1
|
Blot FGC, White JJ, van Hattem A, Scotti L, Balaji V, Adolfs Y, Pasterkamp RJ, De Zeeuw CI, Schonewille M. Purkinje cell microzones mediate distinct kinematics of a single movement. Nat Commun 2023; 14:4358. [PMID: 37468512 PMCID: PMC10356806 DOI: 10.1038/s41467-023-40111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
The classification of neuronal subpopulations has significantly advanced, yet its relevance for behavior remains unclear. The highly organized flocculus of the cerebellum, known to fine-tune multi-axial eye movements, is an ideal substrate for the study of potential functions of neuronal subpopulations. Here, we demonstrate that its recently identified subpopulations of 9+ and 9- Purkinje cells exhibit an intermediate Aldolase C expression and electrophysiological profile, providing evidence for a graded continuum of intrinsic properties among PC subpopulations. By identifying and utilizing two Cre-lines that genetically target these floccular domains, we show with high spatial specificity that these subpopulations of Purkinje cells participate in separate micromodules with topographically organized connections. Finally, optogenetic excitation of the respective subpopulations results in movements around the same axis in space, yet with distinct kinematic profiles. These results indicate that Purkinje cell subpopulations integrate in discrete circuits and mediate particular parameters of single movements.
Collapse
Affiliation(s)
| | - Joshua J White
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Amy van Hattem
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Licia Scotti
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Vaishnavi Balaji
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | | |
Collapse
|
2
|
Woelfle S, Deshpande D, Feldengut S, Braak H, Del Tredici K, Roselli F, Deisseroth K, Michaelis J, Boeckers TM, Schön M. CLARITY increases sensitivity and specificity of fluorescence immunostaining in long-term archived human brain tissue. BMC Biol 2023; 21:113. [PMID: 37221592 PMCID: PMC10207789 DOI: 10.1186/s12915-023-01582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/29/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Post mortem human brain tissue is an essential resource to study cell types, connectivity as well as subcellular structures down to the molecular setup of the central nervous system especially with respect to the plethora of brain diseases. A key method is immunostaining with fluorescent dyes, which allows high-resolution imaging in three dimensions of multiple structures simultaneously. Although there are large collections of formalin-fixed brains, research is often limited because several conditions arise that complicate the use of human brain tissue for high-resolution fluorescence microscopy. RESULTS In this study, we developed a clearing approach for immunofluorescence-based analysis of perfusion- and immersion-fixed post mortem human brain tissue, termed human Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging / Immunostaining / In situ hybridization-compatible Tissue-hYdrogel (hCLARITY). hCLARITY is optimized for specificity by reducing off-target labeling and yields very sensitive stainings in human brain sections allowing for super-resolution microscopy with unprecedented imaging of pre- and postsynaptic compartments. Moreover, hallmarks of Alzheimer's disease were preserved with hCLARITY, and importantly classical 3,3'-diaminobenzidine (DAB) or Nissl stainings are compatible with this protocol. hCLARITY is very versatile as demonstrated by the use of more than 30 well performing antibodies and allows for de- and subsequent re-staining of the same tissue section, which is important for multi-labeling approaches, e.g., in super-resolution microscopy. CONCLUSIONS Taken together, hCLARITY enables research of the human brain with high sensitivity and down to sub-diffraction resolution. It therefore has enormous potential for the investigation of local morphological changes, e.g., in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah Woelfle
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, IGradU, 89081, Ulm, Germany
| | - Dhruva Deshpande
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Chemical and Systems Biology Department, Stanford School of Medicine, 269 Campus Drive, Stanford, CA, 94305, USA
| | - Simone Feldengut
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Heiko Braak
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University, 89081, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE, Ulm Site, 89081, Ulm, Germany
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Howard Hughes Medical Institute, Stanford, CA, 94305, USA
| | - Jens Michaelis
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE, Ulm Site, 89081, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
3
|
Promotion of Dendritic Differentiation of Cerebellar Purkinje Cells by Ca 2+/calmodulin-dependent Protein Kinase IIα, IIβ and IV and Possible Involvement of CREB Phosphorylation. Neuroscience 2021; 458:87-98. [PMID: 33493619 DOI: 10.1016/j.neuroscience.2021.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/20/2022]
Abstract
Cerebellar Purkinje cells develop the most elaborate dendritic trees among neurons in the brain. To examine the role of Ca2+/calmodulin-dependent protein kinase (CaMK) IIα, IIβ and IV in the dendritic differentiation of Purkinje cells, we introduced siRNA against these CaMKs into Purkinje cells in cerebellar cell cultures using a single-cell electroporation technique. Single-cell electroporation enables us to transfer siRNA into specific cells within a heterogeneous cell population. In addition, we can easily and reliably transfer multiple types of siRNA into a cell simply by loading them together in one micropipette. Any one of the siRNA against CaMKIIα, IIβ and IV (single knockdown) or any combinations of two of the siRNA against these CaMKs (double knockdown) had no significant effects on the dendritic differentiation of Purkinje cells. However, the combination of all three siRNA against these CaMKs (triple knockdown) inhibited the branching of Purkinje cell dendrites. Furthermore, the triple knockdown reduced the phosphorylation of CREB in Purkinje cells. These findings suggest the promotion of dendritic differentiation of Purkinje cells by CaMKIIα, IIβ and IV and the possible involvement of phosphorylation of CREB as a common substrate of these CaMKs.
Collapse
|
4
|
Selective transgene expression in cerebellar Purkinje cells and granule cells using adeno-associated viruses together with specific promoters. Brain Res 2015; 1620:1-16. [DOI: 10.1016/j.brainres.2015.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/27/2015] [Accepted: 05/11/2015] [Indexed: 11/19/2022]
|
5
|
Distribution of CaMKIIα expression in the brain in vivo, studied by CaMKIIα-GFP mice. Brain Res 2013; 1518:9-25. [PMID: 23632380 DOI: 10.1016/j.brainres.2013.04.042] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 01/08/2023]
Abstract
To facilitate the study of the CaMKIIα function in vivo, a CaMKIIα-GFP transgenic mouse line was generated. Here, our goal is to provide the first neuroanatomical characterization of GFP expression in the CNS of this line of mouse. Overall, CaMKIIα-GFP expression is strong and highly heterogeneous, with the dentate gyrus of the hippocampus as the most abundantly expressed region. In the hippocampus, around 70% of granule and pyramidal neurons expressed strong GFP. In the neocortex, presumed pyramidal neurons were GFP positive: around 32% of layer II/III and 35% of layer VI neurons expressed GFP, and a lower expression rate was found in other layers. In the thalamus and hypothalamus, strong GFP signals were detected in the neuropil. GFP-positive cells were also found in many other regions such as the spinal trigeminal nucleus, cerebellum and basal ganglia. We further compared the GFP expression with specific antibody staining for CaMKIIα and GABA. We found that GFP+ neurons were mostly positive for CaMKIIα-IR throughout the brain, with some exceptions throughout the brain, especially in the deeper layers of neocortex. GFP and GABA-IR marked distinct neuronal populations in most brain regions with the exception of granule cells in the olfactory bulb, purkinje cells in the cerebellar, and some layer I cells in neocortex. In conclusion, GFP expression in the CaMKIIα-GFP mice is similar to the endogenous expression of CaMKIIα protein, thus these mice can be used in in vivo and in vitro physiological studies in which visualization of CaMKIIα- neuronal populations is required.
Collapse
|
6
|
Abstract
During postnatal cerebellar development, Purkinje cells form the most elaborate dendritic trees among neurons in the brain, which have been of great interest to many investigators. This article overviews various examples of cellular and molecular mechanisms of formation of Purkinje cell dendrites as well as the methodological aspects of investigating those mechanisms.
Collapse
Affiliation(s)
- Masahiko Tanaka
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| |
Collapse
|
7
|
Yamauchi T. Molecular Mechanism of Learning and Memory Based on the Research for Ca 2+/Calmodulin-dependent Protein Kinase II. YAKUGAKU ZASSHI 2007; 127:1173-97. [PMID: 17666869 DOI: 10.1248/yakushi.127.1173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the central nervous system (CNS), the synapse is a specialized junctional complex by which axons and dendrites emerging from different neuron intercommunicates. Changes in the efficiency of synaptic transmission are important for a number of aspects of neural function. Much has been learned about the activity-dependent synaptic modifications that are thought to underlie memory storage, but the mechanism by which these modifications are stored remains unclear. Thus, it is important to find and characterize "memory molecules," and "memory apparatus or memory forming apparatus." A good candidate for the storage mechanism is Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). CaM kinase II is one of the most prominent protein kinases, present in essentially every tissue but most concentrated in the brain. Neuronal CaM kinase II regulates important neuronal functions, including neurotransmitter synthesis, neurotransmitter release, modulation of ion channel activity, cellular transport, cell morphology and neurite extension, synaptic plasticity, learning and memory, and gene expression. Studies concerning this kinase open a door of the molecular basis of nerve function, especially learning and memory, and indicate one direction for the studies in the field of neuroscience. This review presents molecular structure, properties and functions of CaM kinase II, as a major component of neuron, which are mainly developed in our laboratory.
Collapse
Affiliation(s)
- Takashi Yamauchi
- Institute of Health Biosciences, Graduate School of Pharmaceutical Sciences, The University of Tokushima, Japan.
| |
Collapse
|
8
|
Tsukane M, Yoshizaki C, Yamauchi T. Development and specific induction of apoptosis of cultured cell models overexpressing human tau during neural differentiation: Implication in Alzheimer's disease. Anal Biochem 2006; 360:114-22. [PMID: 17113559 DOI: 10.1016/j.ab.2006.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 10/02/2006] [Indexed: 11/19/2022]
Abstract
Apoptosis or programmed cell death is considered to be involved in neurodegenerative disorders, including Alzheimer's disease (AD). AD is characterized by intracellular aggregates of hyperphosphorylated tau, a microtubule-associated protein. To investigate the induction of apoptosis by abnormal tau resembling AD, cultured cells may be useful tools. We developed a cell culture model and established NG108-15 and P19 cells stably transfected with human tau, naming them tau/NG and tau/P19 cells, respectively. Increased accumulation and phosphorylation of tau were observed during neural differentiation in tau/NG cells. Tau/P19 cells underwent drastic apoptosis during neural differentiation induced by retinoic acid (RA). Tau protein was distributed throughout the cytoplasm and in specific zones of the nucleus. The cytoplasmic tau was associated with microtubules, but the nucleic tau was observed to form clusters and was associated with RA receptor (RAR). The apoptosis induced by RA was inhibited by the treatment of glycogen synthase kinase 3 (GSK3) inhibitor in tau/P19 cells. We propose that translocation of tau into nucleus affects RA signaling in apoptosis via GSK3 in the cells. These cells are useful for monitoring the apoptosis by abundant tau and may be applied to investigate the molecular mechanism of apoptosis resembling AD.
Collapse
Affiliation(s)
- Mariko Tsukane
- Department of Biochemistry, Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, University of Tokushima, Shomachi 1, Tokushima 770-8505, Japan
| | | | | |
Collapse
|
9
|
Tsukane M, Yamauchi T. Increase in apoptosis with neural differentiation and shortening of the lifespan of P19 cells overexpressing tau. Neurochem Int 2006; 48:243-54. [PMID: 16417947 DOI: 10.1016/j.neuint.2005.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 09/09/2005] [Accepted: 09/27/2005] [Indexed: 11/26/2022]
Abstract
Apoptosis or programmed cell death is considered to be involved in neurodegenerative disorders including Alzheimer's disease (AD). AD is characterized by intracellular aggregates of hyperphosphorylated tau, a microtubule-associated protein. To investigate the effect of the overexpression of tau in P19 cells, we engineered P19 wild-type cells (P19wt) stably expressing human tau441 (P19tau). When P19tau cells were induced to undergo neural differentiation by treatment with retinoic acid (RA), a remarkable increase in apoptosis was observed. However, in the undifferentiated state, there was no notable difference of phenotype between P19wt and P19tau cells. Additionally, we found that tau dissociated from microtubules, and co-localized with the RA receptor (RAR) at nucleoli. Further, the lifespan of the differentiated P19tau cells was shorter than that of P19wt cells, and the re-treatment of differentiated P19wt cells with RA resulted in a reduction of lifespan. These observations suggested that tau affects RA signaling in apoptosis and lifespan during the neural differentiation induced by RA treatment.
Collapse
Affiliation(s)
- Mariko Tsukane
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, University of Tokushima, Shomachi 1, Tokushima 770-8505, Japan
| | | |
Collapse
|
10
|
Yamauchi T. Neuronal Ca2+/calmodulin-dependent protein kinase II--discovery, progress in a quarter of a century, and perspective: implication for learning and memory. Biol Pharm Bull 2005; 28:1342-54. [PMID: 16079472 DOI: 10.1248/bpb.28.1342] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Much has been learned about the activity-dependent synaptic modifications that are thought to underlie memory storage, but the mechanism by which these modifications are stored remains unclear. A good candidate for the storage mechanism is Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). CaM kinase II is one of the most prominent protein kinases, present in essentially every tissue but most concentrated in brain. Although it has been about a quarter of a century since the finding, CaM kinase II has been of the major interest in the region of brain science. It plays a multifunctional role in many intracellular events, and the expression of the enzyme is carefully regulated in brain regions and during brain development. Neuronal CaM kinase II regulates important neuronal functions, including neurotransmitter synthesis, neurotransmitter release, modulation of ion channel activity, cellular transport, cell morphology and neurite extension, synaptic plasticity, learning and memory, and gene expression. Studies concerning this kinase have provided insight into the molecular basis of nerve functions, especially learning and memory, and indicate one direction for studies in the field of neuroscience. This review presents the molecular structure, properties and functions of CaM kinase II, as a major component of neurons, based mainly developed on findings made in our laboratory.
Collapse
Affiliation(s)
- Takashi Yamauchi
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, University of Tokushima, Shomachi 1, Tokushima 770-8585, Japan.
| |
Collapse
|
11
|
Takaoka Y, Setsu T, Misaki K, Yamauchi T, Terashima T. Expression of reelin in the dorsal cochlear nucleus of the mouse. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 159:127-34. [PMID: 16139369 DOI: 10.1016/j.devbrainres.2005.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Revised: 07/24/2005] [Accepted: 07/28/2005] [Indexed: 11/19/2022]
Abstract
The cytoarchitecture of dorsal cochlear nucleus (DCN), characterized by a distinct laminar structure similar to the cerebellar cortex of the normal mouse, is known to be disrupted in the Reelin-deficient mouse, reeler. Here, we have reexamined both the cytoarchitecture and myeloarchitecture of this nucleus and described expression pattern of Reelin protein during perinatal periods. Reelin-immunopositive granule cells were firstly recognized in the external granular layer of the DCN at embryological day 16 (E16). Next, we examined the cytoarchitecture of the DCN of the normal and reeler mice with Ca2+/calmodulin-dependent protein kinase IIalpha (CaMKIIalpha) immunostaining. CaMKIIalpha-immunoreactive cartwheel cells were laminarly distributed in the layer II of the normal DCN, but scattered throughout the reeler DCN. Injection of retrograde tracer, Fluoro-Gold (FG) into the inferior colliculus of the reeler mouse resulted in that retrogradely labeled neurons in the DCN were radially scattered instead of being confined to a single layer as seen in the normal mouse. To examine whether CaMKIIalpha-immunopositive cartwheel cells are neurons projecting to the inferior colliculus or not, double labeling with CaMKIIalpha immunohistochemistry and retrograde labeling with an injection of FG into the inferior colliculus were made, which revealed that CaMKIIalpha-immunoreactive cartwheel cells do not send axons to the inferior colliculus. The present findings imply that Reelin may have some roles in the formation of laminar structures of the DCN.
Collapse
Affiliation(s)
- Yuka Takaoka
- Division of Anatomy and Neurobiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-Ku, Kobe 650-0017, Japan
| | | | | | | | | |
Collapse
|
12
|
Yoshizaki C, Tsukane M, Yamauchi T. Overexpression of tau leads to the stimulation of neurite outgrowth, the activation of caspase 3 activity, and accumulation and phosphorylation of tau in neuroblastoma cells on cAMP treatment. Neurosci Res 2004; 49:363-71. [PMID: 15236861 DOI: 10.1016/j.neures.2004.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 04/09/2004] [Indexed: 11/19/2022]
Abstract
To explore changes to the tau molecule in Alzheimer's disease, we studied the effect of tau expression in stably transfected neuroblastoma x glioma hybrid NG108-15 cells (tau cells). Tau cells had a similar shape to, but more neurites than, wild type NG108-15 cells (wild type cells). When treated with cAMP, tau cells began to form neurites within 2h. After that, these neurites became longer and thicker than those of wild type cells. An accumulation and increased phosphorylation of tau were observed after 8 h and caspase 3 activity was increased after 4 h in tau cells, but not in wild type cells, upon treatment with cAMP. Caspase 3 activity was activated after the initiation of morphological change, and before the accumulation of tau in tau cells. Under these conditions, apoptotic cell death was not observed and tau was colocalized with tubulin. However, the accumulated tau molecules did not associate with tubulin and were dislocated around and in the nuclei of tau cells. These observations have implications for the cellular causes of Alzheimer's disease where the accumulation and mislocation of tau occur concomitant with neuronal degeneration.
Collapse
Affiliation(s)
- Chihiro Yoshizaki
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1, Tokushima 770-8505, Japan
| | | | | |
Collapse
|
13
|
Donai H, Sugiura H, Ara D, Yoshimura Y, Yamagata K, Yamauchi T. Interaction of Arc with CaM kinase II and stimulation of neurite extension by Arc in neuroblastoma cells expressing CaM kinase II. Neurosci Res 2003; 47:399-408. [PMID: 14630344 DOI: 10.1016/j.neures.2003.08.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the relationship between Arc (activity-regulated cytoskeleton-associated protein) and Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). Arc and CaM kinase II were concentrated in the postsynaptic density. These proteins were accumulated after electroconvulsive treatment. Arc increased about 2.5-fold within 30 min and was maintained at this level for 8h after the stimulation. CaM kinase II also increased within 30 min and remained at this level for at least 24h. The interaction of Arc with CaM kinase II was demonstrated using GST-Arc fusion protein, and confirmed in neuroblastoma cells by immunoprecipitation. We examined the function of Arc by introducing Arc cDNA into neuroblastoma cells expressing CaM kinase II. The cells expressing both Arc and CaM kinase II had longer neurites than those expressing CaM kinase II alone. Arc itself did not promote neurite outgrowth. The growth of neurites by Arc was completely blocked by treatment with KN62, an inhibitor of CaM kinases. These results indicated that Arc potentiated the action of CaM kinase II for neurite extension.
Collapse
Affiliation(s)
- Hitomi Donai
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1, Tokushima 770-8505, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Sogawa Y, Yoshimura Y, Yamauchi T. Investigation of the Ca(2+)-independent form of Ca(2+)/calmodulin-dependent protein kinase II in neurite outgrowth. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2001; 8:159-69. [PMID: 11733191 DOI: 10.1016/s1385-299x(01)00106-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neuronal Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II) plays important roles in the control of nerve functions in response to intracellular Ca(2+) (for reviews [Annu. Rev. Physiol. 57 (1995) 417-445; Trends Neurosci. 17 (1994) 406-412]). Brief Ca(2+) signals activate CaM kinase II, and stimulate an autophosphorylation of Thr-286 which allows the kinase to maintain its activated state even after the Ca(2+) concentration has returned to basal levels [J. Biol. Chem. 264 (1989) 16759-16763; Neuron 3 (1989) 59-70; J. Biochem. 109 (1991) 137-143]. Autophosphorylation of CaM kinase II occurs in situ, but it occurs relatively quickly, within just a few minutes [Endocrinology 134 (1994) 2245-2250; J. Biol. Chem. 268 (1993) 7863-7867; J. Biol. Chem. 265 (1990) 18055-18058]. In the present study, we investigated the involvement of the autophosphorylated/Ca(2+)-independent form of CaM kinase II in neurite outgrowth. When neuroblastoma Neruo2a (Nb2a) cells expressing the alpha isoform of CaM kinase II (Nb2a/alpha cells) were stimulated by plating, they formed neurites. The autophosphorylation of Thr-286 and appearance of Ca(2+)-independent activity preceded the neurite formation. The effect of mutating of the kinase autophosphorylation site replacing Thr-286 with Ala (alpha T286A kinase) or Asp (alpha T286D kinase) was examined. alpha T286A kinase was not converted to a Ca(2+)-independent form, and alpha T286D kinase had Ca(2+)-independent activity significantly as an autophosphorylated kinase. Cells expressing alpha T286D kinase had much longer neurites than Nb2a/alpha cells, whereas cells with alpha T286A kinase did not form neurites. These results indicated that the Ca(2+)-independent form of CaM kinase II autophosphorylated at Thr-286 is involved in neurite outgrowth.
Collapse
Affiliation(s)
- Y Sogawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1, Tokushima 770-8505, Japan
| | | | | |
Collapse
|
15
|
Jusuf AA, Sakagami H, Kikkawa S, Kondo H, Minami Y, Terashima T. Distribution of Ca(2+)/calmodulin-dependent protein kinase I beta 2 in the central nervous system of the rat. Brain Res 2001; 911:1-11. [PMID: 11489438 DOI: 10.1016/s0006-8993(01)02440-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recently, we reported the mRNA localization of Ca(2+)/calmodulin-dependent protein kinase I beta 2 isoform (CaMKIbeta2) in the mouse nervous system. In the present study, polyclonal antibody against CaMKIbeta2 was generated and used to investigate the distribution of the enzyme within the central nervous system of the rat. Interestingly some differences were observed between the enzyme localization and previous mRNA detection [J. Neurochem. 268 (1999) 26512]. The strongest expression of the enzyme was found in pontine nuclei. Immunopositive fibers could be traced through the middle cerebellar peduncle until they reached the cerebellum. Quite strong staining could also be observed in almost all of the neurons in the neocortex, hippocampus, amygdala, hypothalamus, brainstem and cerebellum, including the nuclei of the cranial nerves and Purkinje cell layer of the cerebellar cortex which was not clearly detected in the previous in situ hybridization study. In the spinal cord, CaMKIbeta2 could be detected in the gray matter with stronger expression in the dorsal horn. CaMKIbeta2 showed very strong nuclear localization but was also present in the cytoplasm of some neurons. Such localization suggests that CaMKIbeta2 may be involved in many neuronal functions in the central nervous system, including the possibility of important roles in nuclear signal transduction.
Collapse
|
16
|
Donai H, Murakami T, Amano T, Sogawa Y, Yamauchi T. Induction and alternative splicing of delta isoform of Ca(2+)/calmodulin-dependent protein kinase II during neural differentiation of P19 embryonal carcinoma cells and during brain development. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 85:189-99. [PMID: 11146121 DOI: 10.1016/s0169-328x(00)00221-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Since the expression of Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II) is regulated during brain development, the developmental change of the enzyme was investigated during the neural differentiation of murine P19 embryonal carcinoma cells. CaM kinase II activity was induced during the differentiation of P19 cells treated with retinoic acid. Expression of the enzyme was induced 2 days after the treatment and maximized at 5 days. The enzyme activity increased about approximately 8-fold. The enzyme protein was shown to differ between differentiated and undifferentiated cells. The delta isoform of CaM kinase II was found as the major isoform in P19 cells by immunoblotting and reverse transcription-polymerase chain reaction (RT-PCR). A total of four and three alternatively spliced variants of delta isoform were detected in P19 cells by RT-PCR analysis and by immunoblotting, respectively. Although multiple alternatively spliced forms have been reported, the major splice variants of delta isoform in differentiated cells were delta l and delta 9 isoforms, which were specifically detected in differentiated cells. In undifferentiated cells, the major splice variant corresponded to delta 2 isoform. These results indicated that the expression of delta isoform of CaM kinase II was induced, and the splicing pattern of the isoform changed, during neural differentiation. Cell type distinctive changes of splicing pattern of delta isoform were also observed not only during differentiation of cultured neuronal cells, but also during development of rat forebrain and cerebellum.
Collapse
Affiliation(s)
- H Donai
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1, Tokushima 770-8505, Japan
| | | | | | | | | |
Collapse
|
17
|
Sogawa Y, Yoshimura Y, Otaka A, Yamauchi T. Ca(2+)-independent activity of Ca(2+)/calmodulin-dependent protein kinase II involved in stimulation of neurite outgrowth in neuroblastoma cells. Brain Res 2000; 881:165-75. [PMID: 11036155 DOI: 10.1016/s0006-8993(00)02838-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated the involvement of Ca(2+)-independent activity of Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II) in stimulation of neurite outgrowth. When neuroblastoma Neruo2a (Nb2a) cells expressing the alpha isoform of CaM kinase II (Nb2a/alpha cells) were stimulated by plating, they changed shape from round to flattened, and began to form neurites within 15 min. Numbers of cells bearing neurites increased from 15 min to about 2 h. Neurite length increased markedly from 30 min to 2 h after stimulation. Ca(2+)-independent activity of CaM kinase II increased immediately after stimulation, peaked at about 30 min, and then gradually decreased. Autophosphorylation of Thr-286 followed the same time course as the increase in Ca(2+)-independent activity. The autophosphorylation and appearance of Ca(2+)-independent activity preceded the formation of neurites. The effect of mutation of the autophosphorylation site in the kinase whose Thr-286 was replaced with Ala (alphaT286A kinase) or Asp (alphaT286D kinase) was examined. alphaT286A kinase was not converted to a Ca(2+)-independent form, and alphaT286D kinase had Ca(2+)-independent activity significantly as an autophosphorylated kinase. Cells expressing alphaT286A kinase did not form neurites, and were indistinguishable from control Nb2a cells. Cells expressing alphaT286D kinase had much longer neurites than Nb2a/alpha cells expressing the wild type kinase, although the initiation of neurite outgrowth was very late. These results indicated that Ca(2+)-independent activity of the kinase autophosphorylated at Thr-286 involves for neurite outgrowth.
Collapse
Affiliation(s)
- Y Sogawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1, 770-8505, Tokushima, Japan
| | | | | | | |
Collapse
|
18
|
Yoshimura Y, Aoi C, Yamauchi T. Investigation of protein substrates of Ca(2+)/calmodulin-dependent protein kinase II translocated to the postsynaptic density. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 81:118-28. [PMID: 11000484 DOI: 10.1016/s0169-328x(00)00170-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To elucidate the physiological significance of the translocation of Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II), we investigated substrates of CaM kinase II in the postsynaptic density (PSD). PSD proteins were phosphorylated by CaM kinase II of its PSD complex, and separated by two-dimensional gel electrophoresis. More than 28 proteins were phosphorylated under experimental conditions. Proteins corresponding to CaM kinase II substrates were excised from the gels, eluted electrophoretically, and then sequenced. Several substrates were identified, including PSD95, SAP90, alpha-internexin, neurofilament L chain, cAMP phosphodiesterase, and alpha- and beta-tubulin. Some substrates were also identified by immunoblotting, including N-methyl-D-aspartic acid (NMDA) receptor 2B subunit, 1-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor 1 (GluR1), neurofilament H chain and dynamin. PSD95, SAP90, dynamin, and alpha-internexin were demonstrated for the first time to be substrates of CaM kinase II. NMDA receptor 2B subunit and GluR1 existed as major substrates in the PSD. Moreover, translocation of CaM kinase II was inhibited by phosphorylation of PSD proteins. These results suggest that CaM kinase II plays important roles in the regulation of synaptic functions through phosphorylation of PSD proteins.
Collapse
Affiliation(s)
- Y Yoshimura
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1, Tokushima 770-8505, Japan
| | | | | |
Collapse
|
19
|
Nakamura Y, Kitani T, Okuno S, Otake K, Sato F, Fujisawa H. Immunohistochemical study of the distribution of Ca(2+)/calmodulin-dependent protein kinase phosphatase in the rat central nervous system. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 77:76-94. [PMID: 10814834 DOI: 10.1016/s0169-328x(00)00044-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Distribution of Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaM-K Pase) which dephosphorylate multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaM-kinases) in the rat brain and spinal cord were examined immunohistochemically by using an antibody against this enzyme. CaM-K Pase was localized only in the cytoplasm as has been investigated in PC 12 cells, and was never observed in the nucleus. Immunostainability varied from cell group to cell group. Mitral cells in the olfactory bulb, pyramidal neurons in the fifth layer of the cerebral cortex, hippocampal and striatal interneurons, dorsal and ventral pallidal, entopeduncular, and the reticular part of the substantia nigra neurons were intensely immunolabeled. Motoneurons in all the cranial nerve nuclei and the anterior horn of the spinal cord also revealed intense immunolabeling. On the contrary, pyramidal neurons in the Ammon's horn of the hippocampal formation, granule cells in the olfactory bulb, dentate gyrus and cerebellar cortex, Purkinje cells, neurons in the medial habenular nucleus and the inferior olivary nucleus have not shown immunoreactivity. Axons in the white matter or nerve root of the cranial nerve nuclei were immunolabeled. Glial cells in the white matter also showed immunostaining. Because the substrate of CaM-K Pase is multifunctional CaM-kinase II, I and IV, localization of each CaM-kinase was compared with that of CaM-K Pase. The distribution of CaM-K Pase and these CaM-kinases was found to overlap in various regions in the brain and spinal cord. It was concluded, therefore, that CaM-K Pase could regulate the activity of these CaM-kinases by dephosphorylation, when they existed together in neurons.
Collapse
Affiliation(s)
- Y Nakamura
- Section of Neuroanatomy, Graduate School of Medical and Dental Research, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Ochiishi T, Yamauchi T, Terashima T. Regional differences between the immunohistochemical distribution of Ca2+/calmodulin-dependent protein kinase II alpha and beta isoforms in the brainstem of the rat. Brain Res 1998; 790:129-40. [PMID: 9593859 DOI: 10.1016/s0006-8993(98)00058-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The distribution of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) alpha and beta isoforms in the brainstem of adult rats was investigated using an immunohistochemical method with two monoclonal antibodies which specifically recognize the alpha and beta isoform, respectively. We found that these isoforms were differentially expressed by neurons in the substantia nigra, red nucleus, dorsal cochlear nucleus, pontine nuclei and inferior olivary nucleus. Neurons in the inferior olivary nucleus express the alpha isoform, but not the beta isoform. In contrast, neurons in the substantia nigra, red nucleus and pontine nuclei were immunostained with the beta antibody, but not with the alpha antibody. In the dorsal cochlear nucleus, neurons in layers I and II were alpha-immunopositive, whereas neurons in layers III and IV were beta-immunopositive. Therefore, the distribution of the CaM kinase II alpha-immunopositive neurons is completely different from that of CaM kinase II beta-immunopositive neurons. Next we examined the possible coexistence of CaM kinase II alpha isoform and glutamate or that of CaM kinase II beta isoform and glutamic acid decarboxylase (GAD) in the single neuron by double immunofluorescence labelling using a pair of anti-alpha and anti-glutamate antibodies, or a pair of anti-beta and anti-GAD antibodies. The results indicated that neurons expressing anti-alpha immunoreactivity were also immunopositive against anti-glutamate antibody, and neurons expressing beta isoform were also immunopositive against anti-GAD antibody, suggesting that alpha-immunopositive neurons are classified as excitatory-type neurons, and on the contrary, beta-immunopositive neurons are classified as inhibitory-type neurons. In conclusion, the present study confirmed that alpha- and beta-isoforms of CaM kinase II are differentially expressed in the nuclei of the brainstem and have different roles.
Collapse
Affiliation(s)
- T Ochiishi
- Biosignalling Department, National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, M.I.T. I., Tsukuba, Ibaraki 305-8566, Japan.
| | | | | |
Collapse
|
21
|
Yoshimura Y, Yamauchi T. Phosphorylation-dependent reversible association of Ca2+/calmodulin-dependent protein kinase II with the postsynaptic densities. J Biol Chem 1997; 272:26354-9. [PMID: 9334208 DOI: 10.1074/jbc.272.42.26354] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The association of soluble Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) with postsynaptic densities (PSDs) was determined by activity assay, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and immunoblotting of the enzyme. Soluble CaM kinase II was autophosphorylated with ATP in the presence of Ca2+ and calmodulin, and then it was incubated with PSDs. Autophosphorylated CaM kinase II was precipitated with PSDs by centrifugation. The kinase that was not autophosphorylated did not precipitate with PSDs. These results indicate that the soluble previously autophosphorylated CaM kinase II associates with PSDs and forms PSD-CaM kinase II complex. A maximum of about 60 microg of soluble CaM kinase II bound to 1 mg of PSD protein under the experimental conditions. Ca2+-independent activity generated by autophosphorylation of the kinase was retained in the PSD-CaM kinase II complex. The CaM kinase II thus associated with PSDs phosphorylated a number of PSD proteins in both the absence and presence of Ca2+. When the CaM kinase II-PSD complex was incubated at 30 degrees C, its Ca2+-independent activity was gradually decreased. This decrease was correlated with dephosphorylation of the kinase and its release from PSD-CaM kinase II complex. These results indicate that CaM kinase II reversibly translocates to PSDs in a phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Y Yoshimura
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1, Tokushima 770, Japan
| | | |
Collapse
|
22
|
Nomura T, Kumatoriya K, Yoshimura Y, Yamauchi T. Overexpression of alpha and beta isoforms of Ca2+/calmodulin-dependent protein kinase II in neuroblastoma cells -- H-7 promotes neurite outgrowth. Brain Res 1997; 766:129-41. [PMID: 9359596 DOI: 10.1016/s0006-8993(97)00535-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Since the alpha and beta isoforms of CaM kinase II are known to be expressed almost exclusively in the brain, we compared the effect of overexpression of the beta isoform of CaM kinase II with that of the alpha isoform. The subcellular distribution of the alpha isoform was different from that of the beta isoform, although the catalytic properties of the alpha and beta isoforms expressed in transfected cells were similar to those of brain CaM kinase II. The alpha isoform was found in the soluble fraction more than in the particulate fraction, whereas most of the beta isoform bound to subcellular structures. In the cell overexpressing alpha and beta isoforms of CaM kinase II, neurite extension was promoted when compared with the morphology of neo transfectants. Neurite outgrowth of cells overexpressing CaM kinase II was further stimulated by the treatment of 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), a selective but not absolutely specific inhibitor of protein kinase C. The morphological change was rapid and observed within 1 h followed by H-7 treatment. Morphological changes, such as the number of cells with neurites and length of neurites were greater in the beta cells than in the alpha cells. Chelerythrine, a specific inhibitor of protein kinase C, also stimulated the neurite outgrowth of these cells. Some substrates of CaM kinase II related to neurite outgrowth were detected in cells overexpressing CaM kinase II stimulated with H-7. These results suggest that CaM kinase H and protein kinase C play an important role in the control of cell change, and that the subcellular distribution of CaM kinase II is important for regulating cellular functions efficiently.
Collapse
Affiliation(s)
- T Nomura
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, University of Tokushima, Japan
| | | | | | | |
Collapse
|
23
|
Ochiishi T, Terashima T, Yamauchi T. Specific distribution of Ca2+/calmodulin-dependent protein kinase II alpha and beta isoforms in some structures of the rat forebrain. Brain Res 1994; 659:179-93. [PMID: 7820660 DOI: 10.1016/0006-8993(94)90877-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The immunohistochemical distribution of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) alpha and beta isoforms in the rat forebrain was examined by using monoclonal antibodies specific to each isoform. The present study confirmed that alpha and beta immunoreactivities are localized only in neuronal elements. At the light microscopic level, specific distribution patterns of these isoforms and staining characteristics were recognized in some regions of the forebrain as follows. Firstly, alpha-immunoreactive neurons were more homogeneously distributed throughout the cellular layers of the cerebral cortex (i.e., layers II-VI) than beta-immunoreactive ones. Secondly, neurons in the globus pallidus were immunostained by the anti-beta antibody, but not by the anti-alpha antibody. Thirdly, neurons in the medial habenular nucleus, the subthalamic nucleus and the reticular thalamic nucleus were more densely stained with the anti-beta antibody than with the anti-alpha antibody. However, marked differences were not observed in the hippocampal formation at the light microscopic level. The electron microscopic analysis of the cerebral cortex demonstrated that subcellular localizations of alpha- and beta-immunoreactive products within the cortical neurons were quite dissimilar: (i) the nucleus was stained only with the anti-alpha antibody, but not with the anti-beta antibody, and (ii) beta-immunoreactive products were more sporadically localized in the cytoplasms of the perikarya and dendrites than the alpha-immunoreactive ones. These regional and subcellular differences between the distribution patterns of alpha and beta immunoreactivities suggest the functional diversity of CaM kinase II alpha and beta isoforms in the central nervous system.
Collapse
Affiliation(s)
- T Ochiishi
- Department of Anatomy and Embryology, Tokyo Metropolitan Institute for Neuroscience, Japan
| | | | | |
Collapse
|
24
|
Terashima T, Ochiishi T, Yamauchi T. Immunocytochemical localization of calcium/calmodulin-dependent protein kinase II isoforms in the ganglion cells of the rat retina: immunofluorescence histochemistry combined with a fluorescent retrograde tracer. Brain Res 1994; 650:133-9. [PMID: 7953663 DOI: 10.1016/0006-8993(94)90215-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To determine whether or not calcium/calmodulin-dependent protein kinase II (CaM kinase II) is localized in the ganglion cells in the rat retina, we labeled ganglion cells by injection of Fast blue (FB) into the lateral geniculate nucleus and then stained the retina immunohistochemically with monoclonal antibodies which react specifically with the alpha and beta isoforms of CaM kinase II. Eighty and 90% of the FB-labeled ganglion cells in the ganglion cell layer were immunoreactive with the alpha and beta antibodies, respectively, suggesting that both alpha and beta isoforms of CaM kinase II are expressed in most ganglion cells which project to the lateral geniculate nucleus.
Collapse
Affiliation(s)
- T Terashima
- Department of Anatomy, Tokyo Metropolitan Institute for Neuroscience, Japan
| | | | | |
Collapse
|
25
|
Terashima T, Ochiishi T, Yamauchi T. Immunohistochemical detection of calcium/calmodulin-dependent protein kinase II in the spinal cord of the rat and monkey with special reference to the corticospinal tract. J Comp Neurol 1994; 340:469-79. [PMID: 8006213 DOI: 10.1002/cne.903400403] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Calcium/calmodulin-dependent protein kinase II is a prominent enzyme in the mammalian brain that phosphorylates a variety of substrate proteins. In the present study, monoclonal antibodies that specifically recognize either the alpha or the beta isoforms of this enzyme were used to determine the distribution of these isoforms within the rat and monkey spinal cord. In the rat, the corticospinal tract consists of two components: the dorsal corticospinal tract, which occupies the ventralmost aspect of the dorsal funiculus; and the ventral corticospinal tract, which occupies an area adjacent to the ventral median fissure. Both dorsal and ventral corticospinal tract fibers were strongly immunopositive for the alpha-antibody. Unilateral ablation of the sensorimotor cortex of the rat eliminated the alpha-immunoreactive staining in the contralateral dorsal corticospinal tract. The neuropil in the superficial laminae of the dorsal horn (Rexed's laminae I and II) was densely stained with the alpha-antibody, whereas the neuropil in laminae IV-X was immunonegative. Dense alpha-immunopositive neurons were also distributed in the head of the dorsal horn (laminae I-IV). In contrast to the strong alpha-immunoreactivity seen in the dorsal corticospinal tract fibers, only very weak beta-immunoreactivity was observed in this tract. Moderate beta-immunoreactive products were distributed homogenously throughout the neuropil of the gray matter, although the neuropil of the superficial laminae of the dorsal horn (laminae I and II) was stained more strongly than the other regions of the gray matter (laminae III-X). Neuronal components in all laminae were immunopositive for the beta-antibody. Thus, motoneurons in the ventral horn, which were immunonegative for the alpha-antibody, were immunopositive for the beta-antibody. This selective distribution pattern of immunoreactivity of alpha- and beta-antibodies in the rat was also present in the monkey spinal cord, although the alpha-immunopositive corticospinal tract fibers in the monkey descended in the lateral funiculus as the lateral corticospinal tract instead of passing through the dorsal funiculus, as is the case in the rat. The differential distribution of immunoreactivity in the spinal cord suggests that these two isoforms of calcium/calmodulin-dependent protein kinase II may have different functional roles in the spinal cord.
Collapse
Affiliation(s)
- T Terashima
- Department of Anatomy, Tokyo Metropolitan Institute for Neuroscience, Japan
| | | | | |
Collapse
|
26
|
Ochiishi T, Terashima T, Sugiura H, Yamauchi T. Immunohistochemical localization of Ca2+/calmodulin-dependent protein kinase II in the rat retina. Brain Res 1994; 634:257-65. [PMID: 8131075 DOI: 10.1016/0006-8993(94)91928-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) consisting of alpha and beta isoforms is highly expressed in the central nervous system and is implicated in the regulation of various Ca(2+)-dependent physiological processes. We investigated the immunohistochemical distribution of the alpha and beta isoforms of this enzyme in the rat retina, using highly specific monoclonal antibodies which recognize each isoform. Immunoblotting revealed that not only the alpha but also the beta isoform of CaM kinase II were expressed in the retina. The immunohistochemical study showed that highly alpha-immunoreactive products were localized in amacrine cells in the inner nuclear layer and displaced amacrine cells and ganglion cells in the ganglion cell layer. In addition, two well-defined bands within the inner plexiform layer were densely stained with the anti-alpha antibody. By contrast, immunoreactivity against the anti-beta antibody was very weak in the same neuronal components of the retina. beta-Immunoreactive products were homogeneously distributed throughout the inner plexiform layer and no well-defined bands were detected in this layer. Glial cells such as Müller cells were immunoreactive neither to alpha nor beta antibody. A possible co-existence of choline acetyl transferase (ChAT) within CaM kinase II alpha-immunopositive neurons was examined by evaluating adjacent sections stained with anti-CaM kinase II alpha antibody and anti-ChAT antibody, respectively. The distribution of CaM kinase II alpha immunoreactivity in the rat retina was remarkably similar to that of ChAT immunoreactivity.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T Ochiishi
- Department of Cell Biology, Tokyo Metropolitan Institute for Neuroscience, Japan
| | | | | | | |
Collapse
|
27
|
Sugiura H, Yamauchi T. Effect of ATP on binding of Ca2+/calmodulin-dependent protein kinase II with calmodulin. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1177:270-4. [PMID: 8391850 DOI: 10.1016/0167-4889(93)90122-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Binding of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) with calmodulin was directly determined by the poly(ethylene glycol) precipitation method. Calmodulin bound to CaM kinase II alpha and beta polypeptides in a molar ratio of about 1:1 in the presence of ATP, but the binding was reduced in the absence of ATP. Affinity of CaM kinase II for calmodulin increased in the presence of ATP and the autophosphorylation was observed under the conditions. ADP and adenosine beta, gamma-imidoadenosine 5'-triphosphate, hydrolysis resistant analogues, also increased the binding of CaM kinase II with calmodulin. CaM kinase II substrate syntide 2 did not increase the binding of the kinase with calmodulin. These findings indicate that the affinity of CaM kinase II for calmodulin and the amount of calmodulin bound to the kinase increase by the binding of ATP.
Collapse
Affiliation(s)
- H Sugiura
- Department of Cell Biology, Tokyo Metropolitan Institute for Neuroscience, Japan
| | | |
Collapse
|