1
|
Ren JX, Chen L, Guo W, Feng KY, Cai YD, Huang T. Patterns of Gene Expression Profiles Associated with Colorectal Cancer in Colorectal Mucosa by Using Machine Learning Methods. Comb Chem High Throughput Screen 2024; 27:2921-2934. [PMID: 37957897 DOI: 10.2174/0113862073266300231026103844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) has a very high incidence and lethality rate and is one of the most dangerous cancer types. Timely diagnosis can effectively reduce the incidence of colorectal cancer. Changes in para-cancerous tissues may serve as an early signal for tumorigenesis. Comparison of the differences in gene expression between para-cancerous and normal mucosa can help in the diagnosis of CRC and understanding the mechanisms of development. OBJECTIVES This study aimed to identify specific genes at the level of gene expression, which are expressed in normal mucosa and may be predictive of CRC risk. METHODS A machine learning approach was used to analyze transcriptomic data in 459 samples of normal colonic mucosal tissue from 322 CRC cases and 137 non-CRC, in which each sample contained 28,706 gene expression levels. The genes were ranked using four ranking methods based on importance estimation (LASSO, LightGBM, MCFS, and mRMR) and four classification algorithms (decision tree [DT], K-nearest neighbor [KNN], random forest [RF], and support vector machine [SVM]) were combined with incremental feature selection [IFS] methods to construct a prediction model with excellent performance. RESULT The top-ranked genes, namely, HOXD12, CDH1, and S100A12, were associated with tumorigenesis based on previous studies. CONCLUSION This study summarized four sets of quantitative classification rules based on the DT algorithm, providing clues for understanding the microenvironmental changes caused by CRC. According to the rules, the effect of CRC on normal mucosa can be determined.
Collapse
Affiliation(s)
- Jing Xin Ren
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200030, China
| | - Kai Yan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, 510507, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
2
|
Pereslucha AM, Wenger DM, Morris MF, Aydi ZB. Invasive Lobular Carcinoma: A Review of Imaging Modalities with Special Focus on Pathology Concordance. Healthcare (Basel) 2023; 11:healthcare11050746. [PMID: 36900751 PMCID: PMC10000992 DOI: 10.3390/healthcare11050746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Invasive lobular cancer (ILC) is the second most common type of breast cancer. It is characterized by a unique growth pattern making it difficult to detect on conventional breast imaging. ILC can be multicentric, multifocal, and bilateral, with a high likelihood of incomplete excision after breast-conserving surgery. We reviewed the conventional as well as newly emerging imaging modalities for detecting and determining the extent of ILC- and compared the main advantages of MRI vs. contrast-enhanced mammogram (CEM). Our review of the literature finds that MRI and CEM clearly surpass conventional breast imaging in terms of sensitivity, specificity, ipsilateral and contralateral cancer detection, concordance, and estimation of tumor size for ILC. Both MRI and CEM have each been shown to enhance surgical outcomes in patients with newly diagnosed ILC that had one of these imaging modalities added to their preoperative workup.
Collapse
Affiliation(s)
- Alicia M Pereslucha
- Department of Surgery, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85006, USA
| | - Danielle M Wenger
- College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Michael F Morris
- Division of Diagnostic Imaging, Banner MD Anderson Cancer Center, Phoenix, AZ 85006, USA
- Department of Radiology, Banner University Medical Center-Phoenix, Phoenix, AZ 85006, USA
| | - Zeynep Bostanci Aydi
- Department of Surgery, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85006, USA
- Department of Surgical Oncology, Banner MD Anderson Cancer Center, Phoenix, AZ 85006, USA
- Correspondence:
| |
Collapse
|
3
|
Sokolova A, Johnstone KJ, McCart Reed AE, Simpson PT, Lakhani SR. Hereditary breast cancer: syndromes, tumour pathology and molecular testing. Histopathology 2023; 82:70-82. [PMID: 36468211 PMCID: PMC10953374 DOI: 10.1111/his.14808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 12/09/2022]
Abstract
Hereditary factors account for a significant proportion of breast cancer risk. Approximately 20% of hereditary breast cancers are attributable to pathogenic variants in the highly penetrant BRCA1 and BRCA2 genes. A proportion of the genetic risk is also explained by pathogenic variants in other breast cancer susceptibility genes, including ATM, CHEK2, PALB2, RAD51C, RAD51D and BARD1, as well as genes associated with breast cancer predisposition syndromes - TP53 (Li-Fraumeni syndrome), PTEN (Cowden syndrome), CDH1 (hereditary diffuse gastric cancer), STK11 (Peutz-Jeghers syndrome) and NF1 (neurofibromatosis type 1). Polygenic risk, the cumulative risk from carrying multiple low-penetrance breast cancer susceptibility alleles, is also a well-recognised contributor to risk. This review provides an overview of the established breast cancer susceptibility genes as well as breast cancer predisposition syndromes, highlights distinct genotype-phenotype correlations associated with germline mutation status and discusses molecular testing and therapeutic implications in the context of hereditary breast cancer.
Collapse
Affiliation(s)
- A Sokolova
- Sullivan and Nicolaides PathologyBrisbane
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
| | - K J Johnstone
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
- Pathology Queensland, The Royal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| | - A E McCart Reed
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
| | - P T Simpson
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
| | - S R Lakhani
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
- Pathology Queensland, The Royal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| |
Collapse
|
4
|
Hereditary Diffuse Gastric Cancer: A 2022 Update. J Pers Med 2022; 12:jpm12122032. [PMID: 36556253 PMCID: PMC9783673 DOI: 10.3390/jpm12122032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer is ranked fifth among the most commonly diagnosed cancers, and is the fourth leading cause of cancer-related deaths worldwide. The majority of gastric cancers are sporadic, while only a small percentage, less than 1%, are hereditary. Hereditary diffuse gastric cancer (HDGC) is a rare malignancy, characterized by early-onset, highly-penetrant autosomal dominant inheritance mainly of the germline alterations in the E-cadherin gene (CDH1) and β-catenin (CTNNA1). In the present study, we provide an overview on the molecular basis of HDGC and outline the essential elements of genetic counseling and surveillance. We further provide a practical summary of current guidelines on clinical management and treatment of individuals at risk and patients with early disease.
Collapse
|
5
|
Hereditary diffuse gastric cancer (HDGC). An overview. Clin Res Hepatol Gastroenterol 2022; 46:101820. [PMID: 34656755 DOI: 10.1016/j.clinre.2021.101820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/02/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023]
Abstract
It is estimated that up to 10% of gastric carcinomas show familial aggregation. In contrast, around 1-3 % (approximately 33,000 yearly) are genuinely hereditary. Hereditary diffuse gastric cancer (HDGC) is a rare malignancy characterized by autosomal dominant inheritance of pathological variants of the CDH1 and CTNNA1 genes encoding the adhesion molecules E-cadherin and α-catenin, respectively. The multifocal nature of the disease and the difficulty of visualizing precursor lesions by endoscopy underscore the need to be aware of this malignancy as surgical prevention can be fully protective. Here, we provide an overview of the main epidemiological, clinical, genetic, and pathological features of HDGC, as well as updated guidelines for its diagnosis, genetic testing, counseling, surveillance, and management. We conclude that HDGC is a rare, highly penetrant disease that is difficult to diagnose and manage, so it is necessary to correctly identify it to offer patients and their families' adequate management following the recommendations of the IGCL. A critical point is identifying a mutation in HDGC families to determine whether unaffected relatives are at risk for cancer.
Collapse
|
6
|
Ye CC, Wang J. E-cadherin (CDH1) gene -160C/A polymorphism and the risk of colorectal cancer: A meta-analysis involving 17,291 subjects. J Gene Med 2021; 23:e3370. [PMID: 34097324 DOI: 10.1002/jgm.3370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/29/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The E-cadherin (CDH1) polymorphism has been implicated in the susceptibility to colorectal cancer (CRC). However, the results remain inconclusive. The present meta-analysis aimed to investigate the association between the CDH1-160C/A polymorphism and CRC risk. METHODS Relevant studies were retrieved by searching PubMed, Web of Science, Google Scholar, the Cochrane Library, Embase, CNKI and Wanfang databases up to 11 March 2021. Pooled odds ratio and 95% confidence interval were calculated using either the fixed- or random-effects model. Quality evaluation was carried out using Newcastle-Ottawa Scale (NOS). A trial sequential analysis (TSA) was conducted to reduce the risk of type I error. RESULTS In total, 16 studies from 14 articles with 8699 patients and 8592 controls were included. In general, all studies were of high quality (NOS score higher than 6). Overall, no significant associations between the CDH1 -160C/A polymorphism and CRC risk were detected. In subgroup analysis by ethnicity, source of control, genotyping method and location, significant associations were found between the CDH1-160C/A polymorphism and the risk of CRC in the Caucasians and the hospital-based subgroup. Furthermore, 10 studies with 8019 subjects reported the association between the polymorphism and clinical characteristics in CRC patients, and we found that the CDH1-160C/A polymorphism might show a protective role in the distal CRC subgroup. By TSA, the findings in the present study were based on sufficient evidence in Caucasians, but not in Asians. CONCLUSIONS This meta-analysis suggests that the CDH1-160C/A polymorphism may be an important protective factor for CRC in Caucasians and a hospital-based subgroup. Moreover, the polymorphism show a protective role in the distal CRC group. However, large and well-designed studies are warranted to validate our findings, especially for Asians.
Collapse
Affiliation(s)
- Chun-Cui Ye
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jun Wang
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
7
|
Cai Y, Wang B, Li B, Huang X, Guo H, Liu Y, Chen B, Zhao S, Wu S, Li W, Wang L, Jia K, Wang H, Chen P, Jiang M, Tang X, Qi H, Dai C, Ye J, He Y. Collection on reports of molecules linked to epithelial-mesenchymal transition in the process of treating metastasizing cancer: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:946. [PMID: 34350261 PMCID: PMC8263858 DOI: 10.21037/atm-20-7002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/12/2021] [Indexed: 12/26/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a morphological process in which epithelial cells transform into mesenchymal cells via a specific procedure. EMT plays an important role in the cancer invasion-metastasis cascade and the current treatment of metastatic cancer, influences the migration, polarity, and adhesion of tumor cells, promotes their migration, invasiveness, anti-apoptotic ability. It contributes to the changes of the tumor microenvironment and suppresses the sensitivity of tumor cells to chemotherapy, causing cancer metastasis and worse, hindering the control and therapy of it. This paper reviews the mechanisms, detection, and treatments of cancer metastasis that have been identified and applied to date, summarizes the EMT-related biological molecules, providing a reference for EMT-targeted research and therapy. As EMT is significant in the progress of tumor metastasis, it is meaningful for the therapy and control of metastatic cancer to understand the mechanism of EMT at the molecular level. We summarized the mechanisms, detection and therapeutic implications of EMT, listed the research progress of molecules like genes, miRNAs, signaling pathways in EMT. We also discussed the prospects of EMT-targeted treatment in cancer metastasis interventions and the challenges the treatment and researches are facing. The summary is conducive to the treatment and further research of EMT and metastatic cancer.
Collapse
Affiliation(s)
- Yiyi Cai
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Boyuan Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Bingying Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Xintong Huang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Yu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Bin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shengyu Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Keyi Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Minlin Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Xuzhen Tang
- Oncology and Immunology BU, Research Service Division, WuXi Apptec, Shanghai, China
| | - Hui Qi
- Oncology and Immunology BU, Research Service Division, WuXi Apptec, Shanghai, China
| | - Chunlei Dai
- Oncology and Immunology BU, Research Service Division, WuXi Apptec, Shanghai, China
| | - Junyan Ye
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Genetic and Epigenetic Alterations of CDH1 Regulatory Regions in Hereditary and Sporadic Gastric Cancer. Pharmaceuticals (Basel) 2021; 14:ph14050457. [PMID: 34066170 PMCID: PMC8151134 DOI: 10.3390/ph14050457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
E-cadherin is a key player in gastric cancer (GC) and germline alterations of CDH1, its encoding gene, are responsible for Hereditary Diffuse Gastric Cancer (HDGC) syndrome. This study aimed at elucidating the role of genetic variants and DNA methylation of CDH1 promoter and enhancers in the regulation of gene expression. For this purpose, we analyzed genetic variants of the CDH1 gene through Next-Generation Sequencing (NGS) in a series of GC cell lines (NCI-N87, KATO-III, SNU-1, SNU-5, GK2, AKG, KKP) and the corresponding CDH1 expression levels. By bisulfite genomic sequencing, we analyzed the methylation status of CDH1 regulatory regions in 8 GC cell lines, in a series of 13 sporadic GC tissues and in a group of 20 HDGC CDH1-negative patients and 6 healthy controls. The NGS analysis on CDH1 coding and regulatory regions detected genetic alterations in 3 out of 5 GC cell lines lacking functional E-cadherin. CDH1 regulatory regions showed different methylation patterns in patients and controls, GC cell lines and GC tissues, expressing different E-cadherin levels. Our results showed that alterations in terms of genetic variants and DNA methylation patterns of both promoter and enhancers are associated with CDH1 expression levels and have a role in its regulation.
Collapse
|
9
|
Abstract
Abstract
Purpose of Review
Lobular carcinoma in situ (LCIS) encompasses classical LCIS and other rarer and more recently recognised variants, namely pleomorphic LCIS (PLCIS) and florid LCIS. Each of those entities has characteristic histological diagnostic criteria, different rates of underestimation of malignancy and recommended management. In addition, those lesions can mimic a number of benign and malignant breast lesions and can particularly be mistaken for ductal carcinoma in situ (DCIS). Accurate diagnosis of those lesions is critical to ensuring the appropriate patient management.
Recent Findings
Several international guidelines refining the pathological classification, staging and management of those lesions have recently been updated. This review will provide an up-to-date pathological overview of the current knowledge of LCIS with emphasis on the multidisciplinary management implications.
Summary
Close correlation between imaging and pathology in a multidisciplinary pathway is essential in LCIS management. Classical LCIS on core biopsy/vacuum-assisted biopsy (VAB) is coded as B3 and, if without discordant imaging, should further be sampled by vacuum-assisted excision (VAE). PLCIS should be coded and managed as per high-grade DCIS. Florid LCIS is a rare entity that is thought to be more aggressive than classical LCIS. Excision with clear margin is advised.
Collapse
|
10
|
Zolghadr F, Tse N, Loka D, Joun G, Meppat S, Wan V, Zoellner H, Xaymardan M, Farah CS, Lyons JG, Hau E, Patrick E, Seyedasli N. A Wnt-mediated phenotype switch along the epithelial-mesenchymal axis defines resistance and invasion downstream of ionising radiation in oral squamous cell carcinoma. Br J Cancer 2021; 124:1921-1933. [PMID: 33785878 DOI: 10.1038/s41416-021-01352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Dynamic transitions of tumour cells along the epithelial-mesenchymal axis are important in tumorigenesis, metastasis and therapy resistance. METHODS In this study, we have used cell lines, 3D spheroids and tumour samples in a variety of cell biological and transcriptome analyses to highlight the cellular and molecular dynamics of OSCC response to ionising radiation. RESULTS Our study demonstrates a prominent hybrid epithelial-mesenchymal state in oral squamous cell carcinoma cells and tumour samples. We have further identified a key role for levels of E-cadherin in stratifying the hybrid cells to compartments with varying levels of radiation response and radiation-induced epithelial-mesenchymal transition. The response to radiation further entailed the generation of a new cell population with low expression levels of E-cadherin, and positive for Vimentin (ECADLow/Neg-VIMPos), a phenotypic signature that showed an enhanced capacity for radiation resistance and invasion. At the molecular level, transcriptome analysis of spheroids in response to radiation showed an initial burst of misregulation within the first 30 min that further declined, although still highlighting key alterations in gene signatures. Among others, pathway analysis showed an over-representation for the Wnt signalling pathway that was further confirmed to be functionally involved in the generation of ECADLow/Neg-VIMPos population, acting upstream of radiation resistance and tumour cell invasion. CONCLUSION This study highlights the functional significance and complexity of tumour cell remodelling in response to ionising radiation with links to resistance and invasive capacity. An area of less focus in conventional radiotherapy, with the potential to improve treatment outcomes and relapse-free survival.
Collapse
Affiliation(s)
- Fatemeh Zolghadr
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Nigel Tse
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Dikasya Loka
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - George Joun
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Sreelakshmi Meppat
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Victor Wan
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Hans Zoellner
- Discipline of Oral Surgery, Medicine and Diagnostics, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Munira Xaymardan
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Camile S Farah
- Australian Centre for Oral Oncology Research and Education, Nedlands, WA, Australia.,Maxillofacial, Oral and Dental Surgery, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - J Guy Lyons
- Discipline of Dermatology, Sydney Medical School and Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Eric Hau
- Sydney West Radiation Oncology Network, Westmead, NSW, Australia.,The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Ellis Patrick
- The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Mathematics, Faculty of Science, University of Sydney, Camperdown, NSW, Australia
| | - Naisana Seyedasli
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia. .,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia. .,The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.
| |
Collapse
|
11
|
Pramod N, Nigam A, Basree M, Mawalkar R, Mehra S, Shinde N, Tozbikian G, Williams N, Majumder S, Ramaswamy B. Comprehensive Review of Molecular Mechanisms and Clinical Features of Invasive Lobular Cancer. Oncologist 2021; 26:e943-e953. [PMID: 33641217 DOI: 10.1002/onco.13734] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
Invasive lobular carcinoma (ILC) accounts for 10% to 15% of breast cancers in the United States, 80% of which are estrogen receptor (ER)-positive, with an unusual metastatic pattern of spread to sites such as the serosa, meninges, and ovaries, among others. Lobular cancer presents significant challenges in detection and clinical management given its multifocality and multicentricity at presentation. Despite the unique features of ILC, it is often lumped with hormone receptor-positive invasive ductal cancers (IDC); consequently, ILC screening, treatment, and follow-up strategies are largely based on data from IDC. Despite both being treated as ER-positive breast cancer, querying the Cancer Genome Atlas database shows distinctive molecular aberrations in ILC compared with IDC, such as E-cadherin loss (66% vs. 3%), FOXA1 mutations (7% vs. 2%), and GATA3 mutations (5% vs. 20%). Moreover, compared with patients with IDC, patients with ILC are less likely to undergo breast-conserving surgery, with lower rates of complete response following therapy as these tumors are less chemosensitive. Taken together, this suggests that ILC is biologically distinct, which may influence tumorigenesis and therapeutic strategies. Long-term survival and clinical outcomes in patients with ILC are worse than in stage- and grade-matched patients with IDC; therefore, nuanced criteria are needed to better define treatment goals and protocols tailored to ILC's unique biology. This comprehensive review highlights the histologic and clinicopathologic features that distinguish ILC from IDC, with an in-depth discussion of ILC's molecular alterations and biomarkers, clinical trials and treatment strategies, and future targets for therapy. IMPLICATIONS FOR PRACTICE: The majority of invasive lobular breast cancers (ILCs) are hormone receptor (HR)-positive and low grade. Clinically, ILC is treated similar to HR-positive invasive ductal cancer (IDC). However, ILC differs distinctly from IDC in its clinicopathologic characteristics and molecular alterations. ILC also differs in response to systemic therapy, with studies showing ILC as less sensitive to chemotherapy. Patients with ILC have worse clinical outcomes with late recurrences. Despite these differences, clinical trials treat HR-positive breast cancers as a single disease, and there is an unmet need for studies addressing the unique challenges faced by patients diagnosed with ILC.
Collapse
Affiliation(s)
- Nikhil Pramod
- Stefanie Spielman Comprehensive Breast Center, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Akanksha Nigam
- Stefanie Spielman Comprehensive Breast Center, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Mustafa Basree
- University of Pikeville Kentucky College of Osteopathic Medicine, Pikeville, Kentucky, USA
| | - Resham Mawalkar
- Stefanie Spielman Comprehensive Breast Center, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Saba Mehra
- University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Neelam Shinde
- Stefanie Spielman Comprehensive Breast Center, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Gary Tozbikian
- Stefanie Spielman Comprehensive Breast Center, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Nicole Williams
- Stefanie Spielman Comprehensive Breast Center, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Sarmila Majumder
- Stefanie Spielman Comprehensive Breast Center, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Bhuvaneswari Ramaswamy
- Stefanie Spielman Comprehensive Breast Center, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
12
|
Zhu B, Cui H, Xu W. Hydrogen inhibits the proliferation and migration of gastric cancer cells by modulating lncRNA MALAT1/miR-124-3p/EZH2 axis. Cancer Cell Int 2021; 21:70. [PMID: 33482814 PMCID: PMC7821405 DOI: 10.1186/s12935-020-01743-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Background Gastric cancer is one of the most prevalent and deadly malignancies without efficient treatment option. This study aimed to investigate the effect of hydrogen gas on the behavior of gastric cancer cells. Methods Gastric cancer cell lines MGC-803 and BGC-823 were treated with or without H2 /O2 gas mixture (66.7%:33.3% v/v). Proliferation and migration were assessed by MTT and scratch wound healing assays respectively. The expression of lncRNA MALAT1, miR-124-3p, and EZH2 was analyzed by real-time quantitative PCR and/or western blot. Tumor growth was estimated using xenograft mouse model. Results H2 gas significantly inhibited gastric tumor growth in vivo and the proliferation, migration, and lncRNA MALAT1 and EZH2 expression of gastric cancer cells while upregulated miR-124-3p expression. LncRNA MALAT1 overexpression abolished all the aforementioned effects of H2. LncRNA MALAT1 and miR-124-3p reciprocally inhibited the expression of each other. MiR-124-3p mimics abrogated lncRNA MALAT1 promoted EZH2 expression and gastric cancer cell proliferation and migration. Conclusions These data demonstrated that H2 might be developed as a therapeutics of gastric cancer and lncRNA MALAT1/miR-124-3p/EZH2 axis could be a target for intervention.
Collapse
Affiliation(s)
- Baocheng Zhu
- Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Hengguan Cui
- Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Weiqiang Xu
- Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China. .,Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park East Road, Qingpu District, Shanghai, 201700, China.
| |
Collapse
|
13
|
Shekarriz R, Alikhani R, Ghasemi M, Navaei RA, Hashemi-Soteh MB. Correlation of -160C > A and -347GA > G polymorphisms in E-cadherin gene and gastric cancer in north of Iran. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2021; 26:3. [PMID: 34084182 PMCID: PMC8103955 DOI: 10.4103/jrms.jrms_50_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/26/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND E-cadherin (CDH1 gene) is a protein involved in cell-cell adhesion. There are reports on the association of -160C > A (rs16260) and -347GA > G (rs5030625) polymorphisms in the 5'-promoter region of the CDH1 gene with tumor development and progression of gastric cancer. This study aimed to examine the potential relationship between these two polymorphisms and gastric cancer in patients from Mazandaran province, Northern Iran. MATERIALS AND METHODS A case-control study was conducted to test 97 patients and 95 healthy controls. Genomic DNA was extracted from peripheral blood followed by polymerase chain reaction amplification. Genotyping analysis was carried out using restriction fragment length polymorphism analysis for two potentially functional polymorphisms. RESULTS Heterozygous genotype GA/G versus GA/GA of rs5030625 (-347 GA > G) was found to be associated with increased risk of gastric cancer in the people studied (odds ratio = 5.73, 95% confidence interval = 2.11-15.56, P = 0.001). Furthermore, AA or CA genotype in -160C > A polymorphism did not show any increased risk of gastric cancer (P = 0.559). CONCLUSION The present study revealed that GA/G genotype of rs5030625 (-347 GA > G) polymorphism is associated with gastric cancer in Northern Iran.
Collapse
Affiliation(s)
- Ramin Shekarriz
- Department of Hematology and Oncology, Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Alikhani
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohaddeseh Ghasemi
- Department of Internal Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Alizadeh Navaei
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Bagher Hashemi-Soteh
- Immunogenetic Research Center, Cell and Molecular Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Address for correspondence: Dr. Mohammad Bagher Hashemi-Soteh, Immunogenetic Research Center, Cell and Molecular Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. E-mail:
| |
Collapse
|
14
|
Iyer P, Moslim M, Farma JM, Denlinger CS. Diffuse gastric cancer: histologic, molecular, and genetic basis of disease. Transl Gastroenterol Hepatol 2020; 5:52. [PMID: 33073047 DOI: 10.21037/tgh.2020.01.02] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/15/2020] [Indexed: 12/24/2022] Open
Abstract
Diffuse gastric cancer (DGC) is a distinct histopathologic and molecular disease, characterized by mutations in CDH1, RHOA, and others. In addition, DGC is associated with familial syndromes, including hereditary DGC and germline mutation in CDH1. Clinically, this subtype of gastric adenocarcinoma is associated with a poor prognosis and possible resistance to available systemic therapies. An understanding of the genetic and molecular underpinnings of DGC may help inform of its clinical behavior and aid in screening, diagnosis, and response to treatment. In this review, we will review the current histologic, molecular, and genetic landscape of DGC and its relevance to clinical practice.
Collapse
Affiliation(s)
- Pritish Iyer
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Maitham Moslim
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jeffrey M Farma
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Crystal S Denlinger
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
15
|
Urine E-cadherin: A Marker for Early Detection of Kidney Injury in Diabetic Patients. J Clin Med 2020; 9:jcm9030639. [PMID: 32121033 PMCID: PMC7141221 DOI: 10.3390/jcm9030639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic nephropathy (DN) is the main reason for end-stage renal disease. Microalbuminuria as the non-invasive available diagnosis marker lacks specificity and gives high false positive rates. To identify and validate biomarkers for DN, we used in the present study urine samples from four patient groups: diabetes without nephropathy, diabetes with microalbuminuria, diabetes with macroalbuminuria and proteinuria without diabetes. For the longitudinal validation, we recruited 563 diabetic patients and collected 1363 urine samples with the clinical data during a follow-up of 6 years. Comparative urinary proteomics identified four proteins Apolipoprotein A-I (APOA1), Beta-2-microglobulin (B2M), E-cadherin (CDH1) and Lithostathine-1-alpha (REG1A), which differentiated with high statistical strength (p < 0.05) between DN patients and the other groups. Label-free mass spectrometric quantification of the candidates confirmed the discriminatory value of E-cadherin and Lithostathine-1-alpha (p < 0.05). Immunological validation highlighted E-cadherin as the only marker able to differentiate significantly between the different DN stages with an area under the curve (AUC) of 0.85 (95%-CI: [0.72, 0.97]). The analysis of the samples from the longitudinal study confirmed the prognostic value of E-cadherin, the critical increase in urinary E-cadherin level was measured 20 ± 12.5 months before the onset of microalbuminuria and correlated significantly (p < 0.05) with the glomerular filtration rate measured by estimated glomerular filtration rate (eGFR).
Collapse
|
16
|
Devaux CA, Mezouar S, Mege JL. The E-Cadherin Cleavage Associated to Pathogenic Bacteria Infections Can Favor Bacterial Invasion and Transmigration, Dysregulation of the Immune Response and Cancer Induction in Humans. Front Microbiol 2019; 10:2598. [PMID: 31781079 PMCID: PMC6857109 DOI: 10.3389/fmicb.2019.02598] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022] Open
Abstract
Once bound to the epithelium, pathogenic bacteria have to cross epithelial barriers to invade their human host. In order to achieve this goal, they have to destroy the adherens junctions insured by cell adhesion molecules (CAM), such as E-cadherin (E-cad). The invasive bacteria use more or less sophisticated mechanisms aimed to deregulate CAM genes expression or to modulate the cell-surface expression of CAM proteins, which are otherwise rigorously regulated by a molecular crosstalk essential for homeostasis. Apart from the repression of CAM genes, a drastic decrease in adhesion molecules on human epithelial cells can be obtained by induction of eukaryotic endoproteases named sheddases or through synthesis of their own (prokaryotic) sheddases. Cleavage of CAM by sheddases results in the release of soluble forms of CAM. The overexpression of soluble CAM in body fluids can trigger inflammation and pro-carcinogenic programming leading to tumor induction and metastasis. In addition, the reduction of the surface expression of E-cad on epithelia could be accompanied by an alteration of the anti-bacterial and anti-tumoral immune responses. This immune response dysfunction is likely to occur through the deregulation of immune cells homing, which is controlled at the level of E-cad interaction by surface molecules αE integrin (CD103) and lectin receptor KLRG1. In this review, we highlight the central role of CAM cell-surface expression during pathogenic microbial invasion, with a particular focus on bacterial-induced cleavage of E-cad. We revisit herein the rapidly growing body of evidence indicating that high levels of soluble E-cad (sE-cad) in patients’ sera could serve as biomarker of bacterial-induced diseases.
Collapse
Affiliation(s)
- Christian A Devaux
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,CNRS, Institute of Biological Science (INSB), Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France
| | - Soraya Mezouar
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France
| | - Jean-Louis Mege
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France.,APHM, UF Immunology Department, Marseille, France
| |
Collapse
|
17
|
Yazdani M, Shahdadfar A, Jackson CJ, Utheim TP. A Hyaluronan Hydrogel Scaffold for Culture of Human Oral Mucosal Epithelial Cells in Limbal Stem-Cell Therapy. Bioengineering (Basel) 2019; 6:E97. [PMID: 31652804 PMCID: PMC6955856 DOI: 10.3390/bioengineering6040097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/26/2022] Open
Abstract
Hyaluronan (HA), a major component of the extracellular matrix, plays a key role in cell proliferation, growth, survival, polarization and differentiation. We investigated the optimization of a HA hydrogel scaffold for culture of human oral mucosal epithelial cells (OMECs) for potential application in limbal stem cell therapy. The effect of the optimized scaffold on OMEC cell sheet morphology, cell metabolic activity and expression of genes associated with stemness, adherence and cell damage was studied. The results indicate that HA hydrogels crosslinked with polyethylene glycol diacrylate (PEGDA) failed to support OMEC attachment and growth. However, HA hydrogel scaffolds dried for three days and coated with 1 mg/mL collagen IV produced a full OMEC sheet. Cell morphology was comparable to control after three weeks culture, maintaining 76% metabolic activity. Of apoptosis-related genes, the pro-apoptotic markers CASP3 and BAX2 were upregulated and downregulated, respectively, compared to control whereas the anti-apoptotic marker BCL2 was downregulated. The expression level of stemness genes ΔNp63α and ABCG2 was significantly higher than control. Genes associated with improved scar-less wound healing (integrin-V) and protection of the ocular surface (cadherin-1) had ~3-fold increased expression. These data suggest that our optimized HA-hydrogel scaffold could enhance culture of OMEC cell sheets for use in ocular reconstruction.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- The Norwegian Dry Eye Clinic, 0366 Oslo, Norway.
| | - Aboulghassem Shahdadfar
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0318 Oslo, Norway.
| | - Catherine Joan Jackson
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0318 Oslo, Norway.
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0450 Oslo, Norway.
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- The Norwegian Dry Eye Clinic, 0366 Oslo, Norway.
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0318 Oslo, Norway.
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0450 Oslo, Norway.
- Department of Ophthalmology, Stavanger University Hospital, 4011 Stavanger, Norway.
- Department of Ophthalmology, Sørlandet Hospital Arendal, 4604 Arendal, Norway.
| |
Collapse
|
18
|
Fan X, Jin S, Li Y, Khadaroo PA, Dai Y, He L, Zhou D, Lin H. Genetic And Epigenetic Regulation Of E-Cadherin Signaling In Human Hepatocellular Carcinoma. Cancer Manag Res 2019; 11:8947-8963. [PMID: 31802937 PMCID: PMC6801489 DOI: 10.2147/cmar.s225606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022] Open
Abstract
E-cadherin is well known as a growth and invasion suppressor and belongs to the large cadherin family. Loss of E-cadherin is widely known as the hallmark of epithelial-to-mesenchymal transition (EMT) with the involvement of transcription factors such as Snail, Slug, Twist and Zeb1/2. Tumor cells undergoing EMT could migrate to distant sites and become metastases. Recently, numerous studies have revealed how the expression of E-cadherin is regulated by different kinds of genetic and epigenetic alteration, which are implicated in several crucial transcription factors and pathways. E-cadherin signaling plays an important role in hepatocellular carcinoma (HCC) initiation and progression considering the highly mutated frequency of CTNNB1 (27%). Combining the data from The Cancer Genome Atlas (TCGA) database and previous studies, we have summarized the roles of gene mutations, chromosome instability, DNA methylation, histone modifications and non-coding RNA in E-cadherin in HCC. In this review, we discuss the current understanding of the relationship between these modifications and HCC. Perspectives on E-cadherin-related research in HCC are provided.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Parikshit Asutosh Khadaroo
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Yili Dai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Lifeng He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Daizhan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
19
|
Multigene Panel Testing Increases the Number of Loci Associated with Gastric Cancer Predisposition. Cancers (Basel) 2019; 11:cancers11091340. [PMID: 31514334 PMCID: PMC6769562 DOI: 10.3390/cancers11091340] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/02/2019] [Accepted: 09/08/2019] [Indexed: 12/24/2022] Open
Abstract
The main gene involved in gastric cancer (GC) predisposition is CDH1, the pathogenic variants of which are associated with diffuse-type gastric cancer (DGC) and lobular breast cancer (LBC). CDH1 only explains a fraction (10–50%) of patients suspected of DGC/LBC genetic predisposition. To identify novel susceptibility genes, thus improving the management of families at risk, we performed a multigene panel testing on selected patients. We searched for germline pathogenic variants in 94 cancer-related genes in 96 GC or LBC Italian patients with early-onset and/or family history of GC. We found CDH1 pathogenic variants in 10.4% of patients. In 11.5% of cases, we identified loss-of-function variants in BRCA1, BRCA2, PALB2, and ATM breast/ovarian cancer susceptibility genes, as well as in MSH2, PMS2, BMPR1A, PRF1, and BLM genes. In 78.1% of patients, we did not find any variants with clear-cut clinical significance; however, 37.3% of these cases harbored rare missense variants predicted to be damaging by bioinformatics tools. Multigene panel testing decreased the number of patients that would have otherwise remained genetically unexplained. Besides CDH1, our results demonstrated that GC pathogenic variants are distributed across a number of susceptibility genes and reinforced the emerging link between gastric and breast cancer predisposition.
Collapse
|
20
|
The molecular mechanisms underlying reduced E-cadherin expression in invasive ductal carcinoma of the breast: high throughput analysis of large cohorts. Mod Pathol 2019; 32:967-976. [PMID: 30760857 DOI: 10.1038/s41379-019-0209-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/23/2018] [Accepted: 12/28/2018] [Indexed: 12/24/2022]
Abstract
E-cadherin is a tumor suppressor gene in invasive lobular breast cancer. However, a proportion of high-grade ductal carcinoma shows reduced/loss of E-cadherin. In this study, we assessed the underlying mechanisms and molecular implications of E-cadherin loss in invasive ductal carcinoma. This study used large, well-characterized cohorts of early-stage breast cancer-evaluated E-cadherin expression via various platforms including immunohistochemistry, microarray analysis using Illumina HT-12 v3, copy number analysis using Affymetrix SNP 6.0 arrays, and next-generation sequencing for differential gene expression. Our results showed 27% of high-grade invasive ductal carcinoma showed reduced/loss of E-cadherin membranous expression. CDH1 copy number loss was in 21% of invasive ductal carcinoma, which also showed low CDH1 mRNA expression (p = 0.003). CDH1 copy number was associated with copy number loss of TP53, ATM, BRCA1, and BRCA2 (p < 0.001). Seventy-nine percent of invasive ductal carcinoma with reduced CDH1 mRNA expression showed elevated expression of E-cadherin transcription suppressors TWIST2, ZEB2, NFKB1, LLGL2, CTNNB1 (p < 0.01). Reduced/loss E-cadherin expression was associated with differential expression of 2143 genes including those regulating Wnt (FZD2, GNG5, HLTF, WNT2, and CER1) and PIK3-AKT (FGFR2, GNF5, GNGT1, IFNA17, and IGF1) signaling pathways. Interestingly, key genes differentially expressed between invasive lobular carcinoma and invasive ductal tumors did not show association with E-cadherin loss in invasive ductal carcinoma. We conclude that E-cadherin loss in invasive ductal carcinoma is likely a consequence of genomic instability occurring during carcinogenesis. Potential novel regulators controlling E-cadherin expression in invasive ductal carcinoma warrant further investigation.
Collapse
|
21
|
Thomas M, Kelly ED, Abraham J, Kruse M. Invasive lobular breast cancer: A review of pathogenesis, diagnosis, management, and future directions of early stage disease. Semin Oncol 2019; 46:121-132. [PMID: 31239068 DOI: 10.1053/j.seminoncol.2019.03.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 01/17/2023]
Abstract
Invasive lobular carcinoma (ILC) is the second most common type of invasive breast cancer after invasive ductal carcinoma (IDC). Invasive lobular carcinoma has unique clinical, pathologic, and radiographic features which suggest that it is a distinct clinical entity; however, it is treated with the same treatment paradigms as IDC. Information regarding the specific treatment of ILC, including response to standard therapy, is sparse. Neoadjuvant treatment considerations are of great importance in this space as ILC is often found at a locally advanced stage. In this review, we summarize the classic features of ILC and the available data regarding efficacy of both endocrine therapy and chemotherapy in curative treatment of breast cancer.
Collapse
Affiliation(s)
- Mathew Thomas
- Division of Breast Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Erinn Downs Kelly
- Division of Breast Pathology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jame Abraham
- Division of Breast Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Megan Kruse
- Division of Breast Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
22
|
Abstract
Cancer is a common non-communicable disease worldwide, although it exhibits differential population trends in incidence and mortality rates. The differences relate to population structure, environmental risk factors as well as health system organization. This article discusses the potential impact of genetic testing on population health, focusing in particular on the mutational spectrum of breast cancer susceptibility genes in diverse populations. We identify the need for improved access to, and increased investment in, comprehensive cancer risk assessment and genetic testing as well as cancer control measures that take into account lifestyle, environmental, and social factors in understudied minority groups.
Collapse
|
23
|
Luo W, Fedda F, Lynch P, Tan D. CDH1 Gene and Hereditary Diffuse Gastric Cancer Syndrome: Molecular and Histological Alterations and Implications for Diagnosis And Treatment. Front Pharmacol 2018; 9:1421. [PMID: 30568591 PMCID: PMC6290068 DOI: 10.3389/fphar.2018.01421] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer, a group of common malignancies, results in the most cancer mortality worldwide after only lung and colorectal cancer. Although familial gastric cancers have long been recognized, it was not until recently that they were discovered to be associated with mutations of specific genes. Mutations of CDH1, the gene encoding E-cadherin, are the most common germline mutations detected in gastric cancer and underlie hereditary diffuse gastric cancer (HDGC) syndrome. All reported HDGCs are the pure diffuse type by Lauren classification and are associated with dismal prognosis once the tumor invades the submucosa. Because CDH1 germline mutations are inherited in an autosomal-dominant fashion and have high penetrance, the International Gastric Cancer Linkage Consortium (IGCLC) developed criteria to facilitate the screening of CDH1 mutation carriers; these criteria have been proven to have excellent sensitivity and specificity. Recent histologic studies suggest that HDGC progresses through several stages. Even when the tumor becomes "invasive" in lamina propria, it may stay indolent for a long time. However, the molecular mechanisms that induce the transitions between stages and determine the length of the indolent phase remain to be determined. Although the standard management for CDH1 mutation carriers is prophylactic total gastrectomy, many questions must be answered before the surgery can be done. These include the optimal surveillance strategy, the best strategy to choose surgical candidates, and the ideal time to perform surgery. In addition to increasing the risk of gastric cancer, CDH1 germline mutations also increase the risk of invasive lobular carcinoma of the breast, and possibly colorectal adenocarcinoma, and are associated with blepharocheilodontic syndrome (a congenital development disorder). However, the optimal management of these conditions is less established owing to insufficient data regarding the risk of cancer development. This review focuses on molecular and histological findings in HDGC, as opposed to sporadic diffuse gastric cancer, and their implications for the management of CDH1 mutation carriers and the diagnosis and treatment of HDGC. Other conditions associated with CDH1 germline mutations and future research directions are also discussed.
Collapse
Affiliation(s)
- Wenyi Luo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Faysal Fedda
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Patrick Lynch
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dongfeng Tan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
24
|
Sepulveda AR, J. Del Portillo A. Molecular Basis of Diseases of the Gastrointestinal Tract. MOLECULAR PATHOLOGY 2018:387-415. [DOI: 10.1016/b978-0-12-802761-5.00019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
25
|
Abstract
Lobular carcinoma in situ (LCIS) is a risk factor and a nonobligate precursor of breast carcinoma. The relative risk of invasive carcinoma after classic LCIS diagnosis is approximately 9 to 10 times that of the general population. Classic LCIS diagnosed on core biopsy with concordant imaging and pathologic findings does not mandate surgical excision, and margin status is not reported. The identification of variant LCIS in a needle core biopsy specimen mandates surgical excision, regardless of radiologic-pathologic concordance. The presence of variant LCIS close to the surgical margin of a resection specimen is reported, and reexcision should be considered.
Collapse
Affiliation(s)
- Hannah Y Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
26
|
Li Y, Du W, Han J, Ge J. LAMP3 promotes the invasion of osteosarcoma cells via SPP1 signaling. Mol Med Rep 2017; 16:5947-5953. [PMID: 28849219 PMCID: PMC5865773 DOI: 10.3892/mmr.2017.7349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/09/2017] [Indexed: 01/27/2023] Open
Abstract
Osteosarcoma is the most common type of primary bone cancer in children and young adults. The prognosis of osteosarcoma is very poor when it is diagnosed with metastasis. Lysosomal‑associated membrane protein 3 (LAMP3) is a tumor‑specific protein induced by hypoxia, which stimulates invasion and metastasis of various cancer cells via hypoxia‑inducible factor (HIF). A previous study from our group has reported that expression of LAMP3 is significantly increased in lung metastatic osteosarcoma compared with primary osteosarcoma using microarray analysis, suggesting that LAMP3 may be involved in metastatic osteosarcoma. The present study therefore aimed to investigate the role of LAMP3 in osteosarcoma metastasis. Knockdown of LAMP3 decreased the invasion of two osteosarcoma cell lines in vitro. Furthermore, knockdown of LAMP3 increased the expression of secreted phosphoprotein 1 (SPP1), cadherin 1, and keratin 19, while it decreased the expression of matrix metallopeptidase 2, collagen type III α 1, twist family bHLH transcription factor 1 and cadherin 2. Concurrent knockdown of SPP1 and LAMP3 attenuated the changes in gene expression profile induced by LAMP3 knockdown alone. Gene ontology and KEGG analysis demonstrated that SPP1 was involved in cell adhesion, focal adhesion, and extracellular matrix‑receptor interaction. In conclusion, the present results suggest that LAMP3 may be involved in the invasion and metastasis of osteosarcoma via regulating signaling downstream of SPP1. Thus, LAMP3/SPP1 signaling may serve as a potential target in the future to prevent osteosarcoma metastasis.
Collapse
Affiliation(s)
- Yu Li
- Department of Bone Trauma, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Wei Du
- Department of Spine Branch, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Jian Han
- Department of Bone Oncology, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Junbo Ge
- Department of Bone Trauma, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
27
|
Krishnamurthy A, Soundara V, Ramshankar V. Preventive and Risk Reduction Strategies for Women at High Risk of Developing Breast Cancer: a Review. Asian Pac J Cancer Prev 2017; 17:895-904. [PMID: 27039715 DOI: 10.7314/apjcp.2016.17.3.895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Breast cancer is the most commonly diagnosed invasive cancer among women. Many factors, both genetic and non-genetic, determine a woman's risk of developing breast cancer and several breast cancer risk prediction models have been proposed. It is vitally important to risk stratify patients as there are now effective preventive strategies available. All women need to be counseled regarding healthy lifestyle recommendations to decrease breast cancer risk. As such, management of these women requires healthcare professionals to be familiar with additional risk factors so that timely recommendations can be made on surveillance/risk-reducing strategies. Breast cancer risk reduction strategies can be better understood by encouraging the women at risk to participate in clinical trials to test new strategies for decreasing the risk. This article reviews the advances in the identification of women at high risk of developing breast cancer and also reviews the strategies available for breast cancer prevention.
Collapse
|
28
|
Yu SR, Huang XJ, Zhang YP. Gastric cancer related genes. Shijie Huaren Xiaohua Zazhi 2016; 24:4381-4388. [DOI: 10.11569/wcjd.v24.i32.4381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most common malignant tumors. In addition to environmental, socioeconomic, and dietary factors, hereditary factors also play an important role in the development of gastric cancer. Although some driver genes have been identified in gastric cancer, the molecular compositions of gastric cancer have not been fully understood. Genome-wide association studies, copy number variations and next-generation sequencing provide systematic methods to identify all genetic alterations in the cancer genome, especially in the field of mutation detection. Here we make a brief review of the current status of research on gastric cancer genetics.
Collapse
|
29
|
Ishiguro H, Wakasugi T, Terashita Y, Sakamoto N, Tanaka T, Mizoguchi K, Sagawa H, Okubo T, Takeyama H. Decreased expression of CDH1 or CTNNB1 affects poor prognosis of patients with esophageal cancer. World J Surg Oncol 2016; 14:240. [PMID: 27600761 PMCID: PMC5012100 DOI: 10.1186/s12957-016-0956-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022] Open
Abstract
Background E-cadherin/CDH1 is one of the proteins involved in cell adhesion, and it is known that decreased expression of E-cadherin induces lymph node metastasis in esophageal cancer. Beta catenin/CTNNB1, which is an important component of the Wnt signaling pathway, binds to E-cadherin at the cell membrane, where the complex of these two proteins functions in the stabilization of cell adhesion. However, its role in the pathogenesis of esophageal cancer is still unknown. Methods This study included 86 patients with esophageal cancer who underwent surgery between 1998 and 2007. The expression of the E-cadherin/CDH1 gene product (E-cadherin/CDH1) and that of the beta catenin/CTNNB1 protein in the cell membrane were analyzed by immunohistochemistry. We examined the correlations among CDH1 or CTNNB1 expression, clinicopathological factors, and the prognosis of patients with ESCC. Results CDH1 and CTNNB1 were expressed in 52.3 % (45/86) and 36.0 % (31/86) of tumor samples, respectively. Both CDH1 and CTNNB1 were co-expressed in 22.1 % (19/86) of esophageal cancer tissues. CDH1 expression correlated with the p-stage (stages I–II vs stages III–IV, p = 0.032), T factor (T1–2 vs T3–4, p = 0.0088), and lymphatic invasion (p = 0.019). However, CDH1 expression did not correlate with the N factor or the blood vessel invasion. CTNNB1 expression correlated with the T factor (T1–2 vs T3–4, p = 0.0015), p-stage (stages I–II vs stages III–IV, p = 0.030), and lymphatic invasion (p = 0.007). The CDH1(+)/CTNNB1(+) phenotype was inversely correlated with the T factor, N factor, p-stage, lymphatic invasion, and blood vessel invasion. Furthermore, patients whose tumors were double-positive for CDH1 and CTNNB1 had a significantly higher survival rate than those whose tumors were negative for CDH1 or CTNNB1 (log-rank test, p = 0.0192). The T factor and N factor had a strong negative correlation with double-positive tumors. These were both independent prognostic factors, as was the double-positive phenotype. A univariate analysis indicated that the T factor, the N factor, and CDH1 and CTNNB1 co-expression were significant variables that predicted survival (hazard ratio, 2.387; 95 % confidence interval, 1.115–5.102; p = 0.025). Conclusions Decreased expression of CDH1 or CTNNB1 in the cell membranes of cancer cells is associated with poor survival of patients with esophageal cancer.
Collapse
Affiliation(s)
- Hideyuki Ishiguro
- Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Takehiro Wakasugi
- Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yukio Terashita
- Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Nobuhiro Sakamoto
- Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Tatsuya Tanaka
- Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Koji Mizoguchi
- Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Hiroyuki Sagawa
- Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Tomotaka Okubo
- Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Hiromitsu Takeyama
- Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| |
Collapse
|
30
|
Li Q, Bao W, Fan Q, Shi WJ, Li ZN, Xu Y, Wu D. Epidermal growth factor receptor kinase substrate 8 promotes the metastasis of cervical cancer via the epithelial-mesenchymal transition. Mol Med Rep 2016; 14:3220-8. [PMID: 27573546 PMCID: PMC5042790 DOI: 10.3892/mmr.2016.5638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 07/27/2016] [Indexed: 12/11/2022] Open
Abstract
Epidermal growth factor receptor pathway substrate 8 (Eps8) has been identified as a novel substrate for epidermal growth factor receptor (EGFR) kinase and is involved in EGFR-mediated signaling pathways correlated with tumorigenesis, proliferation and metastasis in various cancer types. However, the precise role of Eps8 in cervical cancer metastasis remains to be elucidated. Immunohistochemistry revealed that Eps8 was significantly increased in cervical cancer specimens compared with squamous intraepithelial lesion and normal cervical tissues. Additionally, it was revealed that Eps8 expression not only correlated with cervical cancer progression, but also exhibited a close correlation with the epithelial-mesenchymal transition (EMT) markers, E-cadherin and vimentin. Furthermore, the present study focused predominantly on the EMT-associated role of Eps8 in the EMT, migration and invasion of cervical cancer cells. Eps8-short hairpin (sh) RNA was transfected into HeLa and SiHa cells to deplete its expression, and reverse transcription-quantitative polymerase chain reaction and western blot analyses were performed to confirm Eps8-knockdown and to investigate the influence of Eps8 on EMT markers. The present findings have revealed that Eps8 silencing led to the upregulation of the epithelial marker E-cadherin, while expression of the mesenchymal marker vimentin and the transcription factor snail was decreased at both mRNA and protein expression levels. Transwell cell migration and Matrigel invasion assays showed that downregulation of Eps8 significantly inhibited cell migration and invasion of HeLa and SiHa cells. Taken together, these results suggested that Eps8 promotes cervical cancer metastasis by orchestrating the EMT.
Collapse
Affiliation(s)
- Qian Li
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Wei Bao
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Qiong Fan
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Wen-Jing Shi
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Zhu-Nan Li
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Ying Xu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Dan Wu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| |
Collapse
|
31
|
van der Post RS, Gullo I, Oliveira C, Tang LH, Grabsch HI, O'Donovan M, Fitzgerald RC, van Krieken H, Carneiro F. Histopathological, Molecular, and Genetic Profile of Hereditary Diffuse Gastric Cancer: Current Knowledge and Challenges for the Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 908:371-91. [PMID: 27573781 DOI: 10.1007/978-3-319-41388-4_18] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Familial clustering is seen in 10 % of gastric cancer cases and approximately 1-3 % of gastric cancer arises in the setting of hereditary diffuse gastric cancer (HDGC). In families with HDGC, gastric cancer presents at young age. HDGC is predominantly caused by germline mutations in CDH1 and in a minority by mutations in other genes, including CTNNA1. Early stage HDGC is characterized by a few, up to dozens of intramucosal foci of signet ring cell carcinoma and its precursor lesions. These include in situ signet ring cell carcinoma and pagetoid spread of signet ring cells. Advanced HDGC presents as poorly cohesive/diffuse type carcinoma, normally with very few typical signet ring cells, and has a poor prognosis. Currently, it is unknown which factors drive the progression towards aggressive disease, but it is clear that most intramucosal lesions will not have such progression.Immunohistochemical profile of early and advanced HDGC is often characterized by abnormal E-cadherin immunoexpression, including absent or reduced membranous expression, as well as "dotted" or cytoplasmic expression. However, membranous expression of E-cadherin does not exclude HDGC. Intramucosal HDGC (pT1a) presents with an "indolent" phenotype, characterized by typical signet ring cells without immunoexpression of Ki-67 and p53, while advanced carcinomas (pT > 1) display an "aggressive" phenotype with pleomorphic cells, that are immunoreactive for Ki-67 and p53. These features show that the IHC profile is different between intramucosal and more advanced HDGC, providing evidence of phenotypic heterogeneity, and may help to define predictive biomarkers of progression from indolent to aggressive, widely invasive carcinomas.
Collapse
Affiliation(s)
- Rachel S van der Post
- Department of Pathology, Radboud University Medical Centre, 9101, Nijmegen, 6500 HB, The Netherlands
| | - Irene Gullo
- Department of Pathology, Centro Hospitalar de São João, Al. Prof. Hernâni Monteiro, Porto, 4200-319, Portugal.,Department of Pathology and Oncology, Faculdade de Medicina da Universidade do Porto (FMUP), Al. Prof. Hernâni Monteiro, Porto, 4200-319, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto, Portugal and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Dr. Roberto Frias S/N, Porto, 4200-465, Portugal
| | - Carla Oliveira
- Department of Pathology, Centro Hospitalar de São João, Al. Prof. Hernâni Monteiro, Porto, 4200-319, Portugal.,Department of Pathology and Oncology, Faculdade de Medicina da Universidade do Porto (FMUP), Al. Prof. Hernâni Monteiro, Porto, 4200-319, Portugal
| | - Laura H Tang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Heike I Grabsch
- GROW School of Oncology and Developmental Biology and Department of Pathology, Maastricht University Medical Centre, Peter Debyelaan 25, Maastricht, 6229 HX, The Netherlands
| | - Maria O'Donovan
- Department of Histopathology, Cambridge University Hospitals NHS Trust, Cambridge, CB2 0QQ, UK
| | - Rebecca C Fitzgerald
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, 197, Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Han van Krieken
- Department of Pathology, Radboud University Medical Centre, 9101, Nijmegen, 6500 HB, The Netherlands
| | - Fátima Carneiro
- Department of Pathology, Centro Hospitalar de São João, Al. Prof. Hernâni Monteiro, Porto, 4200-319, Portugal. .,Department of Pathology and Oncology, Faculdade de Medicina da Universidade do Porto (FMUP), Al. Prof. Hernâni Monteiro, Porto, 4200-319, Portugal. .,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto, Portugal and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Dr. Roberto Frias S/N, Porto, 4200-465, Portugal.
| |
Collapse
|
32
|
Setia N, Clark JW, Duda DG, Hong TS, Kwak EL, Mullen JT, Lauwers GY. Familial Gastric Cancers. Oncologist 2015; 20:1365-77. [PMID: 26424758 PMCID: PMC4679084 DOI: 10.1634/theoncologist.2015-0205] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/21/2015] [Indexed: 12/22/2022] Open
Abstract
Although the majority of gastric carcinomas are sporadic, approximately 10% show familial aggregation, and a hereditary cause is determined in 1%-3% cases. Of these, hereditary diffuse gastric cancer is the most recognized predisposition syndrome. Although rare, the less commonly known syndromes also confer a markedly increased risk for development of gastric cancer. Identification and characterization of these syndromes require a multidisciplinary effort involving oncologists, surgeons, genetic counselors, biologists, and pathologists. This article reviews the molecular genetics, clinical and pathologic features, surveillance guidelines, and preventive measures of common and less common hereditary gastric cancer predisposition syndromes.
Collapse
Affiliation(s)
- Namrata Setia
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jeffrey W Clark
- Department of Hematology/Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dan G Duda
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eunice L Kwak
- Department of Hematology/Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - John T Mullen
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gregory Y Lauwers
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Abascal MF, Besso MJ, Rosso M, Mencucci MV, Aparicio E, Szapiro G, Furlong LI, Vazquez-Levin MH. CDH1/E-cadherin and solid tumors. An updated gene-disease association analysis using bioinformatics tools. Comput Biol Chem 2015; 60:9-20. [PMID: 26674224 DOI: 10.1016/j.compbiolchem.2015.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022]
Abstract
Cancer is a group of diseases that causes millions of deaths worldwide. Among cancers, Solid Tumors (ST) stand-out due to their high incidence and mortality rates. Disruption of cell-cell adhesion is highly relevant during tumor progression. Epithelial-cadherin (protein: E-cadherin, gene: CDH1) is a key molecule in cell-cell adhesion and an abnormal expression or/and function(s) contributes to tumor progression and is altered in ST. A systematic study was carried out to gather and summarize current knowledge on CDH1/E-cadherin and ST using bioinformatics resources. The DisGeNET database was exploited to survey CDH1-associated diseases. Reported mutations in specific ST were obtained by interrogating COSMIC and IntOGen tools. CDH1 Single Nucleotide Polymorphisms (SNP) were retrieved from the dbSNP database. DisGeNET analysis identified 609 genes annotated to ST, among which CDH1 was listed. Using CDH1 as query term, 26 disease concepts were found, 21 of which were neoplasms-related terms. Using DisGeNET ALL Databases, 172 disease concepts were identified. Of those, 80 ST disease-related terms were subjected to manual curation and 75/80 (93.75%) associations were validated. On selected ST, 489 CDH1 somatic mutations were listed in COSMIC and IntOGen databases. Breast neoplasms had the highest CDH1-mutation rate. CDH1 was positioned among the 20 genes with highest mutation frequency and was confirmed as driver gene in breast cancer. Over 14,000 SNP for CDH1 were found in the dbSNP database. This report used DisGeNET to gather/compile current knowledge on gene-disease association for CDH1/E-cadherin and ST; data curation expanded the number of terms that relate them. An updated list of CDH1 somatic mutations was obtained with COSMIC and IntOGen databases and of SNP from dbSNP. This information can be used to further understand the role of CDH1/E-cadherin in health and disease.
Collapse
Affiliation(s)
- María Florencia Abascal
- Laboratory of Cell-Cell Interaction in Cancer and Reproduction, Instituto de Biología & Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación IBYME (FIBYME), Vuelta de Obligado 2490, Zip Code C1428ADN, Buenos Aires, Argentina.
| | - María José Besso
- Laboratory of Cell-Cell Interaction in Cancer and Reproduction, Instituto de Biología & Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación IBYME (FIBYME), Vuelta de Obligado 2490, Zip Code C1428ADN, Buenos Aires, Argentina.
| | - Marina Rosso
- Laboratory of Cell-Cell Interaction in Cancer and Reproduction, Instituto de Biología & Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación IBYME (FIBYME), Vuelta de Obligado 2490, Zip Code C1428ADN, Buenos Aires, Argentina.
| | - María Victoria Mencucci
- Laboratory of Cell-Cell Interaction in Cancer and Reproduction, Instituto de Biología & Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación IBYME (FIBYME), Vuelta de Obligado 2490, Zip Code C1428ADN, Buenos Aires, Argentina.
| | - Evangelina Aparicio
- Laboratory of Cell-Cell Interaction in Cancer and Reproduction, Instituto de Biología & Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación IBYME (FIBYME), Vuelta de Obligado 2490, Zip Code C1428ADN, Buenos Aires, Argentina.
| | - Gala Szapiro
- Laboratory of Cell-Cell Interaction in Cancer and Reproduction, Instituto de Biología & Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación IBYME (FIBYME), Vuelta de Obligado 2490, Zip Code C1428ADN, Buenos Aires, Argentina.
| | - Laura Inés Furlong
- Research Programme on Biomedical Informatics (GRIB) (IMIM), DCEXS, Universitat Pompeu Fabra, C/Dr Aiguader 88, Zip Code 08003, Barcelona, Spain.
| | - Mónica Hebe Vazquez-Levin
- Laboratory of Cell-Cell Interaction in Cancer and Reproduction, Instituto de Biología & Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación IBYME (FIBYME), Vuelta de Obligado 2490, Zip Code C1428ADN, Buenos Aires, Argentina; Laboratory of Cell-Cell Interaction in Cancer and Reproduction, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación IBYME (FIBYME), Vuelta de Obligado 2490, Zip Code C1428ADN, Buenos Aires, Argentina.
| |
Collapse
|
34
|
Brisotto G, di Gennaro A, Damiano V, Armellin M, Perin T, Maestro R, Santarosa M. An improved sequencing-based strategy to estimate locus-specific DNA methylation. BMC Cancer 2015; 15:639. [PMID: 26391005 PMCID: PMC4578270 DOI: 10.1186/s12885-015-1646-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/07/2015] [Indexed: 11/17/2022] Open
Abstract
Background DNA methylation is an important epigenetic mechanism of transcriptional control that plays an essential role in several cellular functions. Aberrant DNA methylation in cancer has been frequently associated with downregulation of microRNAs and protein coding genes, such as miR-200c/miR-141 cluster and E-cadherin. Current strategies to assess DNA methylation, including bisulfite treatment-based assays, tend to be time-consuming and may be quite expensive when a precise appraisal is required. The Sanger-sequencing of the amplified bisulfite-treated DNA (BSP) might represent a practical option to measure DNA methylation at single CpG resolution. However, this strategy often produces noisy data, which affects accurate quantification. Here we propose an improved, reliable and cost-effective BSP-based protocol that allows proper DNA methylation assessment. Methods Our strategy, named normalized-BSP (NBSP), takes advantage of tailed C-balanced primers and a normalization procedure based on C/T ratio to overcome BSP-associated noise problems and nucleotide signal unbalance. NBSP was applied to estimate miR-200c/miR-141 locus methylation in serial dilution experiments and was compared to conventional methods. Besides, it was applied in the analysis of FFPE breast cancer samples and further validated in the context of the E-cadherin promoter. Results NBSP strategy outperformed conventional BSP in the estimate of the fraction of methylated cytosine in serial dilution experiments, providing data in agreement with the widely used but cumbersome cloning-based protocol. This held true for both miR-200c/miR-141 locus and E-cadherin promoter analyses. Moreover, the miR-200c/miR-141 locus methylation reflected the decrease in miRNA expression both in breast cancer cell lines and in the FFPE samples. Conclusions NBSP is a rapid and economical method to estimate the extent of methylation at each CpG of a given locus. Notably, NBSP works efficiently on FFPE samples, thus disclosing the perspective of its application also in the diagnostic setting. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1646-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giulia Brisotto
- Experimental Oncology 1, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy.
| | - Alessandra di Gennaro
- Experimental Oncology 1, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy.
| | - Valentina Damiano
- Experimental Oncology 1, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy.
| | - Michela Armellin
- Experimental Oncology 1, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy.
| | - Tiziana Perin
- Pathology, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy.
| | - Roberta Maestro
- Experimental Oncology 1, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy.
| | - Manuela Santarosa
- Experimental Oncology 1, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy.
| |
Collapse
|
35
|
Qin JJ, Wang JM, Du J, Zeng C, Han W, Li ZD, Xie J, Li GL. Radixin knockdown by RNA interference suppresses human glioblastoma cell growth in vitro and in vivo. Asian Pac J Cancer Prev 2015; 15:9805-12. [PMID: 25520109 DOI: 10.7314/apjcp.2014.15.22.9805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Radixin, a member of the ERM (ezrin-radixin-moesin) family, plays important roles in cell motility, invasion and tumor progression. It is expressed in a variety of normal and neoplastic cells, including many types of epithelial and lymphoid examples. However, its function in glioblastomas remains elusive. Thus, in this study, radixin gene expression was first examined in the glioblastoma cells, then suppressed with a lentivirus-mediated short-hairpin RNA (shRNA) method.We found that there were high levels of radixin expression in glioblastoma U251cells. Radixin shRNA caused down-regulation of radixin gene expression and when radixin-silenced cells were implanted into nude mice, tumor growth was significantly inhibited as compared to blank control cells or non- sense shRNA cells. In addition, microvessel density in the tumors was significantly reduced. Thrombospondin-1 (TSP-1) and E-cadherin were up-regulated in radixin- suppressed glioblastoma U251 cells. In contrast, MMP9 was down-regulated. Taken together, our findings suggest that radixin is involved in GBM cell migration and invasion, and implicate TSP-1, E-cadherin and MMP9 as metastasis-inducing factors.
Collapse
Affiliation(s)
- Jun-Jie Qin
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China E-mail : ,
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sugimoto S, Komatsu H, Morohoshi Y, Kanai T. Recognition of and recent issues in hereditary diffuse gastric cancer. J Gastroenterol 2015; 50:831-43. [PMID: 26049741 DOI: 10.1007/s00535-015-1093-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/21/2015] [Indexed: 02/04/2023]
Abstract
In East Asian countries, gastric cancer incidence is high, but detection rates for germline CDH1 mutations that cause hereditary diffuse gastric cancers (HDGCs) are low. Consequently, screens and genetic testing for HDGC are often considered unimportant. Since the first germline truncating CDH1 mutations in Japanese patients were reported, some HDGC cases have been reported, and some of these involve large germline rearrangements and de novo mutation of CDH1. New methods for mutation detection--such as multiplex ligation-dependent probe amplification, array comparative genomic hybridization, and exome sequencing--have become available, as have new experimental models, including novel gene-knockout mice and gastric organoids. Because of these advances, searches for candidate genes (e.g., CTNNA1, MAP3K6) and our understanding of HDGC pathogenesis have improved in recent years; moreover, there have been substantial changes in the field since the current HDGC consensus guidelines were released. This review focuses on recent issues and advances in the study of HDGC. For example, lobular breast cancer cases and de novo occurrences of DGC are unlikely to meet the existing criteria for genetic testing, but current evidence indicates that some such cases may be good candidates for genetic testing. It is important to recognize that HDGC is a syndrome and that lobular breast cancer can be the first manifestation of this syndrome. CDH1 testing, including analyses of large genomic rearrangements, should be recommended even in countries where few HDGC cases have been reported.
Collapse
Affiliation(s)
- Shinya Sugimoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan,
| | | | | | | |
Collapse
|
37
|
Majumder K, Liang G, Chen Y, Guan L, Davidge ST, Wu J. Egg ovotransferrin-derived ACE inhibitory peptide IRW increases ACE2 but decreases proinflammatory genes expression in mesenteric artery of spontaneously hypertensive rats. Mol Nutr Food Res 2015; 59:1735-44. [PMID: 26016560 PMCID: PMC5034750 DOI: 10.1002/mnfr.201500050] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/23/2015] [Accepted: 04/29/2015] [Indexed: 12/31/2022]
Abstract
Scope Egg ovotransferrin‐derived angiotensin converting enzyme (ACE) inhibitory peptide IRW was previously shown to reduce blood pressure in spontaneously hypertensive rats through reduced vascular inflammation and increased nitric oxide‐mediated vasorelaxation. The main objective of the present study was to investigate the molecular mechanism of this peptide through transcriptome analysis by RNAseq technique. Methods and results Total RNA was extracted from kidney and mesenteric arteries; the RNAseq libraries (from untreated and IRW‐treated groups) were constructed and subjected to sequence using HiSeq 2000 system (Illumina) system. A total of 12 764 and 13 352 genes were detected in kidney and mesenteric arteries, respectively. The differentially expressed (DE) genes between untreated and IRW‐treated groups were identified and the functional analysis through ingenuity pathway analysis revealed a greater role of DE genes identified from mesenteric arteries than that of kidney in modulating various cardiovascular functions. Subsequent qPCR analysis further confirmed that IRW significantly increased the expression of ACE‐2, ABCB‐1, IRF‐8, and CDH‐1 while significantly decreased the expression ICAM‐1 and VCAM‐1 in mesenteric arteries. Conclusion Our research showed for the first time that ACE inhibitory peptide IRW could contribute to its antihypertensive activity through increased ACE2 and decreased proinflammatory genes expression.
Collapse
Affiliation(s)
- Kaustav Majumder
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Guanxiang Liang
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Yanhong Chen
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - LeLuo Guan
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Sandra T Davidge
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.,Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
38
|
Barber AG, Castillo-Martin M, Bonal DM, Jia AJ, Rybicki BA, Christiano AM, Cordon-Cardo C. PI3K/AKT pathway regulates E-cadherin and Desmoglein 2 in aggressive prostate cancer. Cancer Med 2015; 4:1258-71. [PMID: 26033689 PMCID: PMC4559037 DOI: 10.1002/cam4.463] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/13/2015] [Accepted: 03/17/2015] [Indexed: 12/30/2022] Open
Abstract
Reduced expression of both classical and desmosomal cadherins has been associated with different types of carcinomas, including prostate cancer. This study aims to provide a comprehensive view of the role and regulation of cell-cell adhesion in prostate cancer aggressiveness by examining the functional implications of both E-cadherin and Desmoglein 2 (DSG2). E-cadherin expression was first examined using immunofluorescence in 50 normal prostate tissues and in a cohort of 414 prostate cancer patients. Correlation and survival analyses were performed to assess its clinical significance. In primary prostate cancer patients, reduced expression of both E-cadherin and DSG2 is significantly associated with an earlier biochemical recurrence. Transgenic DU145 E-cadherin knockdown and constitutively active AKT overexpression lines were generated. Functional implications of such genetic alterations were analyzed in vitro and in vivo, the latter by using tumorigenesis as well as extravasation and metastatic tumor formation assays. We observed that loss of E-cadherin leads to impaired primary and metastatic tumor formation in vivo, suggesting a tumor promoter role for E-cadherin in addition to its known role as a tumor suppressor. Activation of AKT leads to a significant reduction in E-cadherin expression and nuclear localization of Snail, suggesting a role for the PI3K/AKT signaling pathway in the transient repression of E-cadherin. This reduced expression may be regulated by separate mechanisms as neither the loss of E-cadherin nor activation of AKT significantly affected DSG2 expression. In conclusion, these findings illustrate the critical role of cell-cell adhesion in the progression to aggressive prostate cancer, through regulation by the PI3K pathway.
Collapse
Affiliation(s)
- Alison G Barber
- Department of Genetics and Development, Columbia University, New York City, New York
| | - Mireia Castillo-Martin
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Dennis M Bonal
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Angela J Jia
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, New York
| | - Benjamin A Rybicki
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | - Angela M Christiano
- Department of Genetics and Development, Columbia University, New York City, New York.,Department of Dermatology, Columbia University, New York City, New York
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, New York.,Department of Pathology and Cell Biology, Columbia University, New York City, New York.,Department of Urology, Columbia University, New York City, New York
| |
Collapse
|
39
|
Vazquez-Levin MH, Marín-Briggiler CI, Caballero JN, Veiga MF. Epithelial and neural cadherin expression in the mammalian reproductive tract and gametes and their participation in fertilization-related events. Dev Biol 2015; 401:2-16. [DOI: 10.1016/j.ydbio.2014.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/23/2014] [Accepted: 12/28/2014] [Indexed: 01/10/2023]
|
40
|
Pattison S, Boussioutas A. Pathophysiology of Hereditary Diffuse Gastric Cancer. Gastric Cancer 2015. [DOI: 10.1007/978-3-319-15826-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
41
|
Pinheiro H, Oliveira C, Seruca R, Carneiro F. Hereditary diffuse gastric cancer - pathophysiology and clinical management. Best Pract Res Clin Gastroenterol 2014; 28:1055-68. [PMID: 25439071 DOI: 10.1016/j.bpg.2014.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/08/2014] [Accepted: 09/15/2014] [Indexed: 01/31/2023]
Abstract
Hereditary Diffuse Gastric Cancer is an autosomal dominant inherited gastric cancer syndrome caused by germline alterations in CDH1 (E-cadherin) and CTNNA1 (alpha-E-catenin) genes. Germline CDH1 alterations encompass small frameshifts, splice-site, nonsense, and missense mutations, as well as large rearrangements. Most CDH1 truncating mutations are pathogenic, and several missense CDH1 mutations have a deleterious effect on E-cadherin function. CDH1 testing should be performed in probands. Screening of at-risk individuals is indicated from the age of consent following counselling with a multidisciplinary team. In mutation-positive individuals prophylactic gastrectomy is recommended. Endoscopic surveillance is an option for those refusing/postponing gastrectomy, those with mutations of undetermined significance, and in CDH1-negative families. Ongoing research focus on the search of genetic causes other than CDH1 or CTNNA1 germline defects; assessment of the pathogenicity and penetrance of CDH1 missense mutations and identification of somatic mechanisms behind the progression from early (indolent) lesions to invasive (lethal) carcinomas.
Collapse
Affiliation(s)
- Hugo Pinheiro
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Carla Oliveira
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal; Dept. of Pathology and Oncology, Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4100-319 Porto, Portugal
| | - Raquel Seruca
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal; Dept. of Pathology and Oncology, Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4100-319 Porto, Portugal
| | - Fátima Carneiro
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal; Dept. of Pathology and Oncology, Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4100-319 Porto, Portugal; Centro Hospitalar S. João, Alameda Prof. Hernani Monteiro, 4100-319 Porto, Portugal.
| |
Collapse
|
42
|
New Therapeutic Approaches for Invasive Lobular Carcinoma. CURRENT BREAST CANCER REPORTS 2014. [DOI: 10.1007/s12609-014-0158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Kaufhold S, Bonavida B. Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:62. [PMID: 25084828 PMCID: PMC4237825 DOI: 10.1186/s13046-014-0062-0] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/10/2014] [Indexed: 12/29/2022]
Abstract
Snail1 is the founding member of the Snail superfamily of zinc-finger transcription factors, which also includes Snail2 (Slug) and Snail3 (Smuc). The superfamily is involved in cell differentiation and survival, two processes central in cancer research. Encoded by the SNAI1 gene located on human chromosome 20q13.2, Snail1 is composed of 264 amino acids and usually acts as a transcriptional repressor. Phosphorylation and nuclear localization of Snail1, governed by PI3K and Wnt signaling pathways crosstalk, are critical in Snail1’s regulation. Snail1 has a pivotal role in the regulation of epithelial-mesenchymal transition (EMT), the process by which epithelial cells acquire a migratory, mesenchymal phenotype, as a result of its repression of E-cadherin. Snail1-induced EMT involves the loss of E-cadherin and claudins with concomitant upregulation of vimentin and fibronectin, among other biomarkers. While essential to normal developmental processes such as gastrulation, EMT is associated with metastasis, the cancer stem cell phenotype, and the regulation of chemo and immune resistance in cancer. Snail1 expression is a common sign of poor prognosis in metastatic cancer, and tumors with elevated Snail1 expression are disproportionately difficult to eradicate by current therapeutic treatments. The significance of Snail1 as a prognostic indicator, its involvement in the regulation of EMT and metastasis, and its roles in both drug and immune resistance point out that Snail1 is an attractive target for tumor growth inhibition and a target for sensitization to cytotoxic drugs.
Collapse
|
44
|
Abstract
Tumor microenvironment substantially influences the process of tumorigenesis. In many solid tumors, imbalance between the demand of rapidly proliferating cancer cells and the capabilities of the vascular system generates areas with insufficient oxygen supply. In response to tumor hypoxia, cancer cells modulate their gene expression pattern to match the requirements of the altered microenvironment. One of the most significant adaptations to this milieu is the shift towards anaerobic glycolysis to keep up the energy demands. This oncogenic metabolism is often maintained also in aerobic cells. Lactic acid, its metabolic end-product, accumulates hand-in-hand with carbon dioxide, leading to acidification of the extracellular environment. Carbonic anhydrase IX (CA IX) is the most widely expressed gene in response to hypoxia. Its crucial role in intracellular pH maintenance represents the means by which cancer cells adapt to the toxic conditions of the extracellular milieu. Furthermore, the activity of CA IX stimulates the migratory pathways of cancer cells and is connected with the increase of the aggressive/invasive phenotype of tumors. CA IX expression in many types of tumors indicates its relevance as a general marker of tumor hypoxia. Moreover, its expression is closely related to prognosis of the clinical outcome in several tumor types. All above mentioned facts support the strong position of CA IX as a potential drug therapy target. Here, we summarize the state-of-the-art knowledge on its regulation and role in cancer development.
Collapse
|
45
|
Liu X, Wang D, Liu H, Feng Y, Zhu T, Zhang L, Zhu B, Zhang Y. Knockdown of astrocyte elevated gene-1 (AEG-1) in cervical cancer cells decreases their invasiveness, epithelial to mesenchymal transition, and chemoresistance. Cell Cycle 2014; 13:1702-7. [PMID: 24675891 DOI: 10.4161/cc.28607] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During cancer development, epithelial-mesenchymal transition (EMT) facilitates tumor dissemination and metastatic spread, which is characterized by morphologic changes from epithelial cells to fibroblast-like cells, disassembly of intercellular junction, and increased cell motility. Overexpression of astrocyte elevated gene-1(AEG-1) in various cancer cell lines and cancers has been found to be associated with aggressive tumor behavior. We found that AEG-1 expression was elevated in low differentiation cervical cancer specimens from patients. However, little is known about the AEG-1's precise role in invasion and metastasis. Here we demonstrate that downregulation of AEG-1 by RNAi significantly decreased the invasion and migration of cervical cancer cells, suggesting that AEG-1 overexpression may enhance cancer cell motility by inducing EMT. Downregulation of AEG-1 also led to reduced expression of mesenchymal marker vimentin and the transcription factor Snail but upregulation of epithelial marker E-cadherin in HeLa cells. In addition, knockdown of AEG-1 decreased colony forming units and increased sensitivity to cancer drugs in vitro. Taken together, our results suggest that knockdown of AEG-1 could decrease EMT and chemoresistance in cervical cancer cells and attenuate their aggressive behavior.
Collapse
Affiliation(s)
- Xiangwen Liu
- Institute of Anatomy and Histology & Embryology; School of Basic Medical Sciences; Lanzhou University, China; Institute of Pathogenic Biology; School of Basic Medical Sciences; Lanzhou University; China
| | - Degui Wang
- Institute of Anatomy and Histology & Embryology; School of Basic Medical Sciences; Lanzhou University, China
| | - Huiling Liu
- Department of Obstetrics and Gynecology; Gansu Provincial People's Hospital; Lanzhou, China
| | - Ying Feng
- Department of Pathology; the First Hospital of Lanzhou University; China
| | - Tianyuan Zhu
- Hysteroscopic Center, Maternal and Child Health Care Hospital of Lanzhou City; Lanzhou, China
| | - Lang Zhang
- Institute of Anatomy and Histology & Embryology; School of Basic Medical Sciences; Lanzhou University, China
| | - Bingdong Zhu
- Institute of Pathogenic Biology; School of Basic Medical Sciences; Lanzhou University; China
| | - Ying Zhang
- Institute of Pathogenic Biology; School of Basic Medical Sciences; Lanzhou University; China; Department of Molecular Microbiology and Immunology; Bloomberg School of Public Health; Johns Hopkins University; Baltimore, USA
| |
Collapse
|
46
|
Prognostic Significance of Cyclin D1 and E-cadherin Expression in Laryngeal Squamous Cell Carcinoma. Pathol Oncol Res 2014; 20:625-33. [DOI: 10.1007/s12253-014-9741-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 01/03/2014] [Indexed: 10/25/2022]
|
47
|
The Roles of Epithelial-to-Mesenchymal Transition (EMT) and Mesenchymal-to-Epithelial Transition (MET) in Breast Cancer Bone Metastasis: Potential Targets for Prevention and Treatment. J Clin Med 2013; 2:264-82. [PMID: 26237148 PMCID: PMC4470149 DOI: 10.3390/jcm2040264] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/25/2013] [Accepted: 11/08/2013] [Indexed: 12/18/2022] Open
Abstract
Many studies have revealed molecular connections between breast and bone. Genes, important in the control of bone remodeling, such as receptor activator of nuclear kappa (RANK), receptor activator of nuclear kappa ligand (RANKL), vitamin D, bone sialoprotein (BSP), osteopontin (OPN), and calcitonin, are expressed in breast cancer and lactating breast. Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) effectors play critical roles during embryonic development, postnatal growth, and epithelial homeostasis, but also are involved in a number of pathological conditions, including wound repair, fibrosis, inflammation, as well as cancer progression and bone metastasis. Transforming growth factor β (TGFβ), insulin-like growth factor I & II (IGF I & II), platelet-derived growth factor (PDGF), parathyroid hormone-related protein (PTH(rP)), vascular endothelial growth factor (VEGF), epithelial growth factors II/I (ErbB/EGF), interleukin 6 (IL-6), IL-8, IL-11, IL-1, integrin αvβ3, matrix metalloproteinases (MMPs), catepsin K, hypoxia, notch, Wnt, bone morphogenetic proteins (BMP), and hedgehog signaling pathways are important EMT and MET effectors identified in the bone microenviroment facilitating bone metastasis formation. Recently, Runx2, an essential transcription factor in the regulation of mesenchymal cell differentiation into the osteoblast lineage and proper bone development, is also well-recognized for its expression in breast cancer cells promoting osteolytic bone metastasis. Understanding the precise mechanisms of EMT and MET in the pathogenesis of breast cancer bone metastasis can inform the direction of therapeutic intervention and possibly prevention.
Collapse
|
48
|
McCart Reed AE, Song S, Kutasovic JR, Reid LE, Valle JM, Vargas AC, Smart CE, Simpson PT. Thrombospondin-4 expression is activated during the stromal response to invasive breast cancer. Virchows Arch 2013; 463:535-45. [PMID: 23942617 DOI: 10.1007/s00428-013-1468-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 07/17/2013] [Accepted: 07/26/2013] [Indexed: 02/08/2023]
Abstract
The thromobospondins are a family of extracellular glycoproteins that are activated during tissue remodeling processes such as embryogenesis, wound healing and cancer. Thrombospondin-4 (THBS4) is known to have roles in cellular migration, adhesion and attachment, as well as proliferation in different contexts. Data to support a role in cancer biology is increasing, including for gastrointestinal and prostate tumours. Here, using a combination of immunohistochemistry, immunofluorescence and analysis of publicly available genomic and expression data, we present the first study describing the pattern of expression of THBS4 in normal breast and breast cancer. THBS4 was located to the basement membrane of large ducts and vessels in normal breast tissue, but was absent from epithelium and extracellular matrix. There was a significant induction in expression in cancer-associated stroma relative to normal stroma (P = 0.0033), neoplastic epithelium (P < 0.0001) and normal epithelium (P < 0.0001). There was no difference in stromal expression of THBS4 between invasive ductal carcinomas (IDC) and invasive lobular carcinomas (ILC). The THBS4 mRNA levels were variable yet were generally highest in tumours typically rich in stromal content (ILC, ER positive low grade IDC; luminal A and normal-like subtypes). Genomic alterations of the THBS4 gene (somatic mutations and gene copy number) are rare suggesting this dramatic activation in expression is most likely dynamically regulated through the interaction between invading tumour cells and stromal fibroblasts in the local microenvironment. In summary, THBS4 expression in breast cancer-associated extracellular matrix contributes to the activated stromal response exhibited during tumour progression and this may facilitate invasion of tumour cells.
Collapse
Affiliation(s)
- Amy E McCart Reed
- The University of Queensland, UQ Centre for Clinical Research (UQCCR), Building 71/918, The Royal Brisbane & Women's Hospital, Herston, Queensland, 4029, Australia
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Tamara M H Gall
- HPB Surgical Unit, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, , London, UK
| | | |
Collapse
|
50
|
Wang MF, Kuo SH, Huang CH, Chen YJ, Lin SH, Lee CJ, Lue KH, Wu SC, Cho CY, Wong RH. Exposure to environmental tobacco smoke, human E-cadherin C-160A polymorphism, and childhood asthma. Ann Allergy Asthma Immunol 2013; 111:262-7. [PMID: 24054361 DOI: 10.1016/j.anai.2013.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/19/2013] [Accepted: 07/10/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Environmental tobacco smoke (ETS) is a risk factor for asthma. Importantly, cigarette smoke can decrease the adherence of epithelial cells and increase detachment. The adhesion molecule E-cadherin (CDH1) has an essential role in the formation of epithelial junction. Turnover of the extracellular matrix, which is characterized by airway remodeling, depends on the imbalance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs). OBJECTIVE To evaluate the effects of ETS exposure and CDH1, MMP-3, and TIMP-1 genetic polymorphisms on childhood asthma. METHODS The CDH1 C-160A, MMP-3 -1171, and TIMP-1 T372C genotypes were identified by polymerase chain reaction in 299 asthmatic children and 383 healthy controls. RESULTS More ETS exposure (>5 vs 0 cigarettes/day; odds ratio [OR], 1.45; 95% confidence interval [CI], 1.05-2.01) and the presence of CDH1 AA/CA genotypes (OR, 1.53; 95% CI, 1.08-2.17) were associated with childhood asthma. Compared with children with less ETS exposure (0-5 cigarettes/day) and the CDH1 CC genotype, those with less ETS exposure and the CDH1 AA/CA genotypes and those with more ETS exposure and the CDH1 CC genotype had a moderate risk of asthma. The greatest risk for asthma was in children with more ETS exposure and the CDH1 AA/CA genotypes (OR, 3.03; 95% CI, 1.81-5.06), and this interaction between CDH1 polymorphism and ETS exposure was significant. In addition, asthma cases with more ETS exposure or the CDH1 AA/CA genotypes had obviously increased eosinophil counts. CONCLUSION Susceptible CDH1 genotypes might modulate the development of asthma, especially for children exposed to ETS.
Collapse
Affiliation(s)
- Ming-Fuu Wang
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing, and Management, Miaoli County, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|