP-2F-Fuc with FucT V and an acceptor molecule prior to the addition of GDP-Fuc had no effect on the potency of inhibition, indicating that GDP-2F-Fuc is neither an inactivator nor a slow substrate. Both the observed secondary isotope effect and the inhibition by GDP-2F-Fuc are consistent with a charged, sp2-hybridized, transition-state structure. A convenient and efficient synthesis of GDP-[1-2H]-Fuc and GDP-2F-Fuc and a nonradioactive, fluorescence assay for fucosyltransferase activity have been developed.
Collapse
Affiliation(s)
- B W Murray
- Department of Chemistry, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
35
|
Orntoft TF, Vestergaard EM, Holmes E, Jakobsen JS, Grunnet N, Mortensen M, Johnson P, Bross P, Gregersen N, Skorstengaard K, Jensen UB, Bolund L, Wolf H. Influence of Lewis alpha1-3/4-L-fucosyltransferase (FUT3) gene mutations on enzyme activity, erythrocyte phenotyping, and circulating tumor marker sialyl-Lewis a levels. J Biol Chem 1996; 271:32260-8. [PMID: 8943285 DOI: 10.1074/jbc.271.50.32260] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Fucosylated glycoproteins carrying alpha1-4 fucose residues are of importance for cell adhesion and as tumor markers. The Lewis gene, FUT3, encodes the only known alpha1-4-fucosyltransferase (FucT), and individuals who are deficient in this enzyme type as Lewis-negative on erythrocytes. We examined the mutational spectrum of the Lewis gene in Denmark and found 6 different mutations. Five, T59G, T202C, C314T, G508A, and T1067A, were frequent, and one, C445A, was only detected in one out of 40 individuals. Allele-specific polymerase chain reaction as well as cloning of FUT3 alleles showed that the 202 and 314 mutations were co-located on the same allele. COS7 cells transfected with an allele having the 202/314 mutations lacked enzyme activity. Polymerase chain reaction-cleavage assays were established for the genotyping of healthy individuals as well as 20 genuine Lewis-negative cancer patients and 10 non-genuine. The latter have Lewis-negative erythrocytes but saliva alpha1-4FucT activity. The genuine Lewis-negative individuals had mutations on both FUT3 alleles. In 66 healthy individuals, a gene dosage effect was detected as FUT3 heterozygous individuals had a lower alpha1-4FucT activity in saliva than did homozygous wild-type individuals. The lower enzyme level in heterozygous individuals resulted in a significantly (p < 0.04) lower level of circulating sialyl-Lewis a structure in serum. This has the clinical impact that cut-off levels in tumor marker assays should be defined on the basis of genotyping. In the group of non-genuine Lewis-negative cancer patients, whose erythrocytes convert from Lewis-positive to Lewis-negative during the disease, FUT3 heterozygosity was significantly (p < 0.05) more common.
Collapse
Affiliation(s)
- T F Orntoft
- Department of Clinical Biochemistry, Skejby University Hospital, DK 8200 Aarhus N, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Murray BW, Takayama S, Schultz J, Wong CH. Mechanism and specificity of human alpha-1,3-fucosyltransferase V. Biochemistry 1996; 35:11183-95. [PMID: 8780523 DOI: 10.1021/bi961065a] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Human alpha-1,3-fucosyltransferase catalyzes the transfer of the L-fucose moiety from guanosine diphosphate-beta-L-fucose (GDP-Fuc) to acceptor sugars to form biologically important fucoglycoconjugates, including sialyl Lewis x (SLex). Evidence for a general base mechanism is supported by a pH-rate profile that revealed a catalytic residue with a pKa of 4.1. The characterized solvent kinetic isotope effect (Dv = 2.9, Dv/k = 2.1) in a proton inventory study indicates that only one-proton transfer is involved in the catalytic step leading to the formation of the transition state. Evidence for Mn2+ as an electrophilic catalyst was supported by the observation that the nonenzymatic transfer of L-fucose from GDP-Fuc to the hydroxyl group of water in the presence of 10 mM MnCl2 at 20 degrees C was accelerated from K(obs)= 3.5 x 10(-6) to 3.8 x 10(-5) min-1. Using the GDP-Fuc hydrolysis as the nonenzymatic rate, the enzymatic proficiency of FucT V, (Kcat/Ki,GDP-fuc. K(m),1.acNAc)/K(non), was estimated to be 1.2 x 10(10) M-1 with a transition-state affinity of 8.6 x 10(-11) M. The Km for Mn2+ was determined to be 6.1 mM, and alternative divalent metal cofactors were identified as Ca2+, Co2+, and Mg2+. Detailed kinetic characterization of the acceptor sugar specificity indicated that incorporation of hydrophobic functionality [e.g. -O-(CH2)5CO2CH3] to the reducing end of the acceptor sugar substantially decreased the K(m),acceptor by over 100-fold. The role of the nucleotide was investigated by studying the inhibition of nucleotides, including the guanosine series. The inhibitory potency trend (GTP approximately GDP > GMP > > guanosine) is consistent with bidentate chelation of Mn2+ by GDP-Fuc. The role of charge and distance in the synergistic inhibitory effect by the combination of GDP, an aza sugar, and the acceptor sugar was probed. A mechanism for fucosyl transfer incorporating these findings is proposed and discussed.
Collapse
Affiliation(s)
- B W Murray
- Department of Chemistry, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
37
|
Qiao L, Murray BW, Shimazaki M, Schultz J, Wong CH. Synergistic Inhibition of Human α-1,3-Fucosyltransferase V. J Am Chem Soc 1996. [DOI: 10.1021/ja960274f] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lei Qiao
- Contribution from the Department of Chemistry, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California, 92037, and Cytel Corporation, 3525 John Hopkins Court, San Diego, California, 92121
| | - Brion W. Murray
- Contribution from the Department of Chemistry, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California, 92037, and Cytel Corporation, 3525 John Hopkins Court, San Diego, California, 92121
| | - Makoto Shimazaki
- Contribution from the Department of Chemistry, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California, 92037, and Cytel Corporation, 3525 John Hopkins Court, San Diego, California, 92121
| | - Jody Schultz
- Contribution from the Department of Chemistry, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California, 92037, and Cytel Corporation, 3525 John Hopkins Court, San Diego, California, 92121
| | - Chi-Huey Wong
- Contribution from the Department of Chemistry, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California, 92037, and Cytel Corporation, 3525 John Hopkins Court, San Diego, California, 92121
| |
Collapse
|
38
|
Kudo T, Iwasaki H, Nishihara S, Shinya N, Ando T, Narimatsu I, Narimatsu H. Molecular genetic analysis of the human Lewis histo-blood group system. II. Secretor gene inactivation by a novel single missense mutation A385T in Japanese nonsecretor individuals. J Biol Chem 1996; 271:9830-7. [PMID: 8621666 DOI: 10.1074/jbc.271.16.9830] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Lewis histo-blood group system comprises two major antigens, Lewis a and Lewis b. The Lewis b antigen is a product of two fucosyltransferases, the alpha(1,3/1,4)fucosyltransferase (Lewis enzyme; Fuc-TIII) encoded by the Lewis gene and an alpha(1,2)fucosyltransferase which is not required for synthesis of Lewis a antigen. An enzyme responsible for secreting ABH antigens into body secretions (secretor enzyme) is also one of alpha(1,2)fucosyltransferases. A candidate gene encoding secretor enzyme Sec2 gene was recently cloned by Rouquier, S., Lowe, J. B., Kelly, R. J., Fertitta, A. L., Lennon, G. G., and Giorgi, D. ((1995) J. Biol. Chem. 270, 4632-4639) and Kelly, R. J., Rouquier, S., Giorgi, D., Lennon, G. G., and Lowe, J. B. ((1995) J. Biol. Chem. 270, 4640-4649) who demonstrated a G428A nonsense mutation (Trp143 to terminal codon) in Sec2 of nonsecretors. However, the G428A nonsense mutation discovered in the Sec2 gene of nonsecretors in an ethnic group other than Japanese was not found in any of 45 Japanese nonsecretors, whereas one Filipino who had been erroneously registered as a Japanese possessed the G428A mutation heterozygously. In order to explore the Sec2 gene of a Japanese population, we performed a molecular genetic analysis of the Sec2 gene on 226 Japanese individuals, 21 in a family study and 205 in a random sampling study. We discovered two novel mutations in the Sec2 gene, an A385T missense mutation (Ile129 to Phe) that results in inactivation of Sec2-encoded alpha(1,2)fucosyltransferase and a C357T silent mutation which is irrelevant to amino acid substitution, in Japanese nonsecretors. The analysis of Japanese individuals using the polymerase chain reaction-restriction fragment length polymorphism method found three alleles in the Sec2 gene, the first having no mutation, the second having a C357T mutation, and the third having both C357T and A385T mutations, which we designated as Se1, Se2, and sej, respectively. Among 226 Japanese individuals, 40 having a Le(a+b-) phenotype and 5 having a Le(a-b-) nonsecretor phenotype were homozygous for sej/sej, whereas 149 having a Le(a-b+) phenotype and 32 having a Le(a-b-)-secretor phenotype possessed at least one Se1 or Se2. The frequencies of occurrence of Se1, Se2, and sej among 410 alleles examined in a random sample of 205 Japanese individuals were 15, 46, and 39%, respectively, indicating a rather wide distribution of the sej allele in the Japanese population. The results show that the Sec2 gene really encodes the secretor enzyme alpha(1,2)fucosyltransferase and indicate that a ethnic group-specific nonsense or missense point mutation in the Sec2 gene determines nonsecretor status. The phylogenic aspect and biological significance of the Se and Le genes are discussed.
Collapse
Affiliation(s)
- T Kudo
- Division of Cell Biology, Institute of Life Science, Soka University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Ashworth LK, Batzer MA, Brandriff B, Branscomb E, de Jong P, Garcia E, Garnes JA, Gordon LA, Lamerdin JE, Lennon G, Mohrenweiser H, Olsen AS, Slezak T, Carrano AV. An integrated metric physical map of human chromosome 19. Nat Genet 1995; 11:422-7. [PMID: 7493023 DOI: 10.1038/ng1295-422] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A metric physical map of human chromosome 19 has been generated. The foundation of the map is sets of overlapping cosmids (contigs) generated by automated fingerprinting spanning over 95% of the euchromatin, about 50 megabases (Mb). Distances between selected cosmid clones were estimated using fluorescence in situ hybridization in sperm pronuclei, providing both order and distance between contigs. An average inter-marker separation of 230 kb has been obtained across the non-centromeric portion of the chromosome. Various types of larger insert clones were used to span gaps between contigs. Currently, the map consists of 51 'islands' containing multiple clone types, whose size, order and relative distance are known. Over 450 genes, genetic markers, sequence tagged sites (STSs), anonymous cDNAs, and other markers have been localized. In addition, EcoRI restriction maps have been generated for > 41 Mb (approximately 83%) of the chromosome.
Collapse
Affiliation(s)
- L K Ashworth
- Human Genome Center, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cameron HS, Szczepaniak D, Weston BW. Expression of human chromosome 19p alpha(1,3)-fucosyltransferase genes in normal tissues. Alternative splicing, polyadenylation, and isoforms. J Biol Chem 1995; 270:20112-22. [PMID: 7650030 DOI: 10.1074/jbc.270.34.20112] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The human alpha(1,3)-fucosyltransferase genes FUT3, FUT5, and FUT6 form a cluster on chromosome 19p13.3. Expression was studied using reverse transcriptase-polymerase chain reaction, rapid amplification of cDNA ends, and Northern analyses. FUT3 and FUT6 were expressed at high levels, while FUT5 expression was lower and restricted to fewer cell types. Alternatively spliced transcripts were identified for FUT3 and FUT6 in kidney, liver, and colon. A 2.37-kilobase pair (kb) FUT3 transcript, detected at high levels in kidney and colon, was absent in liver. FUT6 expression was characterized by a 3.5-kb transcript present in kidney and liver, and a 2.5-kb transcript in colon and liver. Two polyadenylation sites were shown for FUT5, but absence of consensus sequences suggests reduced efficiency for cleavage and polyadenylation. Two polyadenylation sites were also shown for FUT6, with the alternatively spliced downstream signal in tissues expressing high levels of FUT6. In these tissues, additional splicing results in isoforms with catalytic domain deletions. No detectable alpha(1,3)- or alpha(1,4)-fucosyltransferase activity was found in assays of cells transfected with FUT6 isoform cDNAs. Thus, tissue-specific post-transcriptional modifications are associated with expression patterns of FUT3, FUT5, and FUT6.
Collapse
Affiliation(s)
- H S Cameron
- Department of Pediatrics, University of North Carolina at Chapel Hill 27599-7220, USA
| | | | | |
Collapse
|
41
|
Mollicone R, Cailleau A, Oriol R. Molecular genetics of H, Se, Lewis and other fucosyltransferase genes. Transfus Clin Biol 1995; 2:235-42. [PMID: 8542021 DOI: 10.1016/s1246-7820(05)80089-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Seven human fucosyltransferase genes have been cloned and registered in the Genome Data Base (GDB) as FUT1 to FUT7. According to their acceptor specificity, two main groups of enzymes can be distinguished. The alpha-2-fucosyltransferases: FUT1 (H) of red cells and vascular endothelium and FUT2 (Se) of exocrine secretions. The alpha-3-fucosyltransferases: FUT3 (Lewis) of exocrine secretions; FUT4 (myeloid) of white cells and brain; FUT5 whose tissue distribution has not been defined as yet; FUT6 (plasma) present in plasma, renal proximal tubules and hepatocytes; FUT7 (leukocyte) found in neutrophils. A high DNA sequence homology has been detected among the genes within each of these two groups, while no homology has been detected between the genes of the two groups. Point mutations responsible of inactivating genetic polymorphisms have been found for FUT1, FUT2, FUT3 and FUT6, while FUT4 and FUT7 seem to be genetically monomorphic. FUT4 has been detected in all tissues of 5 to 10 weeks old human embryos suggesting that it may play a role in development. FUT7 is a candidate for the control of the synthesis of the receptors of selectin mediated cell adhesion.
Collapse
Affiliation(s)
- R Mollicone
- INSERM U178, Université Paris-Sud, Villejuif, France
| | | | | |
Collapse
|
42
|
Auchincloss A, Alexander A, Kohorn B. Requirement for three membrane-spanning alpha-helices in the post-translational insertion of a thylakoid membrane protein. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50038-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|