1
|
Kaya MO, Kaya Y, Çelik G, Kurtuluş F, Arslan O, Güler ÖÖ. Differential in vitro inhibition studies of some cerium vanadate derivatives on xanthine oxidase. J Enzyme Inhib Med Chem 2014; 30:286-9. [PMID: 24964345 DOI: 10.3109/14756366.2014.920837] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this preliminary study, a new series of some cerium vanadate derivatives have been investigated as new type of inhibitors of xanthine oxidase (XO; E.C 1.17.3.2). XO is a superoxide-producing enzyme found normally in serum and the lungs, and its activity is concerned with several important health problems such as gout, severe liver damage, vascular dysfunction and injury, oxidative eye injury and renal failure. In this study, we present a critical overview of the effects of these novel type agents on XO with comparing the efficacy and safety profiles of allopurinol, the efficient classical inhibitor of XO.
Collapse
Affiliation(s)
- Mustafa Oğuzhan Kaya
- Department of Chemistry, Science and Art Faculty, Balikesir University , Balikesir , Turkey
| | | | | | | | | | | |
Collapse
|
2
|
Khan MOF, Parveen S, Seddon GM, Douglas KT. Vanadate as a Futile, Superoxide Ion-producing Substrate of Trypanothione Reductase fromTrypanosoma cruzi. CHEM LETT 2005. [DOI: 10.1246/cl.2005.1558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
3
|
Tan DX, Manchester LC, Sainz RM, Mayo JC, Leon J, Hardeland R, Poeggeler B, Reiter RJ. Interactions between melatonin and nicotinamide nucleotide: NADH preservation in cells and in cell-free systems by melatonin. J Pineal Res 2005; 39:185-94. [PMID: 16098097 DOI: 10.1111/j.1600-079x.2005.00234.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Interactions of melatonin and nicotinamide adenine dinucleotide (NADH) have been studied in different experimental models including NADH-promoted oxyhemoglobin oxidation, vanadate-induced NADH oxidation and paraquat-induced NADH depletion in cultured PC12 cells. Our findings indicate that melatonin preserves NADH levels under oxidative stress both in cell-free systems and in cultured PC12 cells. These interactions likely involve electron donation by melatonin and reduction of the NAD radical. As a result, the NAD radical is recycled to NADH and melatonin is oxidized to N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK). NADH is a central molecule at the crossroads between energy metabolism and the antioxidant defense system in organisms. Recycling of NADH by melatonin might improve the efficiency of NADH as an energy carrier and as an antioxidant. Interactions between melatonin and NADH may be implicated in mitochondrial metabolism.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Nagi MN, Mansour MA, Al-Shabanah OA, El-Kashef HA. Melatonin inhibits the contractile effect of vanadate in the isolated pulmonary arterial rings of rats: possible role of hydrogen peroxide. J Biochem Mol Toxicol 2003; 16:273-8. [PMID: 12481302 DOI: 10.1002/jbt.10049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect and possible mechanism of action of vanadate on the isolated pulmonary arterial rings of normal rats were studied. Pulmonary arterial rings contracted in response to vanadate (0.1-1 mM) in a concentration-dependent manner. Preincubation of the pulmonary arterial rings with 1 mM melatonin significantly reduced the contractile effect of vanadate by more than 60%. Furthermore, addition of hydrogen peroxide (50 microM) or enzymatic generation of hydrogen peroxide by the addition of glucose oxidase (10 U/mL) to the medium containing glucose produced remarkable increases in the pulmonary arterial tension, 46.2 +/- 7.3 and 78.7 +/- 9.7 g tension/g tissue, respectively. Similarly, incubation of the pulmonary arterial rings with 1 mM melatonin significantly reduced the contractile responses of the arterial rings to hydrogen peroxide and glucose/glucose oxidase to 25.7 +/- 2.9 and 24.7 +/- 4.4 g tension/g tissue, respectively. Vanadate, in vitro, significantly stimulated the oxidation of NADH by xanthine oxidase, and the rate of oxidation was increased by increasing either time or vanadate concentration. Similarly, addition of melatonin to a reaction mixture containing xanthine oxidase and vanadate significantly inhibited the rate of NADH oxidation in a concentration-dependent fashion. The results of the present study indicated that vanadate induced contraction in the isolated pulmonary arterial rings, which was significantly reduced by melatonin. Furthermore, the contractile effect of vanadate on the pulmonary arterial rings may be attributed to the intracellular generation of hydrogen peroxide.
Collapse
Affiliation(s)
- Mahmoud N Nagi
- Department of Pharmacology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| | | | | | | |
Collapse
|
5
|
Eisenbarth E, Velten D, Schenk-Meuser K, Linez P, Biehl V, Duschner H, Breme J, Hildebrand H. Interactions between cells and titanium surfaces. BIOMOLECULAR ENGINEERING 2002; 19:243-9. [PMID: 12202190 DOI: 10.1016/s1389-0344(02)00032-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interaction between cells and implant materials is determined by the surface structure and/or surface composition of the material. In the past years, titanium and titanium alloys have proved their superiority over other implant materials in many clinical applications. This predominant behaviour is caused by a dense passive oxide layer which forms within milliseconds in oxidizing media. Titanium dioxide layers of 100 nm thickness were produced on the surface of cp-titanium grade 2, and on an experimental alloy of high vanadium content (Ti1.5Al25V) as a harmful control. The layers were produced by thermal and anodic oxidation and by coating by means of the sol-gel process. The resulting oxide layers were characterized with respect of their structure and chemical composition. In cell tests (proliferation, MTT, morphology, actin staining), the reaction of the cells was examined. It was shown that the sol-gel-produced titanium oxide layer is able to shield the cells from toxic alloying elements, with the result that the cell reaction is influenced only by the thin titanium oxide surface layer and not by the composition of the bulk material.
Collapse
Affiliation(s)
- E Eisenbarth
- Lehrstuhl für metallische Werkstoffe, Universität des Saarlandes, D-66041 Saarbrucken, Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Kowalski LA, Tsang SS, Davison AJ. Arsenic and chromium enhance transformation of bovine papillomavirus DNA-transfected C3H/10T1/2 cells. Cancer Lett 1996; 103:65-9. [PMID: 8616810 DOI: 10.1016/0304-3835(96)04189-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor promoters such as phorbol esters, teleocidin and okadaic acid increase the numbers of multilayered, transformed foci produced by BPV DNA-transfected C3H/10T1/2 cells. We questioned whether arsenic and chromium, which are known human carcinogens also enhance transformation of BPV DNA-transfected C3H/10T1/2 cells. Cr(III) potassium sulfate at 100 microM enhanced transformation by 1.4-fold, but Cr(VI) as potassium chromate did not enhance transformation, although toxicity of potassium chromate may have prevented enhancement of transformation. Sodium arsenite (As(III) at 5 microM and sodium arsenate (As(V)) at 25 microM both enhanced neoplastic transformation by 6-fold. By comparison, in previous studies, sodium orthovanadate (V(IV)) or vanadyl sulfate (V(IV)) at 4 microM enhanced numbers of transformed foci by 25-50-fold. The comparatively strong enhancement of transformation by vanadium and phorbol esters suggests that neoplastic transformation may occur by mechanisms that are common to these compounds including alteration of tyrosine phosphorylation.
Collapse
|
7
|
Hamada T. Vanadium induced hemolysis of vitamin E deficient erythrocytes in Hepes buffer. EXPERIENTIA 1994; 50:49-53. [PMID: 8293800 DOI: 10.1007/bf01992049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Several vanadium compounds were tested for their ability to induce in vitro hemolysis of vitamin E-deficient hamster erythrocytes. Free vanadyl caused hemolysis in Hepes buffer but not in Tris or phosphate buffer, while hemolysis was inhibited by catalase, chelators such as deferoxamine mesylate and EDTA, and hydroxyl radical scavengers such as ethanol and D-mannitol. Although metavanadate itself could not induce hemolysis, metavanadate with NAD(P)H caused hemolysis in Hepes buffer only, and superoxide dismutase prevented it. Hydrogen peroxide, hydroxyl radical and Hepes radical were involved in vanadyl-induced hemolysis, superoxide anion was further involved in metavanadate plus NAD(P)H-induced hemolysis. Vitamin E prevented hemolysis under both conditions.
Collapse
Affiliation(s)
- T Hamada
- Laboratory of Trace Elements Nutrition, National Institute of Animal Industry, Ibaraki, Japan
| |
Collapse
|
8
|
Some chemical and biochemical constraints of oxidative stress in living cells* *This chapter is dedicated to René Buvet († November 26, 1992) who led me to the astonishing world of oxygen biochemistry. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s0167-7306(08)60438-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
9
|
Abstract
Although vanadium has been of great interest for many researchers over a number of years, its biochemical and physiological role is not yet fully clear. There are many papers describing the haematological consequences of its excess in living organisms and most of their data are quoted in this mini-review. The authors of these papers used various laboratory animals, different vanadium compounds, frequently different routes of administration and duration of intoxication. Hence a checklist and comparison of the results are rather difficult. Vanadium reduces the deformability of erythrocytes, and such cells are rather frequently retained in the reticuloendothelial system of the spleen and eliminated faster from the blood stream (Kogawa et al., 1976). Vanadium produces peroxidative changes in the erythrocyte membrane, this leading to haemolysis. Therefore, the depressed erythrocyte count in animals intoxicated with vanadium may be the consequence of both the haemolytic action of vanadium and the shortened time of survival of erythrocytes. Changes of the haem precursor level in blood serum and urine observed in humans exposed occupationally to vanadium suggest an influence of this element on haem synthesis. This problem requires, however, further studies and observations. Changes occurring under the influence of vanadium on the leukocyte system of animals suggest the influence of this element on the resistance of the organism, but the mechanism of the action of vanadium still requires elucidation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H Zaporowska
- Department of Cell Biology, Maria Curie-Skłodowska University, Lublin, Poland
| | | |
Collapse
|
10
|
Hill CH. Dietary vanadium and the oxidative state of hepatic and renal pyridine nucleotides. ACTA ACUST UNITED AC 1992; 102:139-40. [PMID: 1351810 DOI: 10.1016/0300-9629(92)90025-l] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. NAD, NADH, NADP and NADPH were measured in the livers and kidneys of chicks receiving 50 mg vanadium/kg diet. 2. There was no effect of dietary vanadium on the oxidative states of the nucleotides, although the growth rate was decreased. 3. The lack of effect of vanadium on the oxidative status of the nucleotides was ascribed to the low tissue concentration of vanadium.
Collapse
Affiliation(s)
- C H Hill
- Department of Poultry Science and Interdepartmental Nutrition Program, North Carolina State University, Raleigh 27695-7635
| |
Collapse
|
11
|
Liochev SI, Fridovich I. Superoxide generated by glutathione reductase initiates a vanadate-dependent free radical chain oxidation of NADH. Arch Biochem Biophys 1992; 294:403-6. [PMID: 1314540 DOI: 10.1016/0003-9861(92)90703-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Vanadate V(V) markedly stimulated the oxidation of NADPH by GSSG reductase and this oxidation was accompanied by the consumption of O2 and the accumulation of H2O2. Superoxide dismutases completely eliminated this effect of V(V), whereas catalase was without effect, as was exogenous H2O2 added to 0.1 mM. These effects could be seen equally well in phosphate- or in 4-(2-hydroxyethyl)1-piperazineethanesulfonic acid-buffered solutions. Under anaerobic conditions there was no V(V)-stimulated oxidation of NADPH. Approximately 4% of the electrons flowing from NADPH to O2, through GSSG reductase, resulted in release of O2-. The average length of the free radical chains causing the oxidation of NADPH, initiated by O2- plus V(V), was calculated to be in the range 140-200 NADPH oxidized per O2- introduced. We conclude that GSSG reductase, and by extension other O2(-)-producing flavoprotein dehydrogenases such as lipoyl dehydrogenase and ferredoxin reductase, catalyze V(V)-stimulated oxidation of NAD(P)H because they release O2- and because O2- plus V(V) initiate a free radical chain oxidation of NAD(P)H. There is no reason to suppose that these enzymes can act as NAD(P)H:V(V) oxidoreductases.
Collapse
Affiliation(s)
- S I Liochev
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
12
|
Stern A, Davison AJ, Wu Q, Moon J. Desferrioxamine enhances the reactivity of vanadium (IV) and vanadium (V) toward ferri- and ferrocytochrome c. Free Radic Biol Med 1992; 12:373-80. [PMID: 1317325 DOI: 10.1016/0891-5849(92)90086-v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ligands, especially desferrioxamine, affect the rate at which vanadium reduces or oxidizes cytochrome c. Whether reduction or oxidation occurs, and how fast, depends on the nature of the ligand, the state of reduction of the vanadium, the pH (6.0, 7.0, or 7.4), and the availability of oxygen. In general, oxidation of ferrocytochrome c was favored by (1) low pH, (2) an oxidized state of the vanadium, (3) the presence of oxygen, and (4) more strongly binding ligands (desferrioxamine much greater than histidine = ATP greater than EDTA greater than albumin greater than aquo). Thus, at pH 6.0, desferrioxamine accelerated the V(V)-catalyzed ferrocytochrome c oxidation 160-fold aerobically, and 3500-fold anaerobically. In general, strongly binding ligands slowed oxidations, especially at higher pH. Desferrioxamine was unique among the five ligands in that it not only accelerated oxidation of ferrocytochrome c at pH 6.0, but at pH 7.4 the redox balance shifted to the point where it paradoxically reduced ferricytochrome c. V(V) is an improbable electron donor, but desferrioxamine will reduce cytochrome c, and V(V) accelerates this process. Oxidation of cytochrome c by V(V):desferrioxamine was faster anaerobically, and reduction by V(IV):desferrioxamine was faster aerobically. Although V(V) did not oxidize ferrocytochrome c at pH 7.4, V(IV) did, provided oxygen and desferrioxamine were both present. V(IV):desferrioxamine almost completely reduced ferricytochrome c, and this reduction was followed by a slow, progressive oxidation. This latter oxidation of cytochrome c is mediated by active species generated in the reaction between V(IV):desferrioxamine and oxygen, because none of these reagents alone can induce oxidation at a comparable rate. The mediating species were transient, and generated in reactions with oxygen.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Stern
- Department of Pharmacology, New York University Medical Center, New York 10016
| | | | | | | |
Collapse
|
13
|
Liochev S, Ivancheva E. Vanadyl causes hydroxyl radical mediated degradation of deoxyribose. FREE RADICAL RESEARCH COMMUNICATIONS 1991; 14:335-42. [PMID: 1663905 DOI: 10.3109/10715769109093423] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vanadyl caused a time- and dose-dependent degradation of deoxyribose to carbonyl products detectable with thiobarbituric acid. This process was inhibited by catalase, ethanol or HEPES; whereas superoxide dismutase was without effect. Vanadate did not substitute for vanadyl even in the presence of a source of O2- plus H2O2; but it did so in the presence of reductants such as thiols or NADH. It appears that hydrogen peroxide, generated by the autoxidation of vanadyl, is reduced by vanadyl to the hydroxyl radical; which, in turn, was responsible for the degradation of deoxyribose. A similar process might contribute to the toxic and pharmacological effects of vanadium salts.
Collapse
Affiliation(s)
- S Liochev
- Institute of Physiology, Bulgarian Academy of Sciences, Sofia
| | | |
Collapse
|
14
|
Liochev SI, Fridovich I. Vanadate-stimulated oxidation of NAD(P)H in the presence of biological membranes and other sources of O2-. Arch Biochem Biophys 1990; 279:1-7. [PMID: 2186701 DOI: 10.1016/0003-9861(90)90454-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- S I Liochev
- Institute of Physiology, Bulgarian Academy of Sciences, Sofia
| | | |
Collapse
|
15
|
|
16
|
Liochev S, Ivancheva E, Fridovich I. Effects of vanadate on the oxidation of NADH by xanthine oxidase. Arch Biochem Biophys 1989; 269:188-93. [PMID: 2537057 DOI: 10.1016/0003-9861(89)90099-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vanadate (V(V)) stimulates the oxidation of NADH by xanthine oxidase and superoxide dismutase eliminates the effect of V(V). Paraquat stimulates both the oxidation of NADH by xanthine oxidase and the V(V) enhancement of that oxidation. Xanthine, which is a better substrate for xanthine oxidase than is NADH, causes a V(V)-dependent co-oxidation of NADH which is transient and eliminated by SOD. Urate inhibits the V(V)-stimulated oxidation of NADH by xanthine oxidase or by Rose Bengal plus light. Measurement of rates of both O2- production and V(V)-stimulated NADH oxidation showed that many molecules of NADH were oxidized per O2-. These chain lengths were an inverse function of overall reaction rate. Minimum chain lengths, calculated on the basis of 100% univalent reduction of O2 to O2-, were smaller than measured average chain lengths by a factor of five. All of these results are in accord with the view that V(V) does not directly affect the activity of the enzyme, but rather catalyzes the free radical chain oxidation of NADH by O2-. It was further shown that phosphate was not involved and that the active form of V(V) was orthovanadate, rather than decavanadate.
Collapse
Affiliation(s)
- S Liochev
- Bulgarian Academy of Sciences, Institute of Physiology, Sofia
| | | | | |
Collapse
|