1
|
Wang M, Gelfand EW. Targeting Pim1 kinase in the treatment of peanut allergy. Expert Opin Ther Targets 2013; 18:177-83. [DOI: 10.1517/14728222.2014.855721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
2
|
Inhibition of Pim1 kinase prevents peanut allergy by enhancing Runx3 expression and suppressing T(H)2 and T(H)17 T-cell differentiation. J Allergy Clin Immunol 2012; 130:932-44.e12. [PMID: 22944483 DOI: 10.1016/j.jaci.2012.07.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND The provirus integration site for Moloney murine leukemia virus (Pim) 1 kinase is an oncogenic serine/threonine kinase implicated in cytokine-induced cell signaling, whereas Runt-related transcription factor (Runx) has been implicated in the regulation of T-cell differentiation. The interaction of Pim1 kinase and Runx3 in the pathogenesis of peanut allergy has not been defined. OBJECTIVES We sought to determine the effects of Pim1 kinase modulation on Runx3 expression and T(H)2 and T(H)17 cell function in an experimental model of peanut allergy. METHODS A Pim1 kinase inhibitor was administered to peanut-sensitized and challenged wild-type and Runx3(+/-) mice. Symptoms, intestinal inflammation, and Pim1 kinase and Runx3 mRNA expression and protein levels were assessed. The effects of Pim1 kinase inhibition on T(H)1, T(H)2, and T(H)17 differentiation in vivo and in vitro were also determined. RESULTS Peanut sensitization and challenge resulted in accumulation of inflammatory cells and goblet cell metaplasia and increased levels of Pim1 kinase and T(H)2 and T(H)17 cytokine production but decreased levels of Runx3 mRNA and protein in the small intestines of wild-type mice. All of these findings were normalized with Pim1 kinase inhibition. In sensitized and challenged Runx3(+/-) mice, inhibition of Pim1 kinase had less effect on the development of the full spectrum of intestinal allergic responses. In vitro inhibition of Pim1 kinase attenuated T(H)2 and T(H)17 cell differentiation and expansion while maintaining Runx3 expression in T-cell cultures from wild-type mice; these effects were reduced in T-cell cultures from Runx3(+/-) mice. CONCLUSION These data support a novel regulatory axis involving Pim1 kinase and Runx3 in the control of food-induced allergic reactions through the regulation of T(H)2 and T(H)17 differentiation.
Collapse
|
3
|
Ito Y. RUNX genes in development and cancer: regulation of viral gene expression and the discovery of RUNX family genes. Adv Cancer Res 2008; 99:33-76. [PMID: 18037406 DOI: 10.1016/s0065-230x(07)99002-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mouse embryonal carcinoma (EC) cells, also called teratocarcinoma stem cells, are nonpermissive for polyomavirus growth, whereas differentiated derivatives of the cells are permissive. Mutant viruses capable of growing in EC cells can be isolated. They have genomic alterations within the viral enhancer, which is required for viral gene expression and DNA replication. This viral regulatory region was considered as a potential probe for mouse cell differentiation. The 24-bp-long A element within the enhancer was identified as a minimum element, which also shows a lower activity in EC cells compared with the differentiated cells. Transcription factors PEA1/AP1, PEA2/PEBP2, and PEA3/ETS were identified as A element-binding proteins. All of them are absent in EC cells and induced to be expressed when the cells are differentiated. Although PEBP2 has a weaker transactivation activity compared with other two, it is essential for the enhancer function of the A element. Purification and cDNA cloning revealed that PEBP2 has two subunits, DNA-binding alpha (PEBP2alpha) and non-DNA-binding beta (PEBP2beta). PEBP2alpha was found to be highly homologous to a Drosophila segmentation gene, runt, and a human gene AML1 that was identified as a part of the fusion gene, AML1/ETO (MTG8) generated by t(8;21) chromosome translocation associated with acute myelogenous leukemia (AML). Core-binding factor (CBF), which interacts with a murine retrovirus enhancer, was found to be identical to PEBP2. runt, PEBP2alpha and AML1 are now termed RUNX family, which are involved in cell specification during development. There are three mammalian RUNX genes, RUNX1, RUNX2, and RUNX3. RUNX1 is essential for generation of hematopoietic stem cells and is involved in human leukemia. RUNX2 is essential for skeletal development and has an oncogenic potential. RUNX3 is expressed in wider ranges of tissues and has multiple roles. Among others, RUNX3 is a major tumor suppressor of gastric and many other solid tumors.
Collapse
Affiliation(s)
- Yoshiaki Ito
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
4
|
Stock M, Otto F. Control of RUNX2 isoform expression: The role of promoters and enhancers. J Cell Biochem 2005; 95:506-17. [PMID: 15838892 DOI: 10.1002/jcb.20471] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The three mammalian RUNX genes constitute the family of runt domain transcription factors that are involved in the regulation of a number of developmental processes such as haematopoiesis, osteogenesis and neuronal differentiation. All three genes show a complex temporo-spatial pattern of expression. Since the three proteins are probably mutually interchangeable with regard to function, most of the specificity of each family member seems to be based on a tightly controlled regulation of expression. While RUNX gene expression is driven by two promoters for each gene, the promoter sequence alone does not seem to suffice for a proper expressional control. This review focuses on the available evidence for the existence of such control mechanisms and studies aiming at discovering cis-acting regulatory sequences of the RUNX2 gene.
Collapse
Affiliation(s)
- Michael Stock
- Division of Hematology/Oncology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | | |
Collapse
|
5
|
Abstract
The RUNX are key regulators of lineage-specific gene expression in major developmental pathways. The expression of RUNX genes is tightly regulated, leading to a highly specific spatio/temporal expression pattern and to distinct phenotypes of gene knockouts. This review highlights the extensive structural similarities between the three mammalian RUNX genes and delineates how regulation of their expression at the levels of transcription and translation are orchestrated into the unique RUNX expression pattern.
Collapse
Affiliation(s)
- Ditsa Levanon
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
6
|
Woolf E, Xiao C, Fainaru O, Lotem J, Rosen D, Negreanu V, Bernstein Y, Goldenberg D, Brenner O, Berke G, Levanon D, Groner Y. Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc Natl Acad Sci U S A 2003; 100:7731-6. [PMID: 12796513 PMCID: PMC164656 DOI: 10.1073/pnas.1232420100] [Citation(s) in RCA: 307] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RUNX transcription factors are important regulators of lineage-specific gene expression. RUNX are bifunctional, acting both as activators and repressors of tissue-specific target genes. Recently, we have demonstrated that Runx3 is a neurogenic transcription factor, which regulates development and survival of proprioceptive neurons in dorsal root ganglia. Here we report that Runx3 and Runx1 are highly expressed in thymic medulla and cortex, respectively, and function in development of CD8 T cells during thymopoiesis. Runx3-deficient (Runx3 KO) mice display abnormalities in CD4 expression during lineage decisions and impairment of CD8 T cell maturation in the thymus. A large proportion of Runx3 KO peripheral CD8 T cells also expressed CD4, and in contrast to wild-type, their proliferation ability was largely reduced. In addition, the in vitro cytotoxic activity of alloimmunized peritoneal exudate lymphocytes was significantly lower in Runx3 KO compared with WT mice. In a compound mutant mouse, null for Runx3 and heterozygous for Runx1 (Runx3-/-;Runx1+/-), all peripheral CD8 T cells also expressed CD4, resulting in a complete lack of single-positive CD8+ T cells in the spleen. The results provide information on the role of Runx3 and Runx1 in thymopoiesis and suggest that both act as transcriptional repressors of CD4 expression during T cell lineage decisions.
Collapse
Affiliation(s)
- Eilon Woolf
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Levanon D, Bettoun D, Harris-Cerruti C, Woolf E, Negreanu V, Eilam R, Bernstein Y, Goldenberg D, Xiao C, Fliegauf M, Kremer E, Otto F, Brenner O, Lev-Tov A, Groner Y. The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J 2002; 21:3454-63. [PMID: 12093746 PMCID: PMC125397 DOI: 10.1093/emboj/cdf370] [Citation(s) in RCA: 356] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The RUNX transcription factors are important regulators of linage-specific gene expression in major developmental pathways. Recently, we demonstrated that Runx3 is highly expressed in developing cranial and dorsal root ganglia (DRGs). Here we report that within the DRGs, Runx3 is specifically expressed in a subset of neurons, the tyrosine kinase receptor C (TrkC) proprioceptive neurons. We show that Runx3-deficient mice develop severe limb ataxia due to disruption of monosynaptic connectivity between intra spinal afferents and motoneurons. We demonstrate that the underlying cause of the defect is a loss of DRG proprioceptive neurons, reflected by a decreased number of TrkC-, parvalbumin- and beta-galactosidase-positive cells. Thus, Runx3 is a neurogenic TrkC neuron-specific transcription factor. In its absence, TrkC neurons in the DRG do not survive long enough to extend their axons toward target cells, resulting in lack of connectivity and ataxia. The data provide new genetic insights into the neurogenesis of DRGs and may help elucidate the molecular mechanisms underlying somatosensory-related ataxia in humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Raya Eilam
- Departments of Molecular Genetics and
Veterinary Resources, The Weizmann Institute of Science, Rehovot 76100, Department of Anatomy and Cell Biology, The Hebrew University Medical School, Jerusalem 91120, Israel and Department of Hematology/Oncology, University of Freiburg Medical Center, D-79106 Freiburg, Germany Corresponding author e-mail: D.Levanon and D.Bettoun contributed equally to this work
| | | | | | | | - Manfred Fliegauf
- Departments of Molecular Genetics and
Veterinary Resources, The Weizmann Institute of Science, Rehovot 76100, Department of Anatomy and Cell Biology, The Hebrew University Medical School, Jerusalem 91120, Israel and Department of Hematology/Oncology, University of Freiburg Medical Center, D-79106 Freiburg, Germany Corresponding author e-mail: D.Levanon and D.Bettoun contributed equally to this work
| | - Eitan Kremer
- Departments of Molecular Genetics and
Veterinary Resources, The Weizmann Institute of Science, Rehovot 76100, Department of Anatomy and Cell Biology, The Hebrew University Medical School, Jerusalem 91120, Israel and Department of Hematology/Oncology, University of Freiburg Medical Center, D-79106 Freiburg, Germany Corresponding author e-mail: D.Levanon and D.Bettoun contributed equally to this work
| | - Florian Otto
- Departments of Molecular Genetics and
Veterinary Resources, The Weizmann Institute of Science, Rehovot 76100, Department of Anatomy and Cell Biology, The Hebrew University Medical School, Jerusalem 91120, Israel and Department of Hematology/Oncology, University of Freiburg Medical Center, D-79106 Freiburg, Germany Corresponding author e-mail: D.Levanon and D.Bettoun contributed equally to this work
| | - Ori Brenner
- Departments of Molecular Genetics and
Veterinary Resources, The Weizmann Institute of Science, Rehovot 76100, Department of Anatomy and Cell Biology, The Hebrew University Medical School, Jerusalem 91120, Israel and Department of Hematology/Oncology, University of Freiburg Medical Center, D-79106 Freiburg, Germany Corresponding author e-mail: D.Levanon and D.Bettoun contributed equally to this work
| | - Aharon Lev-Tov
- Departments of Molecular Genetics and
Veterinary Resources, The Weizmann Institute of Science, Rehovot 76100, Department of Anatomy and Cell Biology, The Hebrew University Medical School, Jerusalem 91120, Israel and Department of Hematology/Oncology, University of Freiburg Medical Center, D-79106 Freiburg, Germany Corresponding author e-mail: D.Levanon and D.Bettoun contributed equally to this work
| | - Yoram Groner
- Departments of Molecular Genetics and
Veterinary Resources, The Weizmann Institute of Science, Rehovot 76100, Department of Anatomy and Cell Biology, The Hebrew University Medical School, Jerusalem 91120, Israel and Department of Hematology/Oncology, University of Freiburg Medical Center, D-79106 Freiburg, Germany Corresponding author e-mail: D.Levanon and D.Bettoun contributed equally to this work
| |
Collapse
|
8
|
Stewart M, MacKay N, Cameron ER, Neil JC. The common retroviral insertion locus Dsi1 maps 30 kilobases upstream of the P1 promoter of the murine Runx3/Cbfa3/Aml2 gene. J Virol 2002; 76:4364-9. [PMID: 11932403 PMCID: PMC155108 DOI: 10.1128/jvi.76.9.4364-4369.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Dsi1 locus was identified as a common integration site for Moloney murine leukemia virus (MLV) in rat thymic lymphomas, but previous efforts to identify a gene affected by these insertions were unsuccessful. We considered the Runx3 gene a potential candidate on the basis of genetic mapping which showed that Dsi1 and Runx3 are closely linked on mouse chromosome 4 and the precedent of the related Runx2 gene, which emerged recently as a Myc-collaborating gene activated by retroviral insertion in thymic lymphomas of CD2-MYC mice. We now report the physical mapping of the Dsi1 locus to a site 30 kb upstream of the distal (P1) promoter of the murine Runx3 gene. Comparison with the syntenic region of human chromosome 1 shows that the next gene is over 250 kb 5' to Runx3, suggesting that Runx3 may be the primary target of retroviral insertions at Dsi1. Screening of CD2-MYC lymphomas for rearrangements at Dsi1 revealed a tumor cell line harboring an MLV provirus at this locus, in the orientation opposite that of Runx3. Proviral insertion was associated with very high levels of expression of Runx3, with a preponderance of transcripts arising at the P1 promoter. These results confirm that Runx3 is a target of retroviral insertions at Dsi1 and indicate that Runx3 can act as an alternative to Runx2 as a Myc-collaborating gene in thymic lymphoma.
Collapse
Affiliation(s)
- Monica Stewart
- Molecular Oncology Laboratory, Institute of Comparative Medicine, University of Glasgow Veterinary School, Glasgow G61 1QH, United Kingdom.
| | | | | | | |
Collapse
|
9
|
Bangsow C, Rubins N, Glusman G, Bernstein Y, Negreanu V, Goldenberg D, Lotem J, Ben-Asher E, Lancet D, Levanon D, Groner Y. The RUNX3 gene--sequence, structure and regulated expression. Gene 2001; 279:221-32. [PMID: 11733147 DOI: 10.1016/s0378-1119(01)00760-0] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The RUNX3 gene belongs to the runt domain family of transcription factors that act as master regulators of gene expression in major developmental pathways. In mammals the family includes three genes, RUNX1, RUNX2 and RUNX3. Here, we describe a comparative analysis of the human chromosome 1p36.1 encoded RUNX3 and mouse chromosome 4 encoded Runx3 genomic regions. The analysis revealed high similarities between the two genes in the overall size and organization and showed that RUNX3/Runx3 is the smallest in the family, but nevertheless exhibits all the structural elements characterizing the RUNX family. It also revealed that RUNX3/Runx3 bears a high content of the ancient mammalian repeat MIR. Together, these data delineate RUNX3/Runx3 as the evolutionary founder of the mammalian RUNX family. Detailed sequence analysis placed the two genes at a GC-rich H3 isochore with a sharp transition of GC content between the gene sequence and the downstream intergenic region. Two large conserved CpG islands were found within both genes, one around exon 2 and the other at the beginning of exon 6. RUNX1, RUNX2 and RUNX3 gene products bind to the same DNA motif, hence their temporal and spatial expression during development should be tightly regulated. Structure/function analysis showed that two promoter regions, designated P1 and P2, regulate RUNX3 expression in a cell type-specific manner. Transfection experiments demonstrated that both promoters were highly active in the GM1500 B-cell line, which endogenously expresses RUNX3, but were inactive in the K562 myeloid cell line, which does not express RUNX3.
Collapse
Affiliation(s)
- C Bangsow
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The runx gene family encodes transcriptional regulators that are essential in several processes. Alternative transcription start sites (3' or P1 and 5' or P2) have been described both at runx1 and runx2. Functional domains have been mapped to P2 N-termini. Here, starting from an analysis of cDNA clones, we identify a P2 promoter at mouse runx3. In functional assays in COS-7 cells, this promoter is as active as runx1 P2. By nuclease protection, primer extension and deletion analysis we map a major start site and define a minimal promoter element. The activity of both promoters at all three mouse loci was systematically compared in a comprehensive panel of fresh tissues. The conservation of a two-promoter structure and their distinctive pattern of activity support the hypothesis that alternative 5' isoforms subserve unique functions.
Collapse
Affiliation(s)
- D Rini
- Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | |
Collapse
|
11
|
Lineage- and Stage-Specific Expression of Runt Box Polypeptides in Primitive and Definitive Hematopoiesis. Blood 1997. [DOI: 10.1182/blood.v89.7.2359] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Translocations involving the human CBFA2 locus have been associated with leukemia. This gene, originally named AML1, is a human homologue of the Drosophila gene runt that controls early events in fly embryogenesis. To clarify the role of mammalian runt products in normal and leukemic hematopoiesis, we have studied their pattern of expression in mouse hematopoietic tissues in the adult and during ontogeny using an anti-runt box antiserum. In the adult bone marrow, we found expression of runt polypeptides in differentiating myeloid cells and in B lymphocytes. Within the erythroid lineage, runt expression is biphasic, clearly present in the erythroblasts of early blood islands and of the fetal liver, but absent in the adult. Biochemical analysis by Western blotting of fetal and adult hematopoietic populations shows several runt isoforms. At least one of them appears to be myeloid specific.
Collapse
|
12
|
Zaiman AL, Lenz J. Transcriptional activation of a retrovirus enhancer by CBF (AML1) requires a second factor: evidence for cooperativity with c-Myb. J Virol 1996; 70:5618-29. [PMID: 8764076 PMCID: PMC190522 DOI: 10.1128/jvi.70.8.5618-5629.1996] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transcriptional enhancer sequences within the long terminal repeats (LTRs) of murine leukemia viruses are the primary genetic determinants of the tissue specificity and potency of the oncogenic potential of these retroviruses. SL3-3 (SL3) is a murine leukemia virus that induces T-cell lymphomas. The LTR enhancer of this virus contains two binding sites for the transcription factor CBF (also called AML1 and PEBP2) that flank binding sites for c-Myb and the Ets family of factors. Using cotransfection assays in P19 cells, we report here that CBF and c-Myb cooperatively stimulate transcription from the SL3 LTR. By itself, c-Myb had no stimulatory effect on transcription. However, when cotransfected with a cDNA encoding one form of the alpha subunit of CBF called CBFalpha2-451, a level of transactivation higher than that seen with CBFalpha2-451 alone was detected. The negative regulatory domain near the carboxyl terminus of c-Myb did not affect this activity. Electrophoretic mobility shift assays indicated that CBF and c-Myb bind to DNA independently. Therefore, it appears that the cooperative stimulation of transcription by these factors occurs at a step in the process of transcription after the two factors are bound to the enhancer. Sequences near the carboxyl terminus of CBFalpha2-451 were important for cooperativity with c-Myb, consistent with previous reports that this region contains an activation domain. However, CBFalpha2-451 failed to activate transcription from a version of the SL3 LTR in which the enhancer was replaced with five tandem CBF-binding sites. Thus, it appears that transcriptional activation of the SL3 enhancer by CBF requires that an appropriate heterologous transcription factor be bound to a neighboring site in the regulatory sequences.
Collapse
Affiliation(s)
- A L Zaiman
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|