1
|
Dalisay DS, Tenebro CP, Sabido EM, Suarez AFL, Paderog MJV, Reyes-Salarda R, Saludes JP. Marine-Derived Anticancer Agents Targeting Apoptotic Pathways: Exploring the Depths for Novel Cancer Therapies. Mar Drugs 2024; 22:114. [PMID: 38535455 PMCID: PMC10972102 DOI: 10.3390/md22030114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 04/13/2024] Open
Abstract
Extensive research has been conducted on the isolation and study of bioactive compounds derived from marine sources. Several natural products have demonstrated potential as inducers of apoptosis and are currently under investigation in clinical trials. These marine-derived compounds selectively interact with extrinsic and intrinsic apoptotic pathways using a variety of molecular mechanisms, resulting in cell shrinkage, chromatin condensation, cytoplasmic blebs, apoptotic bodies, and phagocytosis by adjacent parenchymal cells, neoplastic cells, or macrophages. Numerous marine-derived compounds are currently undergoing rigorous examination for their potential application in cancer therapy. This review examines a total of 21 marine-derived compounds, along with their synthetic derivatives, sourced from marine organisms such as sponges, corals, tunicates, mollusks, ascidians, algae, cyanobacteria, fungi, and actinobacteria. These compounds are currently undergoing preclinical and clinical trials to evaluate their potential as apoptosis inducers for the treatment of different types of cancer. This review further examined the compound's properties and mode of action, preclinical investigations, clinical trial studies on single or combination therapy, and the prospective development of marine-derived anticancer therapies.
Collapse
Affiliation(s)
- Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
| | - Chuckcris P. Tenebro
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Edna M. Sabido
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Angelica Faith L. Suarez
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
| | - Melissa June V. Paderog
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Pharmacy, University of San Agustin, Iloilo City 5000, Philippines
| | - Rikka Reyes-Salarda
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
| | - Jonel P. Saludes
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
- Department of Chemistry, University of San Agustin, Iloilo City 5000, Philippines
| |
Collapse
|
2
|
Reed E, Lutsenko S, Bandmann O. Animal models of Wilson disease. J Neurochem 2018; 146:356-373. [PMID: 29473169 PMCID: PMC6107386 DOI: 10.1111/jnc.14323] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/04/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
Abstract
Wilson disease (WD) is an autosomal recessive disorder of copper metabolism manifesting with hepatic, neurological and psychiatric symptoms. The limitations of the currently available therapy for WD (particularly in the management of neuropsychiatric disease), together with our limited understanding of key aspects of this illness (e.g. neurological vs. hepatic presentation) justify the ongoing need to study WD in suitable animal models. Four animal models of WD have been established: the Long-Evans Cinnamon rat, the toxic-milk mouse, the Atp7b knockout mouse and the Labrador retriever. The existing models of WD all show good similarity to human hepatic WD and have been helpful in developing an improved understanding of the human disease. As mammals, the mouse, rat and canine models also benefit from high homology to the human genome. However, important differences exist between these mammalian models and human disease, particularly the absence of a convincing neurological phenotype. This review will first provide an overview of our current knowledge of the orthologous genes encoding ATP7B and the closely related ATP7A protein in C. elegans, Drosophila and zebrafish (Danio rerio) and then summarise key characteristics of rodent and larger mammalian models of ATP7B-deficiency.
Collapse
Affiliation(s)
- Emily Reed
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Baltimore, USA
| | | | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Baltimore, USA
| |
Collapse
|
3
|
Giorgi C, Marchi S, Simoes IC, Ren Z, Morciano G, Perrone M, Patalas-Krawczyk P, Borchard S, Jȩdrak P, Pierzynowska K, Szymański J, Wang DQ, Portincasa P, Wȩgrzyn G, Zischka H, Dobrzyn P, Bonora M, Duszynski J, Rimessi A, Karkucinska-Wieckowska A, Dobrzyn A, Szabadkai G, Zavan B, Oliveira PJ, Sardao VA, Pinton P, Wieckowski MR. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:209-344. [PMID: 30072092 PMCID: PMC8127332 DOI: 10.1016/bs.ircmb.2018.05.006] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aging has been linked to several degenerative processes that, through the accumulation of molecular and cellular damage, can progressively lead to cell dysfunction and organ failure. Human aging is linked with a higher risk for individuals to develop cancer, neurodegenerative, cardiovascular, and metabolic disorders. The understanding of the molecular basis of aging and associated diseases has been one major challenge of scientific research over the last decades. Mitochondria, the center of oxidative metabolism and principal site of reactive oxygen species (ROS) production, are crucial both in health and in pathogenesis of many diseases. Redox signaling is important for the modulation of cell functions and several studies indicate a dual role for ROS in cell physiology. In fact, high concentrations of ROS are pathogenic and can cause severe damage to cell and organelle membranes, DNA, and proteins. On the other hand, moderate amounts of ROS are essential for the maintenance of several biological processes, including gene expression. In this review, we provide an update regarding the key roles of ROS-mitochondria cross talk in different fundamental physiological or pathological situations accompanying aging and highlighting that mitochondrial ROS may be a decisive target in clinical practice.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Ines C.M. Simoes
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ziyu Ren
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Giampaolo Morciano
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Maria Pia Hospital, GVM Care & Research, Torino, Italy
| | - Mariasole Perrone
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paulina Patalas-Krawczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sabine Borchard
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Paulina Jȩdrak
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | - Jȩdrzej Szymański
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - David Q. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Dept. of Biomedical Sciences & Human Oncology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Grzegorz Wȩgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany
| | - Pawel Dobrzyn
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Massimo Bonora
- Departments of Cell Biology and Gottesman Institute for Stem Cell & Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jerzy Duszynski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alessandro Rimessi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | | | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Barbara Zavan
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paulo J. Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Vilma A. Sardao
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Paolo Pinton
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Mariusz R. Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Shih YL, Hsueh SC, Chen YL, Chou JS, Chung HY, Liu KL, Jair HW, Chuang YY, Lu HF, Liu JY, Chung JG. Laminarin Promotes Immune Responses and Reduces Lactate Dehydrogenase But Increases Glutamic Pyruvic Transaminase in Normal Mice In Vivo. In Vivo 2018; 32:523-529. [PMID: 29695555 PMCID: PMC6000794 DOI: 10.21873/invivo.11270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/27/2018] [Accepted: 03/06/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND/AIM Laminarin, a typical component of fungal cell walls, has been shown to induce immune responses in both adult and larval locusts. We investigated the effects of laminarin on immune response and glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT) and lactate dehydrogenase (LDH) levels in normal mice. MATERIALS AND METHODS Thirty-six normal BALB/c mice were randomly divided into four groups and treatments were provided by gavage. Group I mice acted as normal control; mice of groups II-IV received laminarin at different doses (100 μl at 1, 2.5 and 5.0 mg/mouse in double-distilled water, respectively). All animals were treated for 14 days and were weighed, blood was collected for determination of cell markers, liver and spleen samples were weighed. Spleens were used for phagocytosis and determination of natural killer (NK) cell activity and cell proliferation by flow cytometric assay. RESULTS Laminarin reduced the body weights and weights of liver and spleen. Laminarin increased CD3, CD19 and Mac-3 cell populations at 2.5 and 5 mg/mouse, however, these did not affect CD11b marker levels. Laminarin (1 and 5 mg/mouse) reduced macrophage phagocytosis from peripheral blood mononuclear cells, but did not affect phagocytosis by macrophages from the peritoneal cavity. At an effector:target ratio of 50:1, laminarin reduced NK cell cytotoxic activity at all levels, but at a ratio of 25:1, only at 1 mg treatment. Laminarin did not affect T-cell and B-cell proliferation. Laminarin increased the level of GPT and reduced that of LDH at all doses, indicating laminarin can protect against liver injury. Laminarin is worthy of investigation in future experiments on improving immune responses.
Collapse
Affiliation(s)
- Yung-Luen Shih
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan, R.O.C
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan, R.O.C
| | - Shu-Ching Hsueh
- Division of Hematology and Oncology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
- Department of Family Medicine and Community Medicine, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan, R.O.C
| | - Jiann-Shang Chou
- Anatomic Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Hsueh-Yu Chung
- Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan, R.O.C
| | - Ko-Lin Liu
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C
| | - Herng-Woei Jair
- Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Ying-Ying Chuang
- Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Hsu-Feng Lu
- Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Jia-You Liu
- Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C.
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.
- Department of Biotechnology, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
5
|
Yeh MY, Shih YL, Chung HY, Chou J, Lu HF, Liu CH, Liu JY, Huang WW, Peng SF, Wu LY, Chung JG. Chitosan promotes immune responses, ameliorating total mature white blood cell numbers, but increases glutamic oxaloacetic transaminase and glutamic pyruvic transaminase, and ameliorates lactate dehydrogenase levels in leukemia mice in vivo. Mol Med Rep 2017; 16:2483-2490. [PMID: 28677783 PMCID: PMC5547931 DOI: 10.3892/mmr.2017.6923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/05/2017] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to investigate the effect of chitosan (a naturally derived polymer) on the immune responses and glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT) and lactate dehydrogenase (LDH) levels in WEHI-3 cell-generated leukemia mice. Mice were divided into control, WEHI-3 control, acetic acid (vehicle)-treated, and 5 and 20 mg/kg chitosan-treated groups. Mice were subsequently weighed, blood was collected, and liver and spleen samples were isolated and weighed. Blood samples were measured for cell markers, the spleen underwent phagocytosis and natural killer (NK) cell activity examination, and cell proliferation was analyzed by flow cytometry. Chitosan did not significantly affect the weights of body, liver and spleen at 5 and 20 mg/kg treatment. Chitosan increased the percentage of CD3 (T cells marker), decreased the levels of CD19 (B-cell marker) and CD11b at 5 mg/kg treatment, and decreased the levels of Mac-3 at 5 and 20 mg/kg treatment. Chitosan significantly increased macrophage phagocytosis of PBMCs, but did not significantly affect macrophage phagocytosis in the peritoneal cavity. Chitosan treatment did not significantly affect the cytotoxic activity of NK cells, and also did not affect T- and B-cell proliferation. Chitosan significantly increased total white blood cell numbers, and GOT and GPT activities were both significantly increased. However, chitosan did not significantly affect LDH activity in leukemia mice. Chitosan may aid in future studies on improving immune responses in the treatment of leukemia.
Collapse
Affiliation(s)
- Ming-Yang Yeh
- Office of Director, Cheng Hsin General Hospital, Taipei 112, Taiwan, R.O.C
| | - Yung-Luen Shih
- Department of School of Medicine, Fu‑Jen Catholic University, New Taipei 242, Taiwan, R.O.C
| | - Hsueh-Yu Chung
- Jen‑Teh Junior College of Medicine, Nursing and Management, Miaoli County 356, Taiwan, R.O.C
| | - Jason Chou
- Department of Anatomical Pathology, Cheng Hsin General Hospital, Taipei 112, Taiwan, R.O.C
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei 112, Taiwan, R.O.C
| | - Chia-Hui Liu
- The Center of General Education, Chia‑Nan University of Pharmacy and Science, Tainan 717, Taiwan, R.O.C
| | - Jia-You Liu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei 112, Taiwan, R.O.C
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Lung-Yuan Wu
- The School of Chinese Medicine for Post‑Baccalaureate, I‑Shou University, Kaohsiung 840, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| |
Collapse
|
6
|
Kitamura Y, Nishikawa A, Nakamura H, Furukawa F, Imazawa T, Umemura T, Uchida K, Hirose M. Effects of N-Acetylcysteine, Quercetin, and Phytic Acid on Spontaneous Hepatic and Renal Lesions in LEC Rats. Toxicol Pathol 2016; 33:584-92. [PMID: 16178122 DOI: 10.1080/01926230500246675] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The effects of anti-oxidants were examined in Long-Evans Cinnamon (LEC) rats, which develop acute hepatic injury, and subsequent hepatic and renal tumors due to accumulation of excess Cu. The rats, at the age of 15 weeks, were supplied a diet containing either 1% of N-acetylcysteine (NAC), quercetin (QC), or phytic acid (PA), or basal diet alone. At weeks 2 and 6 posttreatment, animals were sacrificed for collection of blood and tissue samples. In the NAC-treated group, the development of hepatic and renal lesions was dramatically reduced. In addition, accumulation of Cu and Fe in the liver was suppressed. Acrolein-modified protein, a new marker for lipid peroxidation, was not detected in the liver or kidney of NAC treated rats, even though deposition was evident in control. Neither QC nor PA affected the development of spontaneous hepatic lesions. These results indicate that oxidative stress was reduced by NAC in the liver and kidney, and suggest that Cu and Fe may be involved in the generation of oxidative stress in the liver. In addition, it was suggested that the different effects of the anti-oxidants on lesion development in LEC rats might be related to different mechanisms of action with regard to oxidative stress.
Collapse
Affiliation(s)
- Yasuki Kitamura
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Yeh MY, Shih YL, Chung HY, Chou J, Lu HF, Liu CH, Liu JY, Huang WW, Peng SF, Wu LY, Chung JG. Chitosan promotes immune responses, ameliorates glutamic oxaloacetic transaminase and glutamic pyruvic transaminase, but enhances lactate dehydrogenase levels in normal mice in vivo. Exp Ther Med 2016; 11:1300-1306. [PMID: 27073440 PMCID: PMC4812523 DOI: 10.3892/etm.2016.3057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 01/15/2016] [Indexed: 12/12/2022] Open
Abstract
Chitosan, a naturally derived polymer, has been shown to possess antimicrobial and anti-inflammatory properties; however, little is known about the effect of chitosan on the immune responses and glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT) and lactate dehydrogenase (LDH) activities in normal mice. The aim of the present study was to investigate whether chitosan has an effect on the immune responses and GOT, GPT and LDH activities in mice in vivo. BALB/c mice were divided into four groups. The negative control group was treated with a normal diet; the positive control group was treated with a normal diet plus orally administered acetic acid and two treatment groups were treated with a normal diet plus orally administered chitosan in acetic acid at doses of 5 and 20 mg/kg, respectively, every other day for 24 days. Mice were weighed during the treatment, and following the treatment, blood was collected, and liver and spleen samples were isolated and weighted. The blood samples were used for measurement of white blood cell markers, and the spleen samples were used for analysis of phagocytosis, natural killer (NK) cell activity and cell proliferation using flow cytometry. The results indicated that chitosan did not markedly affect the body, liver and spleen weights at either dose. Chitosan increased the percentages of CD3 (T-cell marker), CD19 (B-cell marker), CD11b (monocytes) and Mac-3 (macrophages) when compared with the control group. However, chitosan did not affect the phagocytic activity of macrophages in peripheral blood mononuclear cells, although it decreased it in the peritoneal cavity. Treatment with 20 mg/kg chitosan led to a reduction in the cytotoxic activity of NK cells at an effector to target ratio of 25:1. Chitosan did not significantly promote B-cell proliferation in lipopolysaccharide-pretreated cells, but significantly decreased T-cell proliferation in concanavalin A-pretreated cells, and decreased the activity of GOT and GPT compared with that in the acetic acid-treated group,. In addition, it significantly increased LDH activity, to a level similar to that in normal mice, indicating that chitosan can protect against liver injury.
Collapse
Affiliation(s)
- Ming-Yang Yeh
- Office of Director, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Yung-Luen Shih
- Department of School of Medicine, Fu-Jen Catholic University, Taipei, Taiwan, R.O.C.; Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taiwan, R.O.C.; School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Hsueh-Yu Chung
- Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan, R.O.C
| | - Jason Chou
- Department of Anatomical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Chia-Hui Liu
- The Center of General Education, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan, R.O.C
| | - Jia-You Liu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Lung-Yuan Wu
- The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.; Department of Biotechnology, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
8
|
Katsuda T, Teratani T, Ochiya T, Sakai Y. Transplantation of a fetal liver cell-loaded hyaluronic acid sponge onto the mesentery recovers a Wilson's disease model rat. J Biochem 2010; 148:281-8. [PMID: 20562412 DOI: 10.1093/jb/mvq063] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An auxiliary liver represents a promising alternative for liver transplantation. The use of a large amount of mature hepatocytes, however, despite their high function, is limited in a clinical setting. Here, we propose a novel transplantation system that dramatically improved a diseased animal by incorporating fetal liver cells (FLCs) as a cell source, the mesentery as a transplantation site and a hyaluronic acid (HA) sponge as a cell scaffold. We transplanted wild-type Long Evans Agouti rat FLCs embedded in HA sponges onto the mesentery of Long Evans Cinnamon (LEC) rats, an animal model for Wilson's disease. The FLC-loaded HA sponges successfully grafted and consequently prevented jaundice. Accordingly, the treated animals showed a significant reduction in blood copper concentration, which consequently led to significant decreases in serum total bilirubin and direct bilirubin, and to a significant increase in albumin productivity. Furthermore, haematoxylin and eosin staining of the host livers demonstrated that fibrosis at the periportal area was moderated in the treated animals. In conclusion, we transplanted FLC-loaded HA sponges onto the mesenteric blood vessels, leading to thick, liver-like tissue possessing blood vessels, and the liver tissue engineered thus exhibited a remarkable therapeutic effect on the copper metabolism deficiency of LEC rats.
Collapse
Affiliation(s)
- Takeshi Katsuda
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | | | | | | |
Collapse
|
9
|
Polovyanenko DN, Marque SRA, Lambert S, Jicsinszky L, Plyusnin VF, Bagryanskaya EG. Electron Paramagnetic Resonance Spin Trapping of Glutathiyl Radicals by PBN in the Presence of Cyclodextrins and by PBN Attached to β-Cyclodextrin. J Phys Chem B 2008; 112:13157-62. [PMID: 18798667 DOI: 10.1021/jp8050164] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dmitriy N. Polovyanenko
- International Tomography Center SB RAS, Novosibirsk 630090, Russia, Université de Provence case 542, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France, Cycloab Ltd., P.O. Box 435, H-1525 Budapest, Hungary, and Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk 630090, Russia
| | - Sylvain R. A. Marque
- International Tomography Center SB RAS, Novosibirsk 630090, Russia, Université de Provence case 542, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France, Cycloab Ltd., P.O. Box 435, H-1525 Budapest, Hungary, and Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk 630090, Russia
| | - Sandrine Lambert
- International Tomography Center SB RAS, Novosibirsk 630090, Russia, Université de Provence case 542, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France, Cycloab Ltd., P.O. Box 435, H-1525 Budapest, Hungary, and Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk 630090, Russia
| | - Laszlo Jicsinszky
- International Tomography Center SB RAS, Novosibirsk 630090, Russia, Université de Provence case 542, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France, Cycloab Ltd., P.O. Box 435, H-1525 Budapest, Hungary, and Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk 630090, Russia
| | - Victor F. Plyusnin
- International Tomography Center SB RAS, Novosibirsk 630090, Russia, Université de Provence case 542, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France, Cycloab Ltd., P.O. Box 435, H-1525 Budapest, Hungary, and Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk 630090, Russia
| | - Elena G. Bagryanskaya
- International Tomography Center SB RAS, Novosibirsk 630090, Russia, Université de Provence case 542, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France, Cycloab Ltd., P.O. Box 435, H-1525 Budapest, Hungary, and Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
10
|
Polovyanenko DN, Plyusnin VF, Reznikov VA, Khramtsov VV, Bagryanskaya EG. Mechanistic studies of the reactions of nitrone spin trap PBN with glutathiyl radical. J Phys Chem B 2008; 112:4841-7. [PMID: 18363401 DOI: 10.1021/jp711548x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We performed mechanistic studies of the reaction of PBN with the physiologically relevant glutathiyl radical, GS*, formed upon oxidation of the intracellular antioxidant, glutathione, GSH. The scavenging rate constant of GS* by PBN has been measured directly by laser flash photolysis and indirectly by competitive EPR of the spin adduct of PBN and another spin trap, DMPO (5,5-dimethyl-1-pyrroline N-oxide), and was found to be 6.7 x 107 M(-1) s(-1). Reverse decomposition of the paramagnetic PBN-glutathiyl radical adduct to the nitrone and thiyl radical was observed for the first time. The rate constant for the reaction of the monomolecular decomposition of the radical adduct was found to be 1.7 s(-1). Diamagnetic, EPR-invisible products of PBN adduct degradation were studied by 1H NMR and 19F NMR using newly synthesized fluorine-substituted PBN.
Collapse
|
11
|
Asanuma T, Yasui H, Inanami O, Waki K, Takahashi M, Iizuka D, Uemura T, Durand G, Polidori A, Kon Y, Pucci B, Kuwabara M. A New Amphiphilic Derivative,N-{[4-(Lactobionamido)methyl]benzylidene}- 1,1-dimethyl-2-(octylsulfanyl)ethylamineN-Oxide, Has a Protective Effect Against Copper-Induced Fulminant Hepatitis inLong–Evans Cinnamon Rats at an Extremely Low Concentration Compared with Its Original Formα-Phenyl-N-(tert-butyl) Nitrone. Chem Biodivers 2007; 4:2253-67. [PMID: 17886845 DOI: 10.1002/cbdv.200790184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An amphiphilic alpha-phenyl-N-(tert-butyl) nitrone (PBN) derivative, N-{[4-(lactobionamido)methyl]benzylidene}-1,1-dimethyl-2-(octylsulfanyl)ethylamine N-oxide (LPBNSH), newly synthesized from its original form PBN in hopes of clinical use, was intraperitoneally administered to Long-Evans Cinnamon (LEC) rats every 2 days at the concentrations of 0.1, 0.5, 1.0, and 2.0 mg/kg. We found that LPBNSH protected against copper-induced hepatitis with jaundice in LEC rats at concentrations of 0.1 and 0.5 mg/kg, which were extremely low compared with that of PBN. It also effectively prevented the loss of body weight, reduced the death rate, and suppressed the increase in serum aspartate aminotransferase and alanine aminotransferase values arising from fulminant hepatitis with jaundice at the same concentrations. Similar results were observed when PBN was administered at the concentration of 150 mg/kg. Immunohistochemical analysis of 8-hydroxy-2'-deoxyguanosine and measurement of thiobarbituric acid-reactive substances in the liver showed that LPBNSH largely suppressed the formation of these oxidative products at same concentrations. No difference in the abnormal accumulation of copper in the liver between the LPBNSH administered and control groups was observed. From these results, it was concluded that LPBNSH exhibited liver-protective effects against fulminant hepatitis with jaundice at ca. 1/1000, 500 the molar concentration of PBN and, therefore, was clinically promising.
Collapse
Affiliation(s)
- Taketoshi Asanuma
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Otsuka T, Izumi K, Tokunaga I, Gotohda T, Ipposhi K, Takiguchi Y, Kaneda S, Satake N, Ohnishi T, Tashiro S, Shimada M. Prevention of lethal hepatic injury in Long-Evans Cinnamon (LEC) rats by D-galactosamine hydrochloride. THE JOURNAL OF MEDICAL INVESTIGATION 2006; 53:81-6. [PMID: 16537999 DOI: 10.2152/jmi.53.81] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Repeated injections of D-galactosamine hydrochloride (GalN) increase the survival rate of Long-Evans Cinnamon (LEC) rats, an animal model of Wilson's disease. The aim of the present study was to investigate the mechanism of GalN for prevention of spontaneous lethal hepatic injury in LEC rats. Male LEC rats were given a single subcutaneous injection of 300 mg/kg of GalN or vehicle (0.9% NaCl) at 14 weeks, and killed at 28 weeks of age. Next, 6-week-old male LEC rats were given weekly subcutaneous injections of 300 mg/kg of GalN or vehicle for 3 or 12 weeks, and their hepatic 8-hydroxydeoxy-2'-guanosine (8-OHdG), glutathione peroxidase (GPX), and catalase activities were measured. None of GalN-treated rats died of hepatic injury (0/12), whereas the mortality rate of control rats given 0.9% NaCl was 17% (2/12). GalN administration for 12 weeks decreased the hepatic 8-OHdG, and GalN administration for either 3 or 12 weeks increased the glutathione peroxidase activity. GalN administration increased the serum level of alanine aminotransferase, and accelerated megalocytic degeneration of the hepatocytes. GalN treatment is effective in preventing lethal hepatitis in LEC rats and decrease of oxidative DNA damage by GalN plays an important role in increase of the survival rate.
Collapse
Affiliation(s)
- Toshihiro Otsuka
- Department of Digestive and Pediatric Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hirano H, Tabuchi Y, Kondo T, Zhao QL, Ogawa R, Cui ZG, Feril LB, Kanayama S. Analysis of gene expression in apoptosis of human lymphoma U937 cells induced by heat shock and the effects of α-phenyl N-tert-butylnitrone (PBN) and its derivatives. Apoptosis 2005; 10:331-40. [PMID: 15843894 DOI: 10.1007/s10495-005-0807-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hyperthermia, a modality of cancer therapy, has been known as a stress to induce apoptosis. However, the molecular mechanism of heat shock-induced apoptosis, especially on roles of intracellular oxidative stress, is not fully understood. First, when human lymphoma U937 cells were treated with heat shock (44 degrees C, 30 min), the fraction of apoptosis, revealed by phosphatidylserine externalization, increased gradually and peaked at 6 hr after the treatment. In contrast, intracellular superoxide formation increased early during the heat shock treatment and peaked at 30 min after the treatment. When the cells were treated with heat shock in the presence of alpha -phenyl-N-tert-butylnitrone (PBN) and its derivatives, which are potent antioxidants, the DNA fragmentation was inhibited in an order according to the agents' hydrophobicity. PBN showing the highest inhibitory effects suppressed not only intracellular superoxide formation but also various apoptosis indicators. cDNA microarray was employed to analyze gene expression associated with heat shock-induced apoptosis, and the time-course microarray analysis revealed 5 groups showing changes in their pattern of gene expression. Among these genes, c-jun mRNA expression showed more than 40 fold increase 2 hr after heat treatment. The expression level of c-jun mRNA verified by quantitative real-time PCR was about 20 fold increase, and c-jun expression was similarly suppressed by PBN and its derivatives. These results suggest that the change of c-jun expression is an excellent molecular marker for apoptosis mediated by intracellular oxidative stress induced by heat shock.
Collapse
Affiliation(s)
- H Hirano
- Department of Radiological Sciences, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Toyama, 930-0194, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Test for antioxidant ability by scavenging long-lived mutagenic radicals in mammalian cells and by blood test with intentional radicals: an application of gallic acid. Radiat Phys Chem Oxf Engl 1993 2003. [DOI: 10.1016/s0969-806x(02)00288-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Tsuji M, Inanami O, Kuwabara M. Induction of neurite outgrowth in PC12 cells by alpha -phenyl-N-tert-butylnitron through activation of protein kinase C and the Ras-extracellular signal-regulated kinase pathway. J Biol Chem 2001; 276:32779-85. [PMID: 11438521 DOI: 10.1074/jbc.m101403200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The spin trap alpha-phenyl-N-tert-butylnitron (PBN) is widely used for studies of the biological effects of free radicals. We previously reported the protective effects of PBN against ischemia-reperfusion injury in gerbil hippocampus by its activation of extracellular signal-regulated kinase (ERK) and suppression of both stress-activated protein kinase and p38 mitogen-activated protein kinase. In the present study, we found that PBN induced neurite outgrowth accompanied by ERK activation in PC12 cells in a dose-dependent manner. The induction of neurite outgrowth was inhibited significantly not only by transient transfection of PC12 cells with dominant negative Ras, but also by treatment with mitogen-activated protein kinase/ERK kinase inhibitor PD98059. The activation of receptor tyrosine kinase TrkA was not involved in PBN-induced neurite outgrowth. A protein kinase C (PKC) inhibitor, GF109203X, was found to inhibit neurite outgrowth. The activation of PKCepsilon was observed after PBN stimulation. PBN-induced neurite outgrowth and ERK activation were counteracted by the thiol-based antioxidant N-acetylcysteine. From these results, it was concluded that PBN induced neurite outgrowth in PC12 cells through activation of the Ras-ERK pathway and PKC.
Collapse
Affiliation(s)
- M Tsuji
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | |
Collapse
|
16
|
Yamamoto H, Watanabe T, Mizuno H, Endo K, Fukushige J, Hosokawa T, Kazusaka A, Fujita S. The antioxidant effect of DL-alpha-lipoic acid on copper-induced acute hepatitis in Long-Evans Cinnamon (LEC) rats. Free Radic Res 2001; 34:69-80. [PMID: 11234997 DOI: 10.1080/10715760100300071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The Long-Evans Cinnamon (LEC) rats, due to a genetic defect, accumulate excess copper (Cu) in the liver in a manner similar to patients with Wilson's disease and spontaneously develop acute hepatitis with severe jaundice. In this study we examined the protective effect of DL-alpha-Lipoic acid (LA) against acute hepatitis in LEC rats. LA was administered to LEC rats by gavage in doses of 10, 30 and 100 mg/kg five times per week, starting at 8-weeks-old and continuing till 12-weeks-old. Although LA had little effect against the increases in serum transaminase activities, it suppressed the loss of body weight and prevented severe jaundice in a dose-dependent manner. Antioxidant system analyses in liver showed that LA treatment significantly suppressed the inactivations of catalase and glutathione peroxidase, and the induction of heme oxygenase-1, an enzyme which is inducible under oxidative stress. Furthermore, LA showed dose-dependent suppressive effect against increase in nonheme iron contents of both cytosolic and crude mitochondrial fractions in a dose-dependent manner. Although at the highest dose, LA slightly suppressed the accumulation of Cu in crude mitochondrial fraction, it had no effect on the accumulation of Cu in cytosolic fraction. While LA completely suppressed the increase in lipid peroxidation (LPO) in the microsomal fraction at the highest dose, the suppressive effect against LPO in crude mitochondrial fractions was slight. From these results, it is concluded that LA has antioxidant effects at the molecular level against the development of Cu-induced hepatitis in LEC rats. Moreover, mitochondrial oxidative damage might be involved in the development of acute hepatitis in LEC rats.
Collapse
Affiliation(s)
- H Yamamoto
- Medicinal Safety Research Laboratories, Sankyo Co., Ltd., Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Tsuji M, Inanami O, Kuwabara M. Neuroprotective effect of alpha-phenyl-N-tert-butylnitrone in gerbil hippocampus is mediated by the mitogen-activated protein kinase pathway and heat shock proteins. Neurosci Lett 2000; 282:41-4. [PMID: 10713391 DOI: 10.1016/s0304-3940(00)00844-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
alpha-Phenyl-N-tert-butylnitrone (PBN), a spin trap, is known as a protective agent against delayed-neuronal death after ischemia-reperfusion. To investigate this neuroprotective effect of PBN, we examined the effect of PBN on the mitogen-activated protein kinase (MAPK) signaling pathway and the expression of heat shock proteins (HSPs) in the gerbil hippocampus following transient (5 min) ischemia. Immunoblot analysis revealed that intraperitoneal (i. p.) injection of PBN (200 mg/kg) enhanced the activation of extracellular-response kinase (ERK) and suppressed the activation of stress-activated protein kinase/c-Jun N-terminal protein kinase (SAPK/JNK) and p38 mitogen-activated protein kinase (p38) at 6 h after ischemia. Elevated levels of HSP27 and HSP70 were seen at the same period. These data suggest that PBN protects against delayed-neuronal death not only by its inherent radical-trapping activity but also by regulating the MAPK pathway and up-regulating HSPs.
Collapse
Affiliation(s)
- M Tsuji
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
18
|
Cadenas S, Barja G. Resveratrol, melatonin, vitamin E, and PBN protect against renal oxidative DNA damage induced by the kidney carcinogen KBrO3. Free Radic Biol Med 1999; 26:1531-7. [PMID: 10401619 DOI: 10.1016/s0891-5849(99)00019-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Free radical scavengers can protect against the genotoxicity induced by chemical carcinogens by decreasing oxidative damage. The protective effect of the antioxidants melatonin, resveratrol, vitamin E, butylated hydroxytoluene and 2-mercaptoethylamine, and the spin-trapping compound alpha-phenyl-N-tert-butyl nitrone (PBN) against oxidative DNA damage was studied in the kidney of rats treated with the kidney-specific carcinogen potassium bromate (KBrO3). KBrO3 was given to rats previously treated with melatonin, resveratrol, PBN, vitamin E, butylated hydroxytoluene, or 2-mercaptoethylamine. Oxidative damage to kidney DNA was estimated 6 hours afterwards by measuring 8-oxo-7,8-dihydro-2'-deoxyguanosine (oxo8dG) referred to deoxyguanosine (dG) by means of high performance liquid chromatography with electrochemical-coulometric and ultraviolet detection. Levels of oxo8dG in the renal genomic DNA significantly increased by more than 100% after the KBrO3 treatment. This increase was completely abolished by the treatment with resveratrol and was partially prevented by melatonin, PBN and vitamin E. Resveratrol and PBN also prevented the increase in relative kidney weight induced by KBrO3. These results show that various different antioxidants and a free radical trap, working in either the water-soluble or the lipid-soluble compartments, can prevent the oxidative DNA damage induced in the kidney by the carcinogen KBrO3.
Collapse
Affiliation(s)
- S Cadenas
- Department of Animal Biology-II (Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain
| | | |
Collapse
|
19
|
Asanuma T, Hirano Y, Yamamoto K, Kon Y, Shimokawa S, Kuwabara M. MR imaging of hepatic injury in the LEC rat under a high magnetic field (7.05 T). J Vet Med Sci 1999; 61:239-44. [PMID: 10331195 DOI: 10.1292/jvms.61.239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Visualization of copper-induced hepatitis (CuH) in LEC rats was performed by using an MRI apparatus equipped with a magnet producing a high magnetic field of 7.05 T. When three groups of LEC rats (6-16 [pre-hepatitis], 15-26 [acute hepatitis] and 40-77 [chronic hepatitis] weeks old) were examined by MRI under T2-weighted imaging conditions which are suitable for the diagnosis of human hepatitis, hypointense MR images of the livers were, as a whole, obtained in all groups, suggesting that these conditions were not adequate for imaging of CuH of LEC rats. The shortening of the T1 and T2 relaxation times of livers due to an excess amount of paramagnetic irons under the high magnetic field was responsible for the lowering of MR signal intensities of the livers, especially those of 15 to 26-week old rats showing acute hepatitis. However, theoretical calculation of the MR signal intensities using the T1 and T2 relaxation times of the livers indicated that their imaging might be possible under proton density-weighted conditions even with a high magnetic field. Experimental results showed that hepatic injury was visualized as hyperintense regions in the MR image of the liver in the acute-phase rat.
Collapse
Affiliation(s)
- T Asanuma
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Iovino G, Kubow S, Marliss EB. Effect of α-phenyl-N-tert-butylnitrone on diabetes and lipid peroxidation in BB rats. Can J Physiol Pharmacol 1999. [DOI: 10.1139/y99-022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxygen free radicals have been shown to interfere with pancreatic islet beta cell function and integrity, and have been implicated in autoimmune type 1 diabetes. We hypothesized that the spontaneous autoimmune type 1 diabetes of the BB rat would be prevented by in vivo administration of a free-radical spin trap, α-phenyl-N-tert-butylnitrone (PBN). Twenty-eight diabetes-prone (BBdp) and 13 non-diabetes-prone (BBn) rats received PBN (10 mg/kg) subcutaneously twice daily, and 27 BBdp and 12 BBn rats received saline as controls. Rats were treated from age 47 ± 6 days until diabetes onset or age 118 ± 7 days. PBN caused no growth, biochemical, or hematological side effects. Sixteen control BBdp rats became diabetic (BBd, mean age 77 ± 6 days) and six demonstrated impaired glucose tolerance (IGT rats). The incidence of diabetes and IGT was not different in PBN-treated BBdp rats. Saline-treated rats showed no differences in pancreatic malondialdehyde (MDA) contents of BBd, IGT rats, and the BBdp that did not develop diabetes, versus BBn rats (2.38 ± 0.35 nmoL/g). Among rats receiving PBN, BBn had lower pancreatic MDA than BBd and IGT rats (1.38 ± 0.15 vs. 1.88 ± 0.15 and 2.02 ± 0.24 nmoL/g, p < 0.05), but not than BBdp rats (1.78 ± 0.12 nmoL/g, ns). BBn rats receiving PBN also had lower pancreatic MDA than the saline controls (p < 0.05). Thus, PBN is remarkably nontoxic and is able to decrease MDA in the absence of the autoimmune process, but does not prevent diabetes. A combination of PBN with other complementary antioxidant agents may hold better promise for disease prevention.Key words: α-phenyl-N-tert-butylnitrone, type 1 diabetes mellitus, BB rats, lipid peroxidation, malondialdehyde, spin traps.
Collapse
|
21
|
Abstract
Phenyl N-tert-butylnitrone (PBN) is the parent of a family of nitrones used as spin-trapping agents to trap free radicals. PBN's pharmacological effects in animal models are extensive, ranging from protection against death after endotoxin shock, protection from ischemia-reperfusion injury, to increasing the life span of mice. Recent additions to the list include protection from bacterial meningitis, thalidomide-induced teratogenicity, drug-induced diabetogenesis, and choline-deficient hepatocarcinogenesis. Because PBN reacts with oxygen radicals to produce less reactive species, it has been suggested that this is the basis of its pharmacological effects. However, there has been no hard evidence for this notation. Nevertheless, many investigators have used the presence of PBN's pharmacologic effect as evidence for free radical involvement in their models. Mechanistic studies on the PBN's antisepsis action revealed that PBN inhibits expression of various pro-inflammatory genes, suggesting that the protective action involves more than a straightforward free radical-scavenging mechanism. Previous and recent developments in the investigations on the pharmacologic properties of PBN are described in this review.
Collapse
Affiliation(s)
- Y Kotake
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA.
| |
Collapse
|