1
|
Ince E. The protective effect of quercetin in the alcohol-induced liver and lymphoid tissue injuries in newborns. Mol Biol Rep 2019; 47:451-459. [PMID: 31673888 DOI: 10.1007/s11033-019-05148-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
Recently published experimental and clinical studies indicate that oxidative stress leads to the pathogenesis and progression of alcohol-induced tissue injuries. Quercetin is a type of flavonoid compound that influences antioxidant and anti-inflammatory activities have protective and therapeutic effects for treating various diseases including diabetes mellitus and neuro-degenerative diseases. In this study, fetal alcohol syndrome was tested in rat models, with the aim of verifying the protective effect of quercetin in preventing alcohol-induced liver and lymphoid tissue (thymus, spleen, and lymph nodes) injuries on the 21st day for the offspring of alcohol treated mother rats. The pregnant rats were randomly assigned into four groups. The control group (C) (n = 3) of pregnant rats received only physiological saline intraperitoneally (i.p.) throughout the pregnancy (1 to 21 days gestation) and during lactation until postnatal day 21. The quercetin positive control group (QT) of pregnant rats (n = 3) received quercetin at 50 mg/kg/days i.p. for the same period. The ethanol treatment group (E) (n = 3) of pregnant rats received 1 ml/day of 40% v/v ethanol (4 g/kg) intragastrically (i.g) for the same period. The model group of pregnant rats (EQ) received ethanol + quercetin (n = 3) with a dose of 1 ml/day of v/v ethanol (4 g/kg i.g.) and quercetin at 50 mg/kg body weight per day i.p. for the same period. Ten offspring were used in each of the C, QT, E and EQ groups. Malondialdehyde (MDA), protein carbonyl content (PC) and chemiluminescence levels (CL) in liver and lymphoid tissues significantly increased in group E versus the C group (P < 0.05-P < 0.001) whereas glutathione levels (GSH), glutathione reductase (GR), glutathione peroxidase (GP), superoxide dismutase (SOD), and catalase (CAT) activities significantly decreased in group E compared to the C group (P < 0.05-< 0.001). However, tissue MDA, PC, and CL levels decreased in the EQ group compared to group E. GSH level, GP, GR, SOD, and CAT activity were significantly increased by quercetin (P < 0.05-P < 0.001). The plasma TNFα, IL-1β, and IL-6 levels and NF-κB activation significantly increased in group E compared to the C and QT groups, but IL-10 significantly decreased in group E compared to the C and QT groups. The TNFα, IL-1β, and IL-6 levels and NF-κB activation significantly decreased in group EQ compared to group E. In conclusion, quercetin has a protective effect against maternal alcohol-induced oxidative and inflammatory damage in the liver and lymphoid tissues of newborn rats.
Collapse
Affiliation(s)
- Erdal Ince
- Department of Medical Science Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, 34096, Fatih/Istanbul, Turkey.
| |
Collapse
|
2
|
Coll TA, Chaufan G, Pérez-Tito L, Ventureira MR, Sobarzo CMA, Ríos de Molina MDC, Cebral E. Oxidative stress and cellular and tissue damage in organogenic outbred mouse embryos after moderate perigestational alcohol intake. Mol Reprod Dev 2017; 84:1086-1099. [DOI: 10.1002/mrd.22865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/08/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Tamara A. Coll
- Universidad de Buenos Aires; Facultad de Ciencias Exactas y Naturales; Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
- CONICET-Universidad de Buenos Aires; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE); Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
| | - Gabriela Chaufan
- Universidad de Buenos Aires; Facultad de Ciencias Exactas y Naturales; Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN); Departamento de Química Biológica; Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
| | - Leticia Pérez-Tito
- Universidad de Buenos Aires; Facultad de Ciencias Exactas y Naturales; Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
- CONICET-Universidad de Buenos Aires; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE); Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
| | - Martín R. Ventureira
- Universidad de Buenos Aires; Facultad de Ciencias Exactas y Naturales; Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
- CONICET-Universidad de Buenos Aires; Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET); Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
| | - Cristian M. A. Sobarzo
- Universidad de Buenos Aires, Facultad de Medicina, CONICET- Universidad de Buenos Aires; Instituto de Investigaciones Biomédicas (INBIOMED); Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
| | - María del Carmen Ríos de Molina
- Universidad de Buenos Aires; Facultad de Ciencias Exactas y Naturales; Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN); Departamento de Química Biológica; Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
| | - Elisa Cebral
- Universidad de Buenos Aires; Facultad de Ciencias Exactas y Naturales; Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
- CONICET-Universidad de Buenos Aires; Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET); Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
| |
Collapse
|
3
|
Sogut I, Oglakci A, Kartkaya K, Ol KK, Sogut MS, Kanbak G, Inal ME. Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome. Exp Ther Med 2014; 9:1023-1027. [PMID: 25667671 PMCID: PMC4316929 DOI: 10.3892/etm.2014.2164] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 12/04/2014] [Indexed: 12/18/2022] Open
Abstract
To the best of our knowledge, this is the first study concerning the effect of boric acid (BA) administration on fetal alcohol syndrome (FAS). In this study, the aim was to investigate prenatal alcohol-induced oxidative stress on the cerebral cortex of newborn rat pups and assess the protective and beneficial effects of BA supplementation on rats with FAS. Pregnant rats were divided into three groups, namely the control, alcohol and alcohol + boric acid groups. As markers of alcohol-induced oxidative stress in the cerebral cortex of the newborn pups, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) levels were measured. Although the MDA levels in the alcohol group were significantly increased compared with those in the control group (P<0.05), the MDA level in the alcohol + boric acid group was shown to be significantly decreased compared with that in the alcohol group (P<0.01). The CAT activity of the alcohol + boric acid group was significantly higher than that in the alcohol group (P<0.05). The GPx activity in the alcohol group was decreased compared with that in the control group (P<0.05). These results demonstrate that alcohol is capable of triggering damage to membranes of the cerebral cortex of rat pups and BA could be influential in antioxidant mechanisms against oxidative stress resulting from prenatal alcohol exposure.
Collapse
Affiliation(s)
- Ibrahim Sogut
- Department of Medical Services and Techniques, Vocational School of Health Services, Istanbul Bilim University, Istanbul 34394, Turkey
| | - Aysegul Oglakci
- Department of Biochemistry, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir 26480, Turkey
| | - Kazim Kartkaya
- Department of Biochemistry, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir 26480, Turkey
| | - Kevser Kusat Ol
- Department of Biochemistry, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir 26480, Turkey
| | - Melis Savasan Sogut
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul 34755, Turkey
| | - Gungor Kanbak
- Department of Biochemistry, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir 26480, Turkey
| | - Mine Erden Inal
- Department of Biochemistry, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir 26480, Turkey
| |
Collapse
|
4
|
Antiteratogenic Effects of β-Carotene in Cultured Mouse Embryos Exposed to Nicotine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:575287. [PMID: 23737837 PMCID: PMC3662118 DOI: 10.1155/2013/575287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/09/2013] [Indexed: 11/17/2022]
Abstract
After maternal intake, nicotine crosses the placental barrier and causes severe embryonic disorders and fetal death. In this study, we investigated whether β -carotene has a beneficial effect against nicotine-induced teratogenesis in mouse embryos (embryonic day 8.5) cultured for 48 h in a whole embryo culture system. Embryos exposed to nicotine (1 mM) exhibited severe morphological anomalies and apoptotic cell death, as well as increased levels of TNF- α , IL-1 β , and caspase 3 mRNAs, and lipid peroxidation. The levels of cytoplasmic superoxide dismutase (SOD), mitochondrial manganese-dependent SOD, cytosolic glutathione peroxidase (GPx), phospholipid hydroperoxide GPx, hypoxia inducible factor 1 α , and Bcl-x L mRNAs decreased, and SOD activity was reduced compared to the control group. However, when β -carotene (1 × 10(-7) or 5 × 10(-7) μM) was present in cultures of embryos exposed to nicotine, these parameters improved significantly. These findings indicate that β -carotene effectively protects against nicotine-induced teratogenesis in mouse embryos through its antioxidative, antiapoptotic, and anti-inflammatory activities.
Collapse
|
5
|
Nordquist N, Luthman H, Pettersson U, Eriksson UJ. Linkage study of embryopathy-polygenic inheritance of diabetes-induced skeletal malformations in the rat. Reprod Toxicol 2012; 33:297-307. [PMID: 22227068 DOI: 10.1016/j.reprotox.2011.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 12/13/2011] [Accepted: 12/16/2011] [Indexed: 12/16/2022]
Abstract
We developed an inbred rat model of diabetic embryopathy, in which the offspring displays skeletal malformations (agnathia or micrognathia) when the mother is diabetic, and no malformations when she is not diabetic. Our aim was to find genes controlling the embryonic maldevelopment in a diabetic environment. We contrasted the fetal outcome in inbred Sprague-Dawley L rats (20% skeletal malformations in diabetic pregnancy) with that of inbred Wistar Furth rats (denotedW, no skeletal malformations in diabetic pregnancy). We used offspring from the backcross F(1)×L to probe for the genetic basis for malformation of the mandible in diabetic pregnancy. A set of 186 fetuses (93 affected, 93 unaffected) was subjected to a whole genome scan with 160 micro satellites. Analysis of genotype distribution indicated 7 loci on chromosome 4, 10 (3 loci), 14, 18, and 19 in the teratogenic process (and 14 other loci on 12 chromosomes with less strong association to the malformations), several of which contained genes implicated in other experimental studies of diabetic embryopathy. These candidate genes will be scrutinized in further experimentation. We conclude that the genetic involvement in rodent diabetic embryopathy is polygenic and predisposing for congenital malformations.
Collapse
|
6
|
Bedaiwy MA, Elnashar SA, Goldberg JM, Sharma R, Mascha EJ, Arrigain S, Agarwal A, Falcone T. Effect of follicular fluid oxidative stress parameters on intracytoplasmic sperm injection outcome. Gynecol Endocrinol 2012; 28:51-5. [PMID: 21714695 DOI: 10.3109/09513590.2011.579652] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate the association between the follicular fluid (FF) reactive oxygen species (ROS) levels, total antioxidant capacity (TAC) and ROS-TAC score and pregnancy after intracytoplasmic sperm injection (ICSI). METHODS A total of 138 consecutive women who had ICSI were included in this study. FF ROS and TAC were measured by enhanced chemiluminescence and colorimetric assay, respectively, and then the ROS-TAC score was calculated. RESULTS Out of the 138 included patients, 42 (30%) achieved pregnancy after ICSI. Log ROS, TAC, and the ROS-TAC score were not significantly different across diagnoses. Pregnant cycles were associated with significantly lower ROS (P < 0.001), higher TAC (P < 0.001) and higher ROS-TAC scores (P < 0.001). After adjusting for age, there was a significant positive correlation between log ROS and the number of follicles on the day of HCG administration (correlation 0.20, 95% CI: 0.02, 0.39) as well as the number of oocytes retrieved (correlation 0.18, 0.001, 0.36) but not with TAC. Interestingly, in women with endometriosis, higher TAC levels and higher ROS-TAC scores were associated with a higher likelihood of finding normal oocytes (P = 0.005 and P = 0.002, respectively). CONCLUSION Higher FF TAC, higher FF ROS-TAC scores and lower FF ROS levels are associated with pregnancy after ICSI. Oxidative stress parameters may be markers of metabolic activity within the follicle.
Collapse
Affiliation(s)
- Mohamed A Bedaiwy
- Department of Obstetrics and Gynecology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ufer C, Wang CC, Borchert A, Heydeck D, Kuhn H. Redox control in mammalian embryo development. Antioxid Redox Signal 2010; 13:833-75. [PMID: 20367257 DOI: 10.1089/ars.2009.3044] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The development of an embryo constitutes a complex choreography of regulatory events that underlies precise temporal and spatial control. Throughout this process the embryo encounters ever changing environments, which challenge its metabolism. Oxygen is required for embryogenesis but it also poses a potential hazard via formation of reactive oxygen and reactive nitrogen species (ROS/RNS). These metabolites are capable of modifying macromolecules (lipids, proteins, nucleic acids) and altering their biological functions. On one hand, such modifications may have deleterious consequences and must be counteracted by antioxidant defense systems. On the other hand, ROS/RNS function as essential signal transducers regulating the cellular phenotype. In this context the combined maternal/embryonic redox homeostasis is of major importance and dysregulations in the equilibrium of pro- and antioxidative processes retard embryo development, leading to organ malformation and embryo lethality. Silencing the in vivo expression of pro- and antioxidative enzymes provided deeper insights into the role of the embryonic redox equilibrium. Moreover, novel mechanisms linking the cellular redox homeostasis to gene expression regulation have recently been discovered (oxygen sensing DNA demethylases and protein phosphatases, redox-sensitive microRNAs and transcription factors, moonlighting enzymes of the cellular redox homeostasis) and their contribution to embryo development is critically reviewed.
Collapse
Affiliation(s)
- Christoph Ufer
- Institute of Biochemistry, University Medicine Berlin-Charité, Berlin, FR Germany
| | | | | | | | | |
Collapse
|
8
|
Altered gene expression in neural crest cells exposed to ethanol in vitro. Brain Res 2009; 1305 Suppl:S50-60. [DOI: 10.1016/j.brainres.2009.08.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 07/07/2009] [Accepted: 08/06/2009] [Indexed: 11/19/2022]
|
9
|
Lee SR, Kim MR, Yon JM, Baek IJ, Park CG, Lee BJ, Yun YW, Nam SY. Black ginseng inhibits ethanol-induced teratogenesis in cultured mouse embryos through its effects on antioxidant activity. Toxicol In Vitro 2008; 23:47-52. [PMID: 18992320 DOI: 10.1016/j.tiv.2008.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 10/01/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022]
Abstract
Fetal alcohol syndrome is caused by excessive ethanol consumption during pregnancy. We investigated the effect of black ginseng (red ginseng that is subjected to 9 cycles of 95-100 degrees C for 2-3h) on ethanol-induced teratogenesis using an in vitro whole embryo culture system. Postimplantational mouse embryos at embryonic day 8.5 were exposed to ethanol (1 microl/ml) in the presence or absence of black ginseng (1, 10, and 100 microg/ml) for 2 days, and then morphological scoring and real-time PCR analysis were carried out. In ethanol-treated embryos, the total morphological score and individual scores for flexion, heart, fore-, mid-, and hindbrains, otic, optic, and olfactory systems, branchial bars, maxillary and mandibular processes, caudal neural tube, and somites were significantly lower than the control group (p<0.05). Treatment with black ginseng improved most of the morphological scores significantly as compared to ethanol-treated embryos (p<0.05). The mRNA levels of the antioxidant enzymes cytosolic glutathione peroxidase (GPx), phospholipid hydroperoxide GPx, and selenoprotein P were significantly decreased in ethanol-treated embryos, but co-treatment with black ginseng restored the mRNA levels to those of control embryos. These results indicate that black ginseng has a protective effect on ethanol-induced teratogenesis through the augmentation of antioxidative activity in embryos.
Collapse
Affiliation(s)
- Se-Ra Lee
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine and Research Institute of Veterinary Medicine, Core Research Institute, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wentzel P, Eriksson UJ. Genetic influence on dysmorphogenesis in embryos from different rat strains exposed to ethanol in vivo and in vitro. Alcohol Clin Exp Res 2008; 32:874-87. [PMID: 18371156 DOI: 10.1111/j.1530-0277.2008.00647.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The aim was to investigate the susceptibility of embryos from 2 rat strains (U and H) to a 48 hours ethanol exposure in early pregnancy, both in vivo and in vitro. METHODS The embryos were studied on gestational days 9 to 11. We used 1 ethanol dose in vivo (6 g/kg x 2), 3 different ethanol concentrations in vitro (88 mM, 132 mM, 176 mM) and also attempted to diminish the teratogenic effect in vitro by supplying the antioxidant N-acetylcysteine (NAC, 0.5 mM) to the culture medium. RESULTS The U embryos were more damaged by ethanol than the H embryos, both in vivo and in vitro. NAC addition diminished, but failed to completely normalize, the embryonic maldevelopment. Ethanol increased the Bax/Bcl-2 ratio in the U embryos both in vivo and in vitro, but not in the H embryos. Furthermore, ethanol caused increased Caspase-3 immunostaining in U embryos, but not in H embryos. Ethanol exposure in vivo did not alter CuZnSOD and MnSOD mRNA levels in U and H embryos. In vitro, however, the ethanol-exposed U embryos increased their CuZnSOD and MnSOD mRNA levels, whereas the CuZnSOD mRNA was unchanged and MnSOD mRNA decreased in the H embryos, in neither strain did NAC exert any effect. The U embryos increased catalase gene expression in response to ethanol in vivo, but decreased catalase mRNA levels in vitro, changes normalized by NAC. The H embryos did not alter catalase mRNA levels in vivo, but increased gene expression in vitro, with no NAC effect. Ethanol affected the gene expression of the other ROS scavenging enzymes and the developmental genes studied - Bmp-4, Ret, Shh, Pax-6 - similarly in the 2 strains. CONCLUSIONS The findings support a role for genetic predisposition, oxidative stress, and apoptosis in ethanol teratogenicity, and suggest that the teratogenic predisposition of the more susceptible U rats may reside, at least in part, in the regulation of the ROS scavenging enzymes in the U embryos.
Collapse
Affiliation(s)
- Parri Wentzel
- Department of Medical Cell Biology, Biomedical Center, Uppsala Universitet, Uppsala, Sweden.
| | | |
Collapse
|
11
|
Abstract
Oxygen radicals, or reactive oxygen species (ROS) act as primary or secondary messengers to promote cell growth or death. Many instances demonstrate an important direct role of ROS in development because redox status regulates key transcription factors that influence cell signaling pathways involved in proliferation, differentiation, and apoptosis. Therefore, oxidative stress can alter many important reactions that affect embryonic development both positively and negatively. During particular periods in development, the embryo is more or less susceptible to oxidative stress, and teratogens, which can modify redox status, such as thalidomide, phenytoin, and ethanol, will disrupt fetal development. Various events in pregnancy such as diabetes also alter the redox state. Fortunately, antioxidants can obviate these effects through modification of gene expression, transcription factor signaling, and cell cycle alterations. A better understanding of ROS-mediated reactions and their impact on embryonic development is important to ensure optimal outcomes.
Collapse
Affiliation(s)
- Phyllis A Dennery
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Ping XD, Harris FL, Brown LAS, Gauthier TW. In Vivo Dysfunction of the Term Alveolar Macrophage After in Utero Ethanol Exposure. Alcohol Clin Exp Res 2007; 31:308-16. [PMID: 17250624 DOI: 10.1111/j.1530-0277.2006.00306.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND The effects of in utero alcohol exposure on the immune function of the newborn remain under investigation. Fetal ethanol (ETOH) exposure increases oxidative stress in the developing lung, in part due to decreased availability of the antioxidant glutathione (GSH). We have previously shown that in utero ETOH impairs alveolar macrophage phagocytosis and viability in the premature pup, while maintaining GSH availability with maternal supplementation of S-adenosyl-methionine (SAM) during ETOH ingestion improves macrophage function and viability. We hypothesized that dysfunction of the neonatal alveolar macrophage exposed to ETOH in utero would persist at term gestation. METHODS Using a guinea-pig model of fetal ETOH exposure, timed-pregnant guinea-pigs were pair-fed ETOH+/-the GSH precursor SAM and the diet continued until spontaneous delivery. Term alveolar macrophages were evaluated using fluorescent microscopy for phagocytosis and apoptosis after in vitro incubation with Staphalococcus aureus. Using an in vivo model of intranasal Staph. aureus inoculation, the in vivo function of the term alveolar macrophage was also investigated using confocal fluorescent analysis. RESULTS In utero ETOH exposure increased oxidant stress in the alveolar macrophage and decreased phagocytosis and viability in vitro and in vivo. Confocal analysis of phagocytosis in vivo demonstrated a marked impairment of internalization of the bacteria by the ETOH-exposed alveolar macrophage. The addition of SAM during maternal ETOH ingestion prevented loss of alveolar macrophage function and viability in vitro and in vivo. CONCLUSIONS In utero ETOH exposure impairs alveolar macrophage function and viability in vitro and in vivo even at term gestation. The ETOH-induced changes in macrophage function and viability can be ablated with maternal SAM supplementation. Further investigations are required to identify the mechanisms of ETOH-induced derangement of phagocytosis in the neonatal alveolar macrophage and the clinical ramifications of altered immune function after in utero alcohol exposure for the newborn.
Collapse
Affiliation(s)
- Xiao-Du Ping
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Emerging evidence shows that redox-sensitive signal transduction pathways are critical for developmental processes, including proliferation, differentiation, and apoptosis. As a consequence, teratogens that induce oxidative stress (OS) may induce teratogenesis via the misregulation of these same pathways. Many of these pathways are regulated by cellular thiol redox couples, namely glutathione/glutathione disulfide, thioredoxinred/thioredoinox, and cysteine/cystine. This review outlines oxidative stress as a mechanism of teratogenesis through the disruption of thiol-mediated redox signaling. Due to the ability of many known and suspected teratogens to induce oxidative stress and the many signaling pathways that have redox-sensitive components, further research is warranted to fully understand these mechanisms.
Collapse
Affiliation(s)
- Jason M Hansen
- Department of Pediatrics, Emory School of Medicine, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
14
|
Wentzel P, Rydberg U, Eriksson UJ. Antioxidative Treatment Diminishes Ethanol-Induced Congenital Malformations in the Rat. Alcohol Clin Exp Res 2006; 30:1752-60. [PMID: 17010142 DOI: 10.1111/j.1530-0277.2006.00208.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Intrauterine exposure to ethanol causes embryonic and fetal growth retardation and maldevelopment. Oxidative stress in mother and offspring has been suggested to be part of the teratogenic mechanism, and supplementation of antioxidative agents to the pregnant women may therefore be of value in future prophylactic treatment regimen. There is a need for in vivo experimental work in this field, and in the present study, our aim was to investigate whether chronic ethanol consumption induced congenital malformations in rats and, if so, whether dietary supplementation of vitamin E (alpha-tocopherol) diminished such maldevelopment. METHODS Female Sprague-Dawley rats were given drinking water containing 20% ethanol and half of these received food containing 5% vitamin E. Non-ethanol-exposed female rats, with or without vitamin E treatment, served as controls. The pregnancy was interrupted on gestational day 20 when the offspring was evaluated morphologically and fetal hepatic 8-iso-PGF(2alpha) levels were measured to assess the degree of fetal oxidative stress. RESULTS Exposure to 20% ethanol increased maternal blood ethanol to 1.5 promille and increased resorption and malformation rates in the offspring. Maternal vitamin E treatment did not affect blood ethanol levels, but normalized fetal development. The fetal hepatic levels of 8-iso-PGF(2alpha) were increased in the ethanol-exposed group and normalized by vitamin E treatment of the mother. CONCLUSIONS Ethanol exposure disturbs embryogenesis partly by enhanced oxidative stress, and the adverse effects can be ameliorated by antioxidative treatment.
Collapse
Affiliation(s)
- Parri Wentzel
- Department of Medical Cell Biology, Uppsala Universitet, Biomedical Center, Uppsala, Sweden.
| | | | | |
Collapse
|
15
|
Xu Y, Chen X, Li Y. Ercc6l, a gene of SNF2 family, may play a role in the teratogenic action of alcohol. Toxicol Lett 2005; 157:233-9. [PMID: 15917148 DOI: 10.1016/j.toxlet.2005.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 02/22/2005] [Accepted: 02/24/2005] [Indexed: 11/29/2022]
Abstract
The expression profile of a newly identified mouse nucleotide excision repair (NER) gene, Ercc6l, was investigated in a mouse model of fetal alcohol syndrome (FAS). In test 1, whole-mount in situ hybridization showed Ercc6l expressed mainly in the neural tube and heart of 10.5-day embryo. However, the expressions in both of the two organs were significantly down regulated after in uterus alcohol exposure from embryonic day (ED) 6-10, which was in accordance with the result of semi-quantitative RT-PCR. In test 2, the dams were given alcohol intragastrically from ED 6-15, and Northern blot of Ercc6l mRNA was carried out with five major embryo organs on ED 15.5, which were heart, brain, kidney, liver and lung. Ercc6l expression in 15.5-day embryonic brain and heart, which are the most commonly affected organs of FAS, were both decreased by alcohol exposure. The expressions in the other three organs were unaffected. From the results, we considered that Ercc6l might play a role in the teratogenic action of alcohol.
Collapse
Affiliation(s)
- Yajun Xu
- Laboratory of Molecular Toxicology & Developmental Molecular Biology, Department of Nutrition & Food Hygiene, School of Public Health, Peking University, Beijing 100083, China
| | | | | |
Collapse
|
16
|
Gauthier TW, Ping XD, Harris FL, Wong M, Elbahesh H, Brown LAS. Fetal alcohol exposure impairs alveolar macrophage function via decreased glutathione availability. Pediatr Res 2005; 57:76-81. [PMID: 15531743 DOI: 10.1203/01.pdr.0000149108.44152.d3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immature function of the alveolar macrophage increases the risk of pulmonary infections in premature newborns. In utero alcohol increases fetal systemic oxidative stress. Because the premature lung is deficient in glutathione (GSH), we hypothesized that chronic in utero alcohol (ethanol) exposure exacerbates the oxidative stress within the developing lung, thereby impairing alveolar macrophage function. Additionally, we evaluated the effects of in vivo and in vitro GSH availability on ethanol-exposed macrophage function. Using a guinea pig model of chronic in utero ethanol exposure, fetal epithelial lining fluid (ELF) and alveolar macrophage GSH were decreased with increased markers of oxidative stress. Ethanol-exposed macrophage exhibited impaired phagocytosis and increased apoptosis compared with gestational control. When the GSH precursor S-adenosyl-methionine (SAM) was added to the maternal drinking water containing ethanol, fetal ELF and macrophage GSH were maintained and ELF oxidative stress diminished. In vivo maternal SAM therapy maintained macrophage phagocytosis and decreased apoptosis. In vitro GSH supplements also improved phagocytosis and viability in both premature and ethanol-exposed macrophage. This suggested that in utero ethanol impaired premature macrophage function and viability via decreased GSH availability. Furthermore, GSH supplementation during and after ethanol exposure improved fetal macrophage function and viability. These results add a new dimension to the detrimental effects of fetal alcohol exposure on the developing alveolar macrophage, raising the possibility of GSH therapy to augment premature alveolar macrophage function.
Collapse
Affiliation(s)
- Theresa W Gauthier
- Department of Pediatrics, Emory University School of Medicine, 2040 Ridgewood Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
17
|
García-Rodríguez S, Argüelles S, Llopis R, Murillo ML, Machado A, Carreras O, Ayala A. Effect of prenatal exposure to ethanol on hepatic elongation factor-2 and proteome in 21 d old rats: protective effect of folic acid. Free Radic Biol Med 2003; 35:428-37. [PMID: 12899944 DOI: 10.1016/s0891-5849(03)00321-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this article, we study the effects of ethanol intake during pregnancy and lactation on hepatic and pancreatic elongation factor-2 (EF-2) of 21 d old progeny. At the same time, the effect of ethanol on the level of other relevant hepatic proteins was determined using proteomic analysis. The results show that ethanol not only produces a general increase of protein oxidation, but also produces an important depletion of EF-2 and several other proteins. Among the hepatic proteins affected by ethanol, the concomitant supplementation with folic acid to alcoholic mother rats prevented EF-2, RhoGDI-1, ER-60 protease, and gelsolin depletion. This protective effect of folic acid may be related to its antioxidant properties and suggests that this vitamin may be useful in minimizing the effect of ethanol in the uterus and lactation exposure of the progeny.
Collapse
Affiliation(s)
- S García-Rodríguez
- Departamento de Bioquímica, Bromatología, Toxicología y Medicina Legal, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Cohen-Kerem R, Koren G. Antioxidants and fetal protection against ethanol teratogenicity. I. Review of the experimental data and implications to humans. Neurotoxicol Teratol 2003; 25:1-9. [PMID: 12633732 DOI: 10.1016/s0892-0362(02)00324-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ethanol is the most common human teratogen, and heavy drinking during pregnancy can result in serious adverse outcomes to the fetus. The cellular mechanisms by which ethanol induces damage in utero are not well understood, while induction of oxidative stress is believed to be one putative mechanism. Our objective is to review the data of antioxidant effects in experimental models of fetal alcohol syndrome. Prior to the description of the available experimental data, we will briefly review the mechanisms leading to ethanol-induced oxidative stress. Ethanol-induced oxidative damage to the fetus could be attenuated by a variety of antioxidants as was documented in whole animal and tissue culture studies. Experiments, retrieved from the literature search, are described and criticized. Although experimental data are still limited, the application of a treatment strategy that includes antioxidants is justified since antioxidant treatment in human pregnancy for pre-eclampsia was demonstrated to be safe and effective. The available experimental evidence and the safety of vitamins C and E in pregnancy suggest that experimental use of antioxidants in alcohol-consuming mothers should be seriously considered to reduce fetal alcohol damage.
Collapse
Affiliation(s)
- Raanan Cohen-Kerem
- Department of Pediatrics, University of Toronto, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8.
| | | |
Collapse
|
19
|
Wagner G, Stettmaier K, Bors W, Sies H, Wagner EM, Reuter A, Weiher H. Enhanced gamma-glutamyl transpeptidase expression and superoxide production in Mpv17-/- glomerulosclerosis mice. Biol Chem 2001; 382:1019-25. [PMID: 11530932 DOI: 10.1515/bc.2001.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recently, gamma-glutamyl transpeptidase, which initiates cleavage of extracellular glutathione, has been shown to promote oxidative damage to cells. Here we examined a murine disease model of glomerulosclerosis, involving loss of the Mpv17 gene coding for a peroxisomal protein. In Mpv17-/- cells, enzyme activity and mRNA expression (examined by quantitative RT-PCR) of membrane-bound gamma-glutamyl transpeptidase were increased, while plasma glutathione peroxidase and superoxide dismutase levels were lowered. Superoxide anion production in these cells was increased as documented by electron spin resonance spectroscopy. In the presence of Mn(III)tetrakis(4-benzoic acid)porphyrin, the activities of gamma-glutamyl transpeptidase and plasma glutathione peroxidase were unchanged, suggesting a relationship between enzyme expression and the amount of reactive oxygen species. Inhibition of gamma-glutamyl transpeptidase by acivicin reverted the lowered plasma glutathione peroxidase and superoxide dismutase activities, indicating reciprocal control of gene expression for these enzymes.
Collapse
MESH Headings
- Animals
- Catalase/biosynthesis
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Disease Models, Animal
- Gene Expression Regulation, Enzymologic
- Glomerulosclerosis, Focal Segmental/enzymology
- Glomerulosclerosis, Focal Segmental/metabolism
- Glutathione/biosynthesis
- Glutathione Peroxidase/biosynthesis
- Glutathione Reductase/biosynthesis
- Kidney/enzymology
- Kidney/metabolism
- Membrane Proteins
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Proteins/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Superoxide Dismutase/biosynthesis
- Superoxides/metabolism
- gamma-Glutamyltransferase/biosynthesis
Collapse
Affiliation(s)
- G Wagner
- Institut für Physiologische Chemie I, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- B Persson
- Logbacken 2, SE-13150 Salsjö-Dunvnäs, Sweden
| |
Collapse
|
21
|
Cano MJ, Ayala A, Murillo ML, Carreras O. Protective effect of folic acid against oxidative stress produced in 21-day postpartum rats by maternal-ethanol chronic consumption during pregnancy and lactation period. Free Radic Res 2001; 34:1-8. [PMID: 11234991 DOI: 10.1080/10715760100300011] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this paper we show the protective effect of folic acid on oxidative stress in offspring caused by chronic maternal ethanol consumption during pregnancy and the lactation period. Glutathione reductase (GR) specific activity was assayed in liver and pancreas of offspring and mothers. In the offspring, these tissues were also assayed for markers of oxidative damage to lipids and proteins. The results show that ethanol exposure during pregnancy and lactation increased the specific activity of GR in tissues of the mothers (32-34% increase) as well as in the liver of their progeny (24%). Thiobarbituric acid reactive substances (TBARS) were also increased in the liver and pancreas of 21-day-old rats (37- and 54%, respectively). Alcohol also increased the amount of carbonyl groups in proteins in both tissues. These measures of ethanol-mediated oxidative stress were mitigated when pregnant rats were treated with folic acid concomitantly to ethanol administration. The antioxidant capacity of folic acid seems to be involved in its protective effect. The results obtained in the present work suggest that folic acid may be useful in the prevention of damage and promotion of health of the progeny of ethanol-treated rats.
Collapse
Affiliation(s)
- M J Cano
- Departamento Fisiología y Biología Animal, Facultad de Farmacia, Universidad de Sevilla, Spain
| | | | | | | |
Collapse
|
22
|
Heaton MB, Mitchell JJ, Paiva M, Walker DW. Ethanol-induced alterations in the expression of neurotrophic factors in the developing rat central nervous system. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 121:97-107. [PMID: 10837897 DOI: 10.1016/s0165-3806(00)00032-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neonatal rats were exposed to ethanol throughout gestation, or during the early postnatal period (postnatal days 4-10 (P4-10)), and enzyme-linked immunoabsorbent assays were subsequently conducted in order to assess nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) protein content in hippocampus, septum, cortex/striatum and cerebellum. These determinations revealed that following prenatal ethanol treatment, there were significant ethanol-induced increases in NGF in P1 cortex/striatum, but no changes in any of the three neurotrophic factors (NTFs) in the other brain regions. Cortex/striatal NGF protein returned to control levels by P10. Following early postnatal exposure, BDNF was elevated in hippocampus and cortex/striatum (assessed on P10), and NGF was also enhanced in cortex/striatum at this age. Hippocampal and cortex/striatal BDNF returned to control levels by P21, but cortex/striatal NGF levels remained enhanced at this age. This NTF did not differ in ethanol and control animals by P60, however. The possible significance of elevated levels of NTFs as a function of ethanol exposure is discussed, and it is speculated that while such alterations could play a protective role, increases in these substances during critical developmental periods could also prove to be deleterious, and could even contribute to certain of the neuropathologies which have been observed following developmental ethanol exposure.
Collapse
Affiliation(s)
- M B Heaton
- University of Florida Brain Institute, Department of Neuroscience, Center for Alcohol Research, University of Florida College of Medicine, Box 100244, Gainesville, FL 32610-0244, USA.
| | | | | | | |
Collapse
|
23
|
Heaton MB, Mitchell JJ, Paiva M. Amelioration of Ethanol-Induced Neurotoxicity in the Neonatal Rat Central Nervous System by Antioxidant Therapy. Alcohol Clin Exp Res 2000. [DOI: 10.1111/j.1530-0277.2000.tb02019.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Mitchell JJ, Paiva M, Heaton MB. Vitamin E and beta-carotene protect against ethanol combined with ischemia in an embryonic rat hippocampal culture model of fetal alcohol syndrome. Neurosci Lett 1999; 263:189-92. [PMID: 10213167 DOI: 10.1016/s0304-3940(99)00144-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neurodevelopmental damage can occur as a result of in utero exposure to alcohol. Oxidative stress processes are one of many proposed mechanisms thought to contribute to nervous system dysfunction characterized in fetal alcohol syndrome (FAS). Therefore, this study examined neuroprotective effects of antioxidant supplementation during ethanol (EtOH) treatment (0, 200, 400, 800 or 1600 mg/dl) combined with concomitants of EtOH exposure: acute (2-h) ischemia (aISCH) and chronic (16-h) hypoglycemia (cHG). The antioxidants vitamin E and beta-carotene protected embryonic hippocampal cultures against 0-1600 mg/dl EtOH/aISCH/cHG treatments. In addition, neuronal viability, as measured by MTT ((3,4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; 5 mg/ml)), was equal to untreated cultures when supplemented with vitamin E or beta-carotene at 0-800 mg/dl or 0-200 mg/dl EtOH/aISCH/cHG, respectively. These in vitro studies mirror potential in utero ethanol-exposed CNS conditions and may lead to therapeutic strategies targeted at attenuating neurodevelopmental FAS-related deficits.
Collapse
Affiliation(s)
- J J Mitchell
- University of Florida Brain Institute, Center for Alcohol Research, Department of Neuroscience, University of Florida College of Medicine, Gainesville 32610-0244, USA.
| | | | | |
Collapse
|
25
|
Mitchell JJ, Paiva M, Heaton MB. The antioxidants vitamin E and beta-carotene protect against ethanol-induced neurotoxicity in embryonic rat hippocampal cultures. Alcohol 1999; 17:163-8. [PMID: 10064385 DOI: 10.1016/s0741-8329(98)00051-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fetal alcohol syndrome is characterized by numerous nervous system anomalies with the developing hippocampus being highly vulnerable. Other conditions can result from maternal ethanol consumption including oxidative stress. Critical antioxidants, such as vitamin E, can be decreased and antioxidative defenses altered. Gestational day 18 rat hippocampal cultures were exposed to ethanol ranging from 400 to 2400 mg/dl (16 h). MTT assays assessed neurotoxicity. Viability was decreased dose dependently. Supplementation with vitamin E or beta-carotene afforded neuroprotection against all ethanol concentrations. Vitamin E completely ameliorated neuronal loss following 400 and 800 mg/dl ethanol. Vitamin E increased survival to 95%, 79%, 66%, and 75% during 1600, 1800, and 2000 and 2400 mg/dl ethanol compared to nonethanol treatment. Vitamin E increased viability by 38%, 23%, 12%, and 29% at 1600, 1800, 2000, and 2400 mg/dl compared to non-vitamin E-supplemented, ethanol treatment. beta-Carotene completely ameliorated cell loss from 400 mg/dl ethanol and increased survival by 18% at 1600 mg/dl and 12% at 2000 mg/dl. This study demonstrates in vitro antioxidative neuroprotection against developmental ethanol exposure and suggests that nutritional therapies incorporating antioxidants may help protect against deleterious fetal effects from maternal alcohol abuse.
Collapse
Affiliation(s)
- J J Mitchell
- Department of Neuroscience, Center for Alcohol Research, University of Florida College of Medicine, Gainesville 32610-0244, USA.
| | | | | |
Collapse
|
26
|
Abstract
The intragastric exposure of QS mice to alcohol both under short-term (6-day period) (3.0 g/kg, but not 1.5 g/kg, body weight/day through gestation day (GD) 7 to GD 12) and long-term (chronic) (15% ethanol in drinking water beginning several weeks before mating and continuing into pregnancy) conditions reduced the weight, size, and protein content of GD 12 embryos, and the weight of GD 18 embryos. The incidence of brachydactyly with delayed ossification was also significantly greater in embryos chronically exposed to alcohol than in controls (45% vs. 6.7%). The short-term and long-term exposure regimens produced incidences of only 1% and 5.8%, respectively, of forelimb ectrodactyly in GD 18 embryos. It was concluded that alcohol exerts embryo growth retarding effects in pregnant QS mice without inducing a high incidence of skeletal defects. Thus, the QS mouse could serve as an excellent model to resolve the mechanisms whereby alcohol induces pre- and post-natal growth restrictions during pregnancy.
Collapse
Affiliation(s)
- S A Amini
- Faculty of Medicine and Health Sciences, University of Newcastle, Callaghan, NSW, Australia
| | | | | |
Collapse
|