1
|
Mendoza AR, Margaria P, Nagata T, Winter S, Blawid R. Characterization of yam mosaic viruses from Brazil reveals a new phylogenetic group and possible incursion from the African continent. Virus Genes 2022; 58:294-307. [PMID: 35538384 DOI: 10.1007/s11262-022-01903-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
Yam (Dioscorea spp.) is an important crop for smallholder farmers in the Northeast region of Brazil. Wherever yam is grown, diseases caused by yam mosaic virus (YMV) are prevalent. In the present study, the diversity of YMV infecting Dioscorea cayennensis-rotundata was analyzed. In addition, five species of Dioscorea (D. alata, D. altissima, D. bulbifera, D. subhastata, and D. trifida) commonly found in Brazil were analyzed using ELISA and high-throughput sequencing (HTS). YMV was detected only in D. cayennensis-rotundata, of which 66.7% of the samples tested positive in ELISA. Three YMV genome sequences were assembled from HTS and one by Sanger sequencing to group the sequences in a clade phylogenetically distinct from YMV from other origins. Temporal phylogenetic analyses estimated the mean evolutionary rate for the CP gene of YMV as 1.76 × 10-3 substitutions per site per year, and the time to the most recent common ancestor as 168.68 years (95% Highest Posterior Density, HPD: 48.56-363.28 years), with a most likely geographic origin in the African continent. The data presented in this study contribute to reveal key aspects of the probable epidemiological history of YMV in Brazil.
Collapse
Affiliation(s)
- Alejandro Risco Mendoza
- Department of Agronomy, Fitossanidade, Laboratory of Phytovirology, Federal Rural University of Pernambuco, Recife, Brazil. .,Department of Plant Pathology, Agronomy Faculty, Universidad Nacional Agraria La Molina, Lima, Peru.
| | - Paolo Margaria
- Plant Virus Department, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Brunswick, Germany
| | - Tatsuya Nagata
- Department of Cell Biology, Laboratory of Electron Microscopy and Virology, University of Brasília, Distrito Federal, Brasília, Brazil
| | - Stephan Winter
- Plant Virus Department, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Brunswick, Germany
| | - Rosana Blawid
- Department of Agronomy, Fitossanidade, Laboratory of Phytovirology, Federal Rural University of Pernambuco, Recife, Brazil
| |
Collapse
|
2
|
Force-Generating Mechanism of Axonemal Dynein in Solo and Ensemble. Int J Mol Sci 2020; 21:ijms21082843. [PMID: 32325779 PMCID: PMC7215579 DOI: 10.3390/ijms21082843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 11/17/2022] Open
Abstract
In eukaryotic cilia and flagella, various types of axonemal dyneins orchestrate their distinct functions to generate oscillatory bending of axonemes. The force-generating mechanism of dyneins has recently been well elucidated, mainly in cytoplasmic dyneins, thanks to progress in single-molecule measurements, X-ray crystallography, and advanced electron microscopy. These techniques have shed light on several important questions concerning what conformational changes accompany ATP hydrolysis and whether multiple motor domains are coordinated in the movements of dynein. However, due to the lack of a proper expression system for axonemal dyneins, no atomic coordinates of the entire motor domain of axonemal dynein have been reported. Therefore, a substantial amount of knowledge on the molecular architecture of axonemal dynein has been derived from electron microscopic observations on dynein arms in axonemes or on isolated axonemal dynein molecules. This review describes our current knowledge and perspectives of the force-generating mechanism of axonemal dyneins in solo and in ensemble.
Collapse
|
3
|
Hayashi S, Uehara DT, Tanimoto K, Mizuno S, Chinen Y, Fukumura S, Takanashi JI, Osaka H, Okamoto N, Inazawa J. Comprehensive investigation of CASK mutations and other genetic etiologies in 41 patients with intellectual disability and microcephaly with pontine and cerebellar hypoplasia (MICPCH). PLoS One 2017; 12:e0181791. [PMID: 28783747 PMCID: PMC5546575 DOI: 10.1371/journal.pone.0181791] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/09/2017] [Indexed: 01/10/2023] Open
Abstract
The CASK gene (Xp11.4) is highly expressed in the mammalian nervous system and plays several roles in neural development and synaptic function. Loss-of-function mutations of CASK are associated with intellectual disability and microcephaly with pontine and cerebellar hypoplasia (MICPCH), especially in females. Here, we present a comprehensive investigation of 41 MICPCH patients, analyzed by mutational search of CASK and screening of candidate genes using an SNP array, targeted resequencing and whole-exome sequencing (WES). In total, we identified causative or candidate genomic aberrations in 37 of the 41 cases (90.2%). CASK aberrations including a rare mosaic mutation in a male patient, were found in 32 cases, and a mutation in ITPR1, another known gene in which mutations are causative for MICPCH, was found in one case. We also found aberrations involving genes other than CASK, such as HDAC2, MARCKS, and possibly HS3ST5, which may be associated with MICPCH. Moreover, the targeted resequencing screening detected heterozygous variants in RELN in two cases, of uncertain pathogenicity, and WES analysis suggested that concurrent mutations of both DYNC1H1 and DCTN1 in one case could lead to MICPCH. Our results not only identified the etiology of MICPCH in nearly all the investigated patients but also suggest that MICPCH is a genetically heterogeneous condition, in which CASK inactivating mutations appear to account for the majority of cases.
Collapse
Affiliation(s)
- Shin Hayashi
- Department of Molecular Cytogenetics, Medical Research Institute and Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, United States of America
- * E-mail: (SH); (JI)
| | - Daniela Tiaki Uehara
- Department of Molecular Cytogenetics, Medical Research Institute and Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kousuke Tanimoto
- Department of Molecular Cytogenetics, Medical Research Institute and Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Genome Laboratory, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seiji Mizuno
- Department of Pediatrics, Central Hospital, Aichi Human Service Center, Kasugai, Japan
| | - Yasutsugu Chinen
- Department of Pediatrics, University of the Ryukyus School of Medicine, Nishihara, Japan
| | - Shinobu Fukumura
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Jun-ichi Takanashi
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical School, Tochigi, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute and Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
- Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (SH); (JI)
| |
Collapse
|
4
|
Ciolfi S, Mencarelli C, Dallai R. The evolution of sperm axoneme structure and the dynein heavy chain complement in cecidomid insects. Cytoskeleton (Hoboken) 2016; 73:209-18. [DOI: 10.1002/cm.21291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/10/2016] [Accepted: 03/01/2016] [Indexed: 11/05/2022]
Affiliation(s)
- S. Ciolfi
- Department of Life Sciences; University of Siena; Siena Italy
| | - C. Mencarelli
- Department of Life Sciences; University of Siena; Siena Italy
| | - R. Dallai
- Department of Life Sciences; University of Siena; Siena Italy
| |
Collapse
|
5
|
Scherer J, Yi J, Vallee RB. PKA-dependent dynein switching from lysosomes to adenovirus: a novel form of host-virus competition. ACTA ACUST UNITED AC 2014; 205:163-77. [PMID: 24778311 PMCID: PMC4003248 DOI: 10.1083/jcb.201307116] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PKA-mediated phosphorylation of a specific residue in the dynein light intermediate chain 1 releases the motor protein from lysosomes and late endosomes while activating its recruitment to adenovirus capsids. Cytoplasmic dynein is responsible for transport of several viruses to the nucleus. Adenovirus recruits dynein directly. Transport depends on virus-induced activation of protein kinase A (PKA) and other cellular protein kinases, whose roles in infection are poorly understood. We find that PKA phosphorylates cytoplasmic dynein at a novel site in light intermediate chain 1 (LIC1) that is essential for dynein binding to the hexon capsid subunit and for virus motility. Surprisingly, the same LIC1 modification induces a slow, but specific, dispersal of lysosomes (lyso)/late endosomes (LEs) that is mediated by inhibition of a newly identified LIC1 interaction with the RILP (Rab7-interacting lysosomal protein). These results identify an organelle-specific dynein regulatory modification that adenovirus uses for its own transport. PKA-mediated LIC1 phosphorylation causes only partial lyso/LE dispersal, suggesting a role for additional, parallel mechanisms for dynein recruitment to lyso/LEs. This arrangement provides a novel means to fine tune transport of these organelles in response to infection as well as to developmental and physiological cues.
Collapse
Affiliation(s)
- Julian Scherer
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | | | | |
Collapse
|
6
|
Abstract
Dynein is a microtubule-based molecular motor that is involved in various biological functions, such as axonal transport, mitosis, and cilia/flagella movement. Although dynein was discovered 50 years ago, the progress of dynein research has been slow due to its large size and flexible structure. Recent progress in understanding the force-generating mechanism of dynein using x-ray crystallography, cryo-electron microscopy, and single molecule studies has provided key insight into the structure and mechanism of action of this complex motor protein.
Collapse
Affiliation(s)
- Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
7
|
JNK-interacting protein 3 mediates the retrograde transport of activated c-Jun N-terminal kinase and lysosomes. PLoS Genet 2013; 9:e1003303. [PMID: 23468645 PMCID: PMC3585007 DOI: 10.1371/journal.pgen.1003303] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 12/19/2012] [Indexed: 12/24/2022] Open
Abstract
Retrograde axonal transport requires an intricate interaction between the dynein motor and its cargo. What mediates this interaction is largely unknown. Using forward genetics and a novel in vivo imaging approach, we identified JNK-interacting protein 3 (Jip3) as a direct mediator of dynein-based retrograde transport of activated (phosphorylated) c-Jun N-terminal Kinase (JNK) and lysosomes. Zebrafish jip3 mutants (jip3nl7) displayed large axon terminal swellings that contained high levels of activated JNK and lysosomes, but not other retrograde cargos such as late endosomes and autophagosomes. Using in vivo analysis of axonal transport, we demonstrated that the terminal accumulations of activated JNK and lysosomes were due to a decreased frequency of retrograde movement of these cargos in jip3nl7, whereas anterograde transport was largely unaffected. Through rescue experiments with Jip3 engineered to lack the JNK binding domain and exogenous expression of constitutively active JNK, we further showed that loss of Jip3–JNK interaction underlies deficits in pJNK retrograde transport, which subsequently caused axon terminal swellings but not lysosome accumulation. Lysosome accumulation, rather, resulted from loss of lysosome association with dynein light intermediate chain (dynein accessory protein) in jip3nl7, as demonstrated by our co-transport analyses. Thus, our results demonstrate that Jip3 is necessary for the retrograde transport of two distinct cargos, active JNK and lysosomes. Furthermore, our data provide strong evidence that Jip3 in fact serves as an adapter protein linking these cargos to dynein. To form and maintain connections, neurons require the active transport of proteins and organelles between the neuronal cell body and axon terminals. Inhibition of this “axonal” transport has been linked to neurodegenerative diseases. Despite the importance of this process, to date there was no vertebrate model system where axonal transport could be studied in an intact animal. Our study introduces zebrafish as such a model and demonstrates its power for the analysis of axonal transport. We used this system to 1) initiate a genetic screen to find novel mediators of axonal transport; 2) develop in vivo imaging strategies to visualize axonal transport in real time in the intact animal; and 3) discover, using these methods, that JNK interacting protein 3 (Jip3) is required for the transport of two cargos, a kinase and lysosomes, from axon terminals to the cell body (retrograde transport). In the absence of Jip3, these cargos accumulate and axon terminals become dysmorphic, though the retrograde transport of other cargos is normal. Interestingly, abnormal localization of these cargos has been linked to axonal disease states, but our work is the first to identify a specific adapter protein necessary for their transport from axon terminals.
Collapse
|
8
|
Abstract
Dynein, which is a minus-end-directed microtubule motor, is crucial to a range of cellular processes. The mass of its motor domain is about 10 times that of kinesin, the other microtubule motor. Its large size and the difficulty of expressing and purifying mutants have hampered progress in dynein research. Recently, however, electron microscopy, X-ray crystallography and single-molecule nanometry have shed light on several key unsolved questions concerning how the dynein molecule is organized, what conformational changes in the molecule accompany ATP hydrolysis, and whether two or three motor domains are coordinated in the movements of dynein. This minireview describes our current knowledge of the molecular organization and the force-generating mechanism of dynein, with emphasis on findings from electron microscopy and single-molecule nanometry.
Collapse
Affiliation(s)
- Hitoshi Sakakibara
- National Institute of Information and Communications Technology, Nishi-ku, Kobe, Japan
| | | |
Collapse
|
9
|
Ori-McKenney KM, Vallee RB. Neuronal migration defects in the Loa dynein mutant mouse. Neural Dev 2011; 6:26. [PMID: 21612657 PMCID: PMC3127822 DOI: 10.1186/1749-8104-6-26] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Accepted: 05/25/2011] [Indexed: 11/18/2022] Open
Abstract
Background Cytoplasmic dynein and its regulatory proteins have been implicated in neuronal and non-neuronal cell migration. A genetic model for analyzing the role of cytoplasmic dynein specifically in these processes has, however, been lacking. The Loa (Legs at odd angles) mouse with a mutation in the dynein heavy chain has been the focus of an increasing number of studies for its role in neuron degeneration. Despite the location of this mutation in the tail domain of the dynein heavy chain, we previously found a striking effect on coordination between the two dynein motor domains, resulting in a defect in dynein run length in vitro and in vivo. Results We have now tested for effects of the Loa mutation on neuronal migration in the developing neocortex. Loa homozygotes showed clear defects in neocortical lamination and neuronal migration resulting from a reduction in the rate of radial migration of bipolar neurons. Conclusions These results present a new genetic model for understanding the dynein pathway and its functions during neuronal migration. They also provide the first evidence for a link between dynein processivity and somal movement, which is essential for proper development of the brain.
Collapse
|
10
|
A cytoplasmic dynein tail mutation impairs motor processivity. Nat Cell Biol 2010; 12:1228-34. [PMID: 21102439 PMCID: PMC3385513 DOI: 10.1038/ncb2127] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 10/14/2010] [Indexed: 01/10/2023]
Abstract
Mutations in the tail of the cytoplasmic dynein molecule have been reported to cause neurodegenerative disease in mice. The mutant mouse strain Legs at Odd Angles (Loa) exhibits impaired retrograde axonal transport, but the molecular deficiencies in the mutant dynein molecule, and how they contribute to neurodegeneration, are unknown. To address these questions, we purified wild-type and mutant mouse dynein. Using biochemical, single molecule, and live cell imaging techniques, we find a strong inhibition of motor run-length in vitro and in vivo, and significantly altered motor domain coordination in the mutant dynein. These results suggest a potential role for the dynein tail in motor function, and provide the first direct evidence for a link between single-motor processivity and disease.
Collapse
|
11
|
Molecular mechanism of force generation by dynein, a molecular motor belonging to the AAA+ family. Biochem Soc Trans 2008; 36:131-5. [PMID: 18208400 DOI: 10.1042/bst0360131] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dynein is an AAA+ (ATPase associated with various cellular activities)-type motor complex that utilizes ATP hydrolysis to actively drive microtubule sliding. The dynein heavy chain (molecular mass >500 kDa) contains six tandemly linked AAA+ modules and exhibits full motor activities. Detailed molecular dissection of this motor with unique architecture was hampered by the lack of an expression system for the recombinant heavy chain, as a result of its large size. However, the recent success of recombinant protein expression with full motor activities has provided a method for advances in structure-function studies in order to elucidate the molecular mechanism of force generation.
Collapse
|
12
|
Imamula K, Kon T, Ohkura R, Sutoh K. The coordination of cyclic microtubule association/dissociation and tail swing of cytoplasmic dynein. Proc Natl Acad Sci U S A 2007; 104:16134-9. [PMID: 17911268 PMCID: PMC1999400 DOI: 10.1073/pnas.0702370104] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynein motor domain is composed of a tail, head, and stalk and is thought to generate a force to microtubules by swinging the tail against the head during its ATPase cycle. For this "power stroke," dynein has to coordinate the tail swing with microtubule association/dissociation at the tip of the stalk. Although a detailed picture of the former process is emerging, the latter process remains to be elucidated. By using the single-headed recombinant motor domain of Dictyostelium cytoplasmic dynein, we address the questions of how the interaction of the motor domain with a microtubule is modulated by ATPase steps, how the two mechanical cycles (the microtubule association/dissociation and tail swing) are coordinated, and which ATPase site among the multiple sites in the motor domain regulates the coordination. Based on steady-state and pre-steady-state measurements, we demonstrate that the two mechanical cycles proceed synchronously at most of the intermediate states in the ATPase cycle: the motor domain in the poststroke state binds strongly to the microtubule with a K(d) of approximately 0.2 microM, whereas most of the motor domains in the prestroke state bind weakly to the microtubule with a K(d) of >10 microM. However, our results suggest that the timings of the microtubule affinity change and tail swing are staggered at the recovery stroke step in which the tail swings from the poststroke to the prestroke position. The ATPase site in the AAA1 module of the motor domain was found to be responsible for the coordination of these two mechanical processes.
Collapse
Affiliation(s)
- Kenji Imamula
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo 153-8902, Japan
| | - Takahide Kon
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo 153-8902, Japan
| | - Reiko Ohkura
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo 153-8902, Japan
| | - Kazuo Sutoh
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo 153-8902, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Pfister KK, Shah PR, Hummerich H, Russ A, Cotton J, Annuar AA, King SM, Fisher EMC. Genetic analysis of the cytoplasmic dynein subunit families. PLoS Genet 2006; 2:e1. [PMID: 16440056 PMCID: PMC1331979 DOI: 10.1371/journal.pgen.0020001] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cytoplasmic dyneins, the principal microtubule minus-end-directed motor proteins of the cell, are involved in many essential cellular processes. The major form of this enzyme is a complex of at least six protein subunits, and in mammals all but one of the subunits are encoded by at least two genes. Here we review current knowledge concerning the subunits, their interactions, and their functional roles as derived from biochemical and genetic analyses. We also carried out extensive database searches to look for new genes and to clarify anomalies in the databases. Our analysis documents evolutionary relationships among the dynein subunits of mammals and other model organisms, and sheds new light on the role of this diverse group of proteins, highlighting the existence of two cytoplasmic dynein complexes with distinct cellular roles.
Collapse
Affiliation(s)
- K Kevin Pfister
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Vallee RB, Höök P. Autoinhibitory and other autoregulatory elements within the dynein motor domain. J Struct Biol 2006; 156:175-81. [PMID: 16647270 DOI: 10.1016/j.jsb.2006.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 02/02/2006] [Accepted: 02/17/2006] [Indexed: 11/17/2022]
Abstract
The dyneins are a family of microtubule motor proteins. The motor domain, which represents the C-terminal 2/3 of the dynein heavy chain, exhibits homology to the AAA family of ATPases. It consists of a ring of six related but divergent AAA+ units, with two substantial sized protruding projections, the stem, or tail, which anchors the protein to diverse subcellular sites, and the stalk, which binds microtubules. This article reviews recent efforts to probe the mechanism by which the dyneins produce force, and work from the authors' lab regarding long-range conformational regulation of dynein enzymatic activity.
Collapse
Affiliation(s)
- Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, P and S 15-410, 630 W. 168th St., New York, NY 10032, USA.
| | | |
Collapse
|
15
|
Pfister KK, Fisher EMC, Gibbons IR, Hays TS, Holzbaur ELF, McIntosh JR, Porter ME, Schroer TA, Vaughan KT, Witman GB, King SM, Vallee RB. Cytoplasmic dynein nomenclature. J Cell Biol 2005; 171:411-3. [PMID: 16260502 PMCID: PMC2171247 DOI: 10.1083/jcb.200508078] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 09/27/2005] [Indexed: 11/22/2022] Open
Abstract
A variety of names has been used in the literature for the subunits of cytoplasmic dynein complexes. Thus, there is a strong need for a more definitive consensus statement on nomenclature. This is especially important for mammalian cytoplasmic dyneins, many subunits of which are encoded by multiple genes. We propose names for the mammalian cytoplasmic dynein subunit genes and proteins that reflect the phylogenetic relationships of the genes and the published studies clarifying the functions of the polypeptides. This nomenclature recognizes the two distinct cytoplasmic dynein complexes and has the flexibility to accommodate the discovery of new subunits and isoforms.
Collapse
Affiliation(s)
- K Kevin Pfister
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Dynein is the large molecular motor that translocates to the (-) ends of microtubules. Dynein was first isolated from Tetrahymena cilia four decades ago. The analysis of the primary structure of the dynein heavy chain and the discovery that many organisms express multiple dynein heavy chains have led to two insights. One, dynein, whose motor domain comprises six AAA modules and two potential mechanical levers, generates movement by a mechanism that is fundamentally different than that which underlies the motion of myosin and kinesin. And two, organisms with cilia or flagella express approximately 14 different dynein heavy chain genes, each gene encodes a distinct dynein protein isoform, and each isoform appears to be functionally specialized. Sequence comparisons demonstrate that functionally equivalent isoforms of dynein heavy chains are well conserved across species. Alignments of portions of the motor domain result in seven clusters: (i) cytoplasmic dynein Dyhl; (ii) cytoplasmic dynein Dyh2; (iii) axonemal outer arm dynein alpha; (iv) outer arm dyneins beta and gamma; (v) inner arm dynein 1alpha; (vi) inner arm dynein 1beta; and (vii) a group of apparently single-headed inner arm dyneins. Some of the dynein groups contained more than one representative from a single organism, suggesting that these may be tissue-specific variants.
Collapse
Affiliation(s)
- David J Asai
- Department of Biology, Harvey Mudd College, 301 East 12th Street, Claremont, California 91711-5990, USA.
| | | |
Collapse
|
17
|
Byers HR, Maheshwary S, Amodeo DM, Dykstra SG. Role of cytoplasmic dynein in perinuclear aggregation of phagocytosed melanosomes and supranuclear melanin cap formation in human keratinocytes. J Invest Dermatol 2003; 121:813-20. [PMID: 14632200 DOI: 10.1046/j.1523-1747.2003.12481.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytoplasmic dynein is a microtubule-associated motor molecule involved in the retrograde transport of membrane-bound organelles. To determine whether the supranuclear melanin cap of transferred, phagocytosed melanosomes in keratinocytes is associated with cytoplasmic dynein, we performed immunofluorescent confocal microscopy on human keratinocytes in situ. We identified the intermediate chain of cytoplasmic dynein by immunoblotting and examined its distribution by confocal microscopy in relation to microtubules and melano-phagolysosomes in vitro. We also used antisense and sense oligonucleotides of the cytoplasmic dynein heavy chain 1 (Dyh1) and time-lapse and microscopy. The intermediate chain of cytoplasmic dynein was identified in extracts of human foreskin epidermis and in isolated human keratinocytes. The intermediate chain localized with the perinuclear melano-phagolysosomal aggregates in vitro and the supranuclear melanin cap in situ. Antisense oligonucleotides directed towards Dyh1 resulted in dispersal of the keratinocyte perinuclear melano-phagolysosomal aggregates after 24 to 48 h, whereas cells treated with diluent or sense oligonucleotides maintained tight perinuclear aggregates. Taken together, these findings indicate that in human keratinocytes, the retrograde microtubule motor cytoplasmic dynein mediates the perinuclear aggregation of phagocytosed melanosomes, participates in the formation of the supranuclear melanin cap or "microparasol" and serves as a mechanism to help protect the nucleus from ultraviolet-induced DNA damage.
Collapse
Affiliation(s)
- H Randolph Byers
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
18
|
Maruyama JI, Nakajima H, Kitamoto K. Novel role of cytoplasmic dynein motor in maintenance of the nuclear number in conidia through organized conidiation in Aspergillus oryzae. Biochem Biophys Res Commun 2003; 307:900-6. [PMID: 12878196 DOI: 10.1016/s0006-291x(03)01267-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cytoplasmic dynein is a minus-end-directed, microtubule-dependent motor protein complex. DhcA, cytoplasmic dynein heavy chain in Aspergillus oryzae, contained four P-loops involved in ATP binding which were conserved as in cytoplasmic dynein heavy chains of other organisms. The amino acid sequence of A. oryzae DhcA was similar to cytoplasmic dynein heavy chains from other organisms except for the N-terminus of Saccharomyces cerevisiae Dyn1. Disruption of dhcA gene in the region encoding four P-loop motifs resulted in a defective growth and perturbed distribution of nuclei and vacuoles. The dhcA disruptant exhibited an abnormal morphology of conidial heads and conidia with an increased nuclear number. The present study implicates a novel role of cytoplasmic dynein in maintenance of the nuclear number in conidia through an organized conidiation.
Collapse
Affiliation(s)
- Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
19
|
Silvanovich A, Li MG, Serr M, Mische S, Hays TS. The third P-loop domain in cytoplasmic dynein heavy chain is essential for dynein motor function and ATP-sensitive microtubule binding. Mol Biol Cell 2003; 14:1355-65. [PMID: 12686593 PMCID: PMC153106 DOI: 10.1091/mbc.e02-10-0675] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Sequence comparisons and structural analyses show that the dynein heavy chain motor subunit is related to the AAA family of chaperone-like ATPases. The core structure of the dynein motor unit derives from the assembly of six AAA domains into a hexameric ring. In dynein, the first four AAA domains contain consensus nucleotide triphosphate-binding motifs, or P-loops. The recent structural models of dynein heavy chain have fostered the hypothesis that the energy derived from hydrolysis at P-loop 1 acts through adjacent P-loop domains to effect changes in the attachment state of the microtubule-binding domain. However, to date, the functional significance of the P-loop domains adjacent to the ATP hydrolytic site has not been demonstrated. Our results provide a mutational analysis of P-loop function within the first and third AAA domains of the Drosophila cytoplasmic dynein heavy chain. Here we report the first evidence that P-loop-3 function is essential for dynein function. Significantly, our results further show that P-loop-3 function is required for the ATP-induced release of the dynein complex from microtubules. Mutation of P-loop-3 blocks ATP-mediated release of dynein from microtubules, but does not appear to block ATP binding and hydrolysis at P-loop 1. Combined with the recent recognition that dynein belongs to the family of AAA ATPases, the observations support current models in which the multiple AAA domains of the dynein heavy chain interact to support the translocation of the dynein motor down the microtubule lattice.
Collapse
Affiliation(s)
- Andre Silvanovich
- University of Minnesota, Department of Genetics, Cell Biology, and Development, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
20
|
Mikami A, Tynan SH, Hama T, Luby-Phelps K, Saito T, Crandall JE, Besharse JC, Vallee RB. Molecular structure of cytoplasmic dynein 2 and its distribution in neuronal and ciliated cells. J Cell Sci 2002; 115:4801-8. [PMID: 12432068 DOI: 10.1242/jcs.00168] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytoplasmic dynein is involved in a wide variety of cellular functions. In addition to the initially characterized form (MAP 1C/dynein 1), a second form of cytoplasmic dynein (dynein 2) has been identified and implicated in intraflagellar transport (IFT) in lower eukaryotes and in Golgi organization in vertebrates. In the current study, the primary structure of the full-length dynein 2 heavy chain (HC) was determined from cDNA sequence. The dynein 1 and dynein 2 sequences were similar within the motor region, and around the light intermediate chain (LIC)-binding site within the N-terminal stem region. The dynein 2 HC co-immunoprecipitated with LIC3, a homologue of dynein 1 LICs. Dynein 2 mRNA was abundant in the ependymal layer of the neural tube and in the olfactory epithelium. Antibodies to dynein 2 HC, LIC3 and a component of IFT particles strongly stained the ependymal layer lining the lateral ventricles. Both dynein 2 HC and LIC3 staining was also observed associated with connecting cilia in the retina and within primary cilia of non-neuronal cultured cells. These data support a specific role for dynein 2 in the generation and maintenance of cilia.
Collapse
Affiliation(s)
- Atsushi Mikami
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Blasi F, Ciarrocchi A, Luddi A, Strazza M, Riccio M, Santi S, Arcone R, Pietropaolo C, D'Angelo R, Costantino-Ceccarini E, Melli M. Stage-specific gene expression in early differentiating oligodendrocytes. Glia 2002; 39:114-23. [PMID: 12112363 DOI: 10.1002/glia.10092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The screening of a differential library from precursor and differentiated oligodendrocytes, obtained through the representational difference analysis (RDA) technique, has generated a number of cDNA recombinants corresponding to mRNA coding for known and unknown proteins: (1) mRNA coding for proteins involved in protein synthesis, (2) mRNA coding for proteins involved in the organization of the cytoskeleton, and (3) mRNA coding for proteins of unknown function. The expression profile of the mRNA was studied by Northern blot hybridization to the poly-A(+) mRNA from primary rat progenitor and differentiated oligodendrocytes. In most cases, hybridization to the precursor was higher than hybridization to the differentiated mRNA, supporting the validity of the differential screening. Hybridization of the cDNA to rat cerebral hemisphere and brain stem poly-A(+) mRNA, isolated from 1- to 90-day-old rats, confirms the results obtained with the mRNA from differentiating oligodendrocytes. The intensity of the hybridization bands decreases as differentiation proceeds. The pattern of expression observed in oligodendrocytes is different from that found in the brain only in the case of the nexin-1 mRNA, the level of which remains essentially constant throughout differentiation both in the brain stem and in the cerebral hemispheres, in agreement with the published data. In contrast, the intensity of hybridization to the oligodendrocyte mRNA is dramatically lower in the differentiated cells compared with the progenitor oligodendrocyte cells. Some of the recombinant cDNA represent mRNA sequences present at high frequency distribution in the cells, while others belong to the rare sequences group. Six recombinants code for proteins of the ribosomal family, suggesting that of approximately 70 known ribosomal proteins, only a few are upregulated during oligodendrocyte differentiation. The third category of open reading frame (ORF) is represented by rare messengers coding for proteins of unknown functions and includes six clones: RDA 279, 11, 95, 96, 254, and 288.
Collapse
|
22
|
Bhattacharyya A, Watson FL, Pomeroy SL, Zhang YZ, Stiles CD, Segal RA. High-resolution imaging demonstrates dynein-based vesicular transport of activated Trk receptors. JOURNAL OF NEUROBIOLOGY 2002; 51:302-12. [PMID: 12150505 DOI: 10.1002/neu.10062] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Target-derived neurotrophins signal from nerve endings to the cell body to influence cellular and nuclear responses. The retrograde signal is conveyed by neurotrophin receptors (Trks) themselves. To accomplish this, activated Trks may physically relocalize from nerve endings to the cell bodies. However, alternative signaling mechanisms may also be used. To identify the vehicle wherein the activated Trks are located and transported, and to identify associated motor proteins that would facilitate transport, we use activation-state specific antibodies in concert with immunoelectron microscopy and deconvolution microscopy. We show that the'activated Trks within rat sciatic nerve axons are preferentially localized to coated and uncoated vesicles. These vesicles are moving in a retrograde direction and so accumulate distal to a ligation site. The P-Trk containing vesicles, in turn, colocalize with dynein components, and not with kinesins. Collectively, these results indicate activated Trk within axons travel in vesicles and dynein is the motor that drives these vesicles towards the cell bodies.
Collapse
Affiliation(s)
- Anita Bhattacharyya
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
23
|
Fan J, Amos LA. Antibodies to cytoplasmic dynein heavy chain map the surface and inhibit motility. J Mol Biol 2001; 307:1317-27. [PMID: 11292344 DOI: 10.1006/jmbi.2001.4566] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyclonal antibodies have been raised against four 16 residue peptides with sequences taken from the C-terminal quarter of the human cytoplasmic dynein heavy chain. The sites are downstream from a known microtubule-binding domain associated with the "stalk" that protrudes from the motor domain. The antisera were assayed using bacterially expressed proteins with amino acid sequences taken from the human cytoplasmic dynein heavy chain. Every antiserum reacted specifically with the appropriate expressed protein and with pig brain cytoplasmic dynein, whether the protein molecules were denatured on Western blots or were in a folded state. But, whereas three of the four antisera recognized freshly purified cytoplasmic dynein, the fourth reacted only with dynein that had been allowed to denature a little. After affinity purification against the expressed domains, whole IgG molecules and Fab fragments were assayed for their effect on dynein activity in in vitro microtubule-sliding assays. Of the three anti-peptides that reacted with fresh dynein, one inhibited motility but the others did not. The way these peptides are exposed on the surface is compatible with a model whereby the dynein motor domain is constructed from a ring of AAA protein modules, with the C-terminal module positioned on the surface that interacts with microtubules. We have tentatively identified an additional AAA module in the dynein heavy chain sequence, which would be consistent with a heptameric ring.
Collapse
Affiliation(s)
- J Fan
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | | |
Collapse
|
24
|
Neurons. Cell Mol Neurobiol 2001. [DOI: 10.1016/b978-0-12-311624-6.50005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Abstract
Dyneins are large, multisubunit ATPases that interact with microtubules to generate force. Dyneins move eukaryotic cilia and flagella and are in the cytoplasm, where they are involved in the transport of particles and organelles along microtubules and in the transport of condensed chromosomes during mitosis [reviewed in Holzbaur et al., 1994; Gibbons, 1996]. Defects in human axonemal dynein complexes have been shown to be associated with Kartagener's syndrome, which is characterized by recurrent respiratory tract infections, immotile sperm and situs inversus. Cytoplasmic and axonemal dyneins are composed of heavy, intermediate, and light chains. The best characterised groups of dynein genes so far are those encoding cytoplasmic heavy chains and heavy chains from the outer arms from axonemes. These share extensive sequence similarity and are conserved throughout species. Recently, several genes encoding intermediate and light chains have been identified; these have encoded a remarkable diversity of products, which also seem to be highly conserved between species, although they fall into several complex groups. The structure of dynein heavy chain genes, the emerging knowledge on intermediate and light chain genes and their products, and the possible involvement of dyneins in disease are discussed.
Collapse
Affiliation(s)
- I Milisav
- Department of Pathology, University of Cambridge, UK.
| |
Collapse
|
26
|
Byers HR, Yaar M, Eller MS, Jalbert NL, Gilchrest BA. Role of cytoplasmic dynein in melanosome transport in human melanocytes. J Invest Dermatol 2000; 114:990-7. [PMID: 10771482 DOI: 10.1046/j.1523-1747.2000.00957.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytoplasmic dynein is a microtubule-associated retrograde-directed motor molecule for transport of membrane-bound organelles. To determine whether cytoplasmic dynein is expressed in melanocytes, we performed reverse transcriptase polymerase chain reaction using melanocyte cDNA and primers complementary to human brain cytoplasmic dynein heavy chain. A polymerase chain reaction product of the expected molecular size was generated and the identity was confirmed by sequence analysis. Western blotting of total melanocyte proteins reacted with an anti-intermediate chain cytoplasmic dynein antibody identified the appropriate 74 kDa band. To determine whether cytoplasmic dynein plays a role in melanosome transport, duplicate cultures were treated with cytoplasmic dynein antisense or sense (control) oligodeoxynucleotides and the cells were observed by high-resolution time-lapse microscopy, which allows visualization of melanosomal aggregates and individual melanosomes. Antisense-treated melanocytes demonstrated a strong anterograde transport of melanosomes from the cell body into the dendrites, whereas melanosome distribution was not affected in sense-treated melanocytes. To determine whether ultraviolet irradiation modifies cytoplasmic dynein expression, melanocyte cultures were exposed to increasing doses of solar-simulated irradiation, equivalent to a mild to moderate sunburn exposure for intact skin. Within 24 h, doses of 5 and 10 mJ per cm2 induced cytoplasmic dynein protein, whereas doses of 30 mJ per cm2 or more were associated with decreased levels of cytoplasmic dynein compared with sham-irradiated controls. Our data show that cytoplasmic dynein participates in retrograde melanosomal transport in human melanocytes and suggest that the altered melanosomal distribution in skin after sun exposure is due, at least in part, to decreased cytoplasmic dynein levels resulting in augmented anterograde transport.
Collapse
Affiliation(s)
- H R Byers
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | |
Collapse
|
27
|
Hadad N, Martin C, Ashley RH, Shoshan-Barmatz V. Characterization of sheep brain ryanodine receptor ATP binding site by photoaffinity labeling. FEBS Lett 1999; 455:251-6. [PMID: 10437783 DOI: 10.1016/s0014-5793(99)00738-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two high Mr protein bands (440 and 420 kDa) in sheep brain microsomal membranes were labeled with the photoaffinity ATP analog, O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (Bz2ATP). The 420 kDa band is labeled by [alpha-32P]-Bz2ATP with about 1000-fold higher affinity than the 440 kDa band. The heavily labeled 420 kDa band is identified as dynein heavy chain based on its partial amino acid sequence, and cross-reactivity with anti-dynein antibodies. The 440 kDa protein is immunologically identified as the type-2 RyR. Bz2ATP binding is obtained in the absence of divalent cations. Bz2ATP and ATP increased the binding of ryanodine to its receptor up to 3-fold, and increased the binding affinity up to 6-fold. Other nucleotides stimulate ryanodine binding with decreasing effectiveness: Bz2ATP > ATP > ADP > AMP > AMP-PNP > GTP > cAMP. With respect to nucleotide specificity, this binding site is similar to the skeletal muscle RyR (type 1). However, the brain RyR may have additional one or more sites with lower affinity with inhibitory effect on ryanodine binding. These results suggest that the major RyR isoform in sheep brain corresponds to the type-2 isoform, and that modulation of ryanodine binding by ATP involves its binding to the RyR protein. The association of dynein with brain microsomal membranes may reflect a linkage of RyR to the cytoskeleton.
Collapse
Affiliation(s)
- N Hadad
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | |
Collapse
|
28
|
Porter ME, Bower R, Knott JA, Byrd P, Dentler W. Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol Biol Cell 1999; 10:693-712. [PMID: 10069812 PMCID: PMC25196 DOI: 10.1091/mbc.10.3.693] [Citation(s) in RCA: 258] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A second cytoplasmic dynein heavy chain (cDhc) has recently been identified in several organisms, and its expression pattern is consistent with a possible role in axoneme assembly. We have used a genetic approach to ask whether cDhc1b is involved in flagellar assembly in Chlamydomonas. Using a modified PCR protocol, we recovered two cDhc sequences distinct from the axonemal Dhc sequences identified previously. cDhc1a is closely related to the major cytoplasmic Dhc, whereas cDhc1b is closely related to the minor cDhc isoform identified in sea urchins, Caenorhabditis elegans, and Tetrahymena. The Chlamydomonas cDhc1b transcript is a low-abundance mRNA whose expression is enhanced by deflagellation. To determine its role in flagellar assembly, we screened a collection of stumpy flagellar (stf) mutants generated by insertional mutagenesis and identified two strains in which portions of the cDhc1b gene have been deleted. The two mutants assemble short flagellar stumps (<1-2 micrometer) filled with aberrant microtubules, raft-like particles, and other amorphous material. The results indicate that cDhc1b is involved in the transport of components required for flagellar assembly in Chlamydomonas.
Collapse
Affiliation(s)
- M E Porter
- Department of Cell Biology and Neuroanatomy, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
29
|
McNiven MA, Marlowe KJ. Contributions of molecular motor enzymes to vesicle-based protein transport in gastrointestinal epithelial cells. Gastroenterology 1999; 116:438-51. [PMID: 9922326 DOI: 10.1016/s0016-5085(99)70142-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- M A McNiven
- Center for Basic Research and Digestive Diseases, Mayo Clinic, Rochester, Minnesota, USA.
| | | |
Collapse
|
30
|
Hamm-Alvarez SF, Sheetz MP. Microtubule-dependent vesicle transport: modulation of channel and transporter activity in liver and kidney. Physiol Rev 1998; 78:1109-29. [PMID: 9790571 DOI: 10.1152/physrev.1998.78.4.1109] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microtubule-based vesicle transport driven by kinesin and cytoplasmic dynein motor proteins facilitates several membrane-trafficking steps including elements of endocytosis and exocytosis in many different cell types. Most early studies on the role of microtubule-dependent vesicle transport in membrane trafficking focused either on neurons or on simple cell lines. More recently, other work has considered the role of microtubule-based vesicle transport in other physiological systems, including kidney and liver. Investigation of the role of microtubule-based vesicle transport in membrane trafficking in cells of the kidney and liver suggests a major role for microtubule-based vesicle transport in the rapid and directed movement of ion channels and transporters to and from the apical plasma membranes, events essential for kidney and liver function and homeostasis. This review discusses the evidence supporting a role for microtubule-based vesicle transport and the motor proteins, kinesin and cytoplasmic dynein, in different aspects of membrane trafficking in cells of the kidney and liver, with emphasis on those functions such as maintenance of ion channel and transporter composition in apical membranes that are specialized functions of these organs. Evidence that defects in microtubule-based transport contribute to diseases of the kidney and liver is also discussed.
Collapse
Affiliation(s)
- S F Hamm-Alvarez
- Department of Pharmaceutical Sciences, University of Southern California, Los Angeles, USA
| | | |
Collapse
|
31
|
Sakakibara H, Nakayama H. Translocation of microtubules caused by the alphabeta, beta and gamma outer arm dynein subparticles of Chlamydomonas. J Cell Sci 1998; 111 ( Pt 9):1155-64. [PMID: 9547292 DOI: 10.1242/jcs.111.9.1155] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three kinds of subparticles of Chlamydomonas outer-arm dynein containing the alphabeta, beta and gamma heavy chains were isolated and assayed for their activities to translocate microtubules in vitro. All of them had activities to form bundles of microtubules in solution in an ATP-dependent manner and, when adsorbed on an appropriate glass surface, translocated microtubules. The alphabeta subparticle readily translocated microtubules on a silicone-coated glass surface with a velocity of 4.6 micron/second at 1 mM ATP. The beta subparticle translocated microtubules after it had been preincubated with tubulin dimer and when the Brownian movement of microtubules was suppressed by addition of methylcellulose. The velocity was on average 0.7 micron/second. The gamma subparticle translocated microtubules after being preincubated with tubulin dimer and adsorbed onto a silicone-coated glass surface. The velocity was about 3.8 micron/second. The tubulin dimer appeared to facilitate in vitro motility by blocking the ATP-insensitive binding of dynein subparticles to microtubule. The alphabeta, beta and gamma subparticles were thus found to have different properties as motor proteins. In addition, these subparticles showed different dependencies upon the potassium acetate concentration. Hence the outer-arm dynein of Chlamydomonas is a complex of motor proteins with different properties.
Collapse
Affiliation(s)
- H Sakakibara
- Communications Research Laboratory, Kobe, Japan.
| | | |
Collapse
|
32
|
Affiliation(s)
- I Milisav
- Human Molecular Genetics Group, University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | | |
Collapse
|
33
|
Harada A, Takei Y, Kanai Y, Tanaka Y, Nonaka S, Hirokawa N. Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. J Biophys Biochem Cytol 1998; 141:51-9. [PMID: 9531547 PMCID: PMC2132725 DOI: 10.1083/jcb.141.1.51] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cytoplasmic dynein, a minus end-directed, microtubule-based motor protein, is thought to drive the movement of membranous organelles and chromosomes. It is a massive complex that consists of multiple polypeptides. Among these polypeptides, the cytoplasmic dynein heavy chain (cDHC) constitutes the major part of this complex. To elucidate the function of cytoplasmic dynein, we have produced mice lacking cDHC by gene targeting. cDHC-/- embryos were indistinguishable from cDHC+/-or cDHC+/+ littermates at the blastocyst stage. However, no cDHC-/- embryos were found at 8.5 d postcoitum. When cDHC-/- blastocysts were cultured in vitro, they showed interesting phenotypes. First, the Golgi complex became highly vesiculated and distributed throughout the cytoplasm. Second, endosomes and lysosomes were not concentrated near the nucleus but were distributed evenly throughout the cytoplasm. Interestingly, the Golgi "fragments" and lysosomes were still found to be attached to microtubules. These results show that cDHC is essential for the formation and positioning of the Golgi complex. Moreover, cDHC is required for cell proliferation and proper distribution of endosomes and lysosomes. However, molecules other than cDHC might mediate attachment of the Golgi complex and endosomes/lysosomes to microtubules.
Collapse
Affiliation(s)
- A Harada
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Tokyo, 113, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Recent investigations support a role for the vesicle motor proteins (kinesin, cytoplasmic dynein, and myosin) in numerous membrane trafficking events including endocytosis and transcytosis. Kinesin and cytoplasmic dynein are responsible for movement of membrane vesicles along cellular microtubules to and from cellular membrane compartments, while certain members of the myosin family also appear to drive membrane vesicles along actin filaments to and from membrane compartments. In this review, our current understanding of the role of these vesicle motors in membrane trafficking is highlighted. Future areas of interest which may be able to make use of these vesicle motors as potential targets for drug delivery are also discussed.
Collapse
Affiliation(s)
- SF Hamm-Alvarez
- Department of Pharmaceutical Sciences, USC School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA 90033, USA
| |
Collapse
|
35
|
Abstract
Cells transport and sort proteins and lipids, after their synthesis, to various destinations at appropriate velocities in membranous organelles and protein complexes. Intracellular transport is thus fundamental to cellular morphogenesis and functioning. Microtubules serve as a rail on which motor proteins, such as kinesin and dynein superfamily proteins, convey their cargoes. This review focuses on the molecular mechanism of organelle transport in cells and describes kinesin and dynein superfamily proteins.
Collapse
Affiliation(s)
- N Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo 7-3-1, Tokyo, Japan.
| |
Collapse
|
36
|
Gee MA, Heuser JE, Vallee RB. An extended microtubule-binding structure within the dynein motor domain. Nature 1997; 390:636-9. [PMID: 9403697 DOI: 10.1038/37663] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Flagellar dynein was discovered over 30 years ago as the first motor protein capable of generating force along microtubules. A cytoplasmic form of dynein has also been identified which is involved in mitosis and a wide range of other intracellular movements. Rapid progress has been made on understanding the mechanism of force production by kinesins and myosins. In contrast, progress in understanding the dyneins has been limited by their great size (relative molecular mass 1,000K-2,000K) and subunit complexity. We now report evidence that the entire carboxy-terminal two-thirds of the 532K force-producing heavy chain subunit is required for ATP-binding activity. We further identify a microtubule-binding domain, which, surprisingly, lies well downstream of the entire ATPase region and is predicted to form a hairpin-like stalk. Direct ultrastructural analysis of a recombinant fragment confirms this model, and suggests that the mechanism for dynein force production differs substantially from that of other motor proteins.
Collapse
Affiliation(s)
- M A Gee
- Worcester Foundation for Biomedical Research, Shrewsbury, Massachusetts 01545, USA
| | | | | |
Collapse
|
37
|
Neesen J, Koehler MR, Kirschner R, Steinlein C, Kreutzberger J, Engel W, Schmid M. Identification of dynein heavy chain genes expressed in human and mouse testis: chromosomal localization of an axonemal dynein gene. Gene 1997; 200:193-202. [PMID: 9373155 DOI: 10.1016/s0378-1119(97)00417-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dynein heavy chains are involved in microtubule-dependent transport processes. While cytoplasmic dyneins are involved in chromosome or vesicle movement, axonemal dyneins are essential for motility of cilia and flagella. Here we report the isolation of dynein heavy chain (DHC)-like sequences in man and mouse. Using polymerase chain reaction and reverse-transcribed human and mouse testis RNA cDNA fragments encoding the conserved ATP binding region of dynein heavy chains were amplified. We identified 11 different mouse and eight human dynein-like sequences in testis which show high similarity to known dyneins of different species such as rat, sea urchin or green algae. Sequence similarities suggest that two of the mouse clones and one human clone encode putative cytoplasmic dynein heavy chains, whereas the other sequences show higher similarity to axonemal dyneins. Two of nine axonemal dynein isoforms identified in the mouse testis are more closely related to known outer arm dyneins, while seven clones seem to belong to the inner arm dynein group. Of the isolated human isoforms three clones were classified as outer arm and four clones as inner arm dynein heavy chains. Each of the DHC cDNAs corresponds to an individual gene as determined by Southern blot experiments. The alignment of the deduced protein sequences between human (HDHC) and mouse (MDHC) dynein fragments reveals higher similarity between single human and mouse sequences than between two sequences of the same species. Human and mouse cDNA fragments were used to isolate genomic clones. Two of these clones, gHDHC7 and gMDHC7, are homologous genes encoding axonemal inner arm dyneins. While the human clone is assigned to 3p21, the mouse gene maps to chromosome 14.
Collapse
Affiliation(s)
- J Neesen
- Institut für Humangenetik der Universität Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S. Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. Gene X 1997; 200:149-56. [PMID: 9373149 DOI: 10.1016/s0378-1119(97)00411-3] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Using 'oligo-capped' mRNA [Maruyama, K., Sugano, S., 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171-174], whose cap structure was replaced by a synthetic oligonucleotide, we constructed two types of cDNA library. One is a 'full length-enriched cDNA library' which has a high content of full-length cDNA clones and the other is a '5'-end-enriched cDNA library', which has a high content of cDNA clones with their mRNA start sites. The 5'-end-enriched library was constructed especially for isolating the mRNA start sites of long mRNAs. In order to characterize these libraries, we performed one-pass sequencing of randomly selected cDNA clones from both libraries (84 clones for the full length-enriched cDNA library and 159 clones for the 5'-end-enriched cDNA library). The cDNA clones of the polypeptide chain elongation factor 1 alpha were most frequently (nine clones) isolated, and more than 80% of them (eight clones) contained the mRNA start site of the gene. Furthermore, about 80% of the cDNA clones of both libraries whose sequence matched with known genes had the known 5' ends or sequences upstream of the known 5' ends (28 out of 35 for the full length-enriched library and 51 out of 62 for the 5'-end-enriched library). The longest full-length clone of the full length-enriched cDNA library was about 3300 bp (among 28 clones). In contrast, seven clones (out of the 51 clones with the mRNA start sites) from the 5'-end-enriched cDNA library came from mRNAs whose length is more than 3500 bp. These cDNA libraries may be useful for generating 5' ESTs with the information of the mRNA start sites that are now scarce in the EST database.
Collapse
Affiliation(s)
- Y Suzuki
- International and Interdisciplinary Studies, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
39
|
Koonce MP. Identification of a microtubule-binding domain in a cytoplasmic dynein heavy chain. J Biol Chem 1997; 272:19714-8. [PMID: 9242627 DOI: 10.1074/jbc.272.32.19714] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
As a molecular motor, dynein must coordinate ATP hydrolysis with conformational changes that lead to processive interactions with a microtubule and generate force. To understand how these processes occur, we have begun to map functional domains of a dynein heavy chain from Dictyostelium. The carboxyl-terminal 10-kilobase region of the heavy chain encodes a 380-kDa polypeptide that approximates the globular head domain. Attempts to further truncate this region fail to produce polypeptides that either bind microtubules or UV-vanadate cleave, indicating that the entire 10-kilobase fragment is necessary to produce a properly folded functional dynein head. We have further identified a region just downstream from the fourth P-loop that appears to constitute at least part of the microtubule-binding domain (amino acids 3182-3818). When deleted, the resulting head domain polypeptide no longer binds microtubules; when the excised region is expressed in vitro, it cosediments with added tubulin polymer. This microtubule-binding domain falls within an area of the molecule predicted to form extended alpha-helices. At least four discrete sites appear to coordinate activities required to bind the tubulin polymer, indicating that the interaction of dynein with microtubules is complex.
Collapse
Affiliation(s)
- M P Koonce
- Division of Molecular Medicine, Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA.
| |
Collapse
|
40
|
Chapelin C, Duriez B, Magnino F, Goossens M, Escudier E, Amselem S. Isolation of several human axonemal dynein heavy chain genes: genomic structure of the catalytic site, phylogenetic analysis and chromosomal assignment. FEBS Lett 1997; 412:325-30. [PMID: 9256245 DOI: 10.1016/s0014-5793(97)00800-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dynein heavy chains (DHCs) are the main components of multisubunit motor ATPase complexes called dyneins. Axonemal dyneins provide the driving force for ciliary and flagellar motility. Recent molecular studies demonstrated that multiple DHC isoforms are produced by separate genes. We describe the isolation of five human axonemal DHC genes. Analysis of the human genomic clones revealed the existence of intronic sequences that were used to demonstrate that human axonemal DHC genes are located on different chromosomes. The cloned human DHC sequences were integrated into an evolutionary approach based on phylogenetic analysis. Tissue expression studies showed that these human axonemal DHCs are expressed in testis and/or trachea, two tissues with axonemal structures that can be altered in primary ciliary dyskinesia, making DHC genes strong candidates in the genesis of these human diseases.
Collapse
Affiliation(s)
- C Chapelin
- Laboratoire de Genetique Moléculaire et Physiopathologie, Institut National de la Santé et de la Recherche Médicale (INSERM) U.468, Hôpital Henri Mondor, Créteil, France
| | | | | | | | | | | |
Collapse
|
41
|
Triiodothyronine and nerve growth factor are required to induce cytoplasmic dynein expression in rat dorsal root ganglion cultures. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0165-3806(96)00105-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
King SM, Barbarese E, Dillman JF, Patel-King RS, Carson JH, Pfister KK. Brain cytoplasmic and flagellar outer arm dyneins share a highly conserved Mr 8,000 light chain. J Biol Chem 1996; 271:19358-66. [PMID: 8702622 DOI: 10.1074/jbc.271.32.19358] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sequence comparisons with the Mr 8,000 light chain from Chlamydomonas outer arm dynein revealed the presence of highly conserved homologues (up to 90% identity) in the expressed sequence tag data base (King, S. M. & Patel-King, R. S. (1995a) J. Biol. Chem. 270, 11445-11452). Several of these homologous sequences were derived from organisms and/or tissues that lack motile cilia/flagella, suggesting that these proteins may function in the cytoplasm. In Drosophila, lack of the homologous protein results in embryonic lethality (Dick, T., Ray, K., Salz, H. K. & Chia, W.(1996) Mol. Cell. Biol., 16, 1966-1977). Fractionation of mammalian brain homogenates reveals three distinct cytosolic pools of the homologous protein, one of which specifically copurifies with cytoplasmic dynein following both ATP-sensitive microtubule affinity/sucrose density gradient centrifugation and immunoprecipitation with a monoclonal antibody specific for the 74-kDa intermediate chain (IC74). Quantitative densitometry indicates that there is one copy of the Mr 8,000 polypeptide per IC74. Dual channel confocal immunofluorescent microscopy revealed that the Mr 8,000 protein is significantly colocalized with cytoplasmic dynein but not with kinesin in punctate structures (many of which are associated with microtubules) within mammalian oligodendrocytes. Thus, it appears that flagellar outer arm and brain cytoplasmic dyneins share a highly conserved light chain polypeptide that, at least in Drosophila, is essential for viability.
Collapse
Affiliation(s)
- S M King
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032-3305, USA
| | | | | | | | | | | |
Collapse
|
43
|
Criswell PS, Ostrowski LE, Asai DJ. A novel cytoplasmic dynein heavy chain: expression of DHC1b in mammalian ciliated epithelial cells. J Cell Sci 1996; 109 ( Pt 7):1891-8. [PMID: 8832411 DOI: 10.1242/jcs.109.7.1891] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Organisms that have cilia or flagella express over a dozen dynein heavy chain genes. Of these heavy chain genes, most appear to encode axonemal dyneins, one encodes conventional cytoplasmic dynein (MAP1C or DHC1a), and one, here referred to as DHC1b, encodes an unclassified heavy chain. Previous analysis of sea urchin DHC1b (Gibbons et al. (1994) Mol. Biol. Cell 5, 57–70) indicated that this isoform is either an axonemal dynein with an unusual protein sequence or a cytoplasmic dynein whose expression increases during ciliogenesis. In the present study, we examined the expression of DHC1b in rat tissues. The DHC1b gene is expressed in all tissues examined, including unciliated liver and heart cells. In contrast, rat axonemal dyneins are only expressed in tissues that produce cilia or flagella. In cultured rat tracheal epithelial (RTE) cells, DHC1b is expressed in undifferentiated cells and increases in expression during ciliogenesis. In contrast, the expression of conventional cytoplasmic dynein, DHC1a, does not change during RTE differentiation and axonemal dynein is not expressed until after differentiation commences. In order to examine the expression of DHC1b protein, we produced an isoform-specific antibody to a synthetic peptide derived from the rat DHC1b sequence. The antibody demonstrated that DHC1b is a relatively minor component of partially purified cytoplasmic dynein. Indirect immunofluorescence microscopy revealed that DHC1b is not detected in cilia and remains in the cytoplasm of ciliated RTE cells, often accumulating at the apical ends of the cells. These results suggest that DHC1b is a cytoplasmic dynein that may participate in intracellular trafficking in polarized cells.
Collapse
Affiliation(s)
- P S Criswell
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | |
Collapse
|
44
|
Mazumdar M, Mikami A, Gee MA, Vallee RB. In vitro motility from recombinant dynein heavy chain. Proc Natl Acad Sci U S A 1996; 93:6552-6. [PMID: 8692854 PMCID: PMC39062 DOI: 10.1073/pnas.93.13.6552] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The dyneins are a class of motor protein involved in ciliary and flagellar motility, organelle transport, and chromosome segregation. Because of their large size and subunit complexity, relatively little is known about their mechanisms of force production and regulation. We report here on the expression and analysis of the entire rat cytoplasmic dynein heavy chain (Mr 532,000). Full-length cDNAs were constructed from a series of partial clones and tagged at the C terminus with either a FLAG-epitope tag or a His6-tag. The recombinant polypeptides were expressed either in insect cells by baculovirus infection or in COS-7 cells by transient transfection. The recombinant protein was mostly soluble and showed good microtubule binding. It exhibited a broad sedimentation profile, indicative of the formation of dimers as well as higher order multimers. Good microtubule gliding motility activity was observed in assays of heavy chain expressed in either insect or COS-7 cells. Average microtubule gliding velocities of 1.2-1.8 microm/sec were observed, comparable with the rates determined for calf brain cytoplasmic dynein. These results represent the first indication that recombinant heavy chain alone is capable of force production, and should lead to rapid progress in defining the dynein motor domain.
Collapse
Affiliation(s)
- M Mazumdar
- Worcester Foundation for Biomedical Research, Shrewsbury, MA 01545, USA
| | | | | | | |
Collapse
|
45
|
Vaisberg EA, Grissom PM, McIntosh JR. Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles. J Cell Biol 1996; 133:831-42. [PMID: 8666668 PMCID: PMC2120833 DOI: 10.1083/jcb.133.4.831] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We describe two dynein heavy chain (DHC)-like polypeptides (DHCs 2 and 3) that are distinct from the heavy chain of conventional cytoplasmic dynein (DHC1) but are expressed in a variety of mammalian cells that lack axonemes. DHC2 is a distant member of the "cytoplasmic" branch of the dynein phylogenetic tree, while DHC3 shares more sequence similarity with dynein-like polypeptides that have been thought to be axonemal. Each cytoplasmic dynein is associated with distinct cellular organelles. DHC2 is localized predominantly to the Golgi apparatus. Moreover, the Golgi disperses upon microinjection of antibodies to DHC2, suggesting that this motor is involved in establishing proper Golgi organization. DCH3 is associated with as yet unidentified structures that may represent transport intermediates between two or more cytoplasmic compartments. Apparently, specific cytoplasmic dyneins, like individual members of the kinesin superfamily, play unique roles in the traffic of cytomembranes.
Collapse
Affiliation(s)
- E A Vaisberg
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347, USA.
| | | | | |
Collapse
|
46
|
Fujii T, Watanabe M, Nakamura A. Characterization of microtubule-associated protein 1-associated protein kinases from rat brain. Neurochem Int 1996; 28:535-44. [PMID: 8792334 DOI: 10.1016/0197-0186(95)00128-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The microtubule-associated protein (MAP) 1 preparation, MAP1A and 1B, obtained from rat brain microtubules was associated with protein kinases that were insensitive to cAMP, cGMP, calcium, calcium/calmodulin and calcium/phosphatidylserine. The fractionation of highly purified MAP1 by phosphocellulose chromatography revealed that protein kinase activity to phosphorylate phosvitin was separated into three major peaks (MAP1 kinases A, B and C). MAP1 was recovered in the MAP1 kinase A fraction and phosphorylated by the contained kinase. MAP1 kinase A is a novel protein kinase that is remarkably activated by poly-L-lysine and poly-L-arginine, but very insensitive to heparin among the kinases. Photoaffinity labeling using [alpha-32P]8-azido ATP indicated that the 65 kDa polypeptide is identified as an ATP-binding protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the highly purified MAP1 and MAP1 kinase A fractions. MAP1 kinases B and C may be identified as casein kinase I- and II-like kinases. The present results show that MAP1 is associated with at least three kinases and provide an insight for understanding thoroughly the MAP1-mediated microtubule functions.
Collapse
Affiliation(s)
- T Fujii
- Department of Imagination Science and Technology (Kansei Engineering), Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | | | | |
Collapse
|
47
|
Abstract
Microtubules are responsible for chromosome segregation and the movement and reorganization of membranous organelles. Many aspects of microtubule-based motility can be attributed to the action of motor proteins, producing force directed toward either end of microtubules. How these proteins are targeted to the appropriate organellar sites within the cell, however, has remained a mystery. Recent work has begun to define the targeting mechanism for two well-studied motor proteins, kinesin and cytoplasmic dynein.
Collapse
Affiliation(s)
- R B Vallee
- Worcester Foundation for Biomedical Research, Shrewsbury, MA 01545, USA
| | | |
Collapse
|
48
|
Barton NR, Goldstein LS. Going mobile: microtubule motors and chromosome segregation. Proc Natl Acad Sci U S A 1996; 93:1735-42. [PMID: 8700828 PMCID: PMC39850 DOI: 10.1073/pnas.93.5.1735] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Proper chromosome segregation in eukaryotes depends upon the mitotic and meiotic spindles, which assemble at the time of cell division and then disassemble upon its completion. These spindles are composed in large part of microtubules, which either generate force by controlled polymerization and depolymerization or transduce force generated by molecular microtubule motors. In this review, we discuss recent insights into chromosome segregation mechanisms gained from the analyses of force generation during meiosis and mitosis. These analyses have demonstrated that members of the kinesin superfamily and the dynein family are essential in all organisms for proper chromosome and spindle behavior. It is also apparent that forces generated by microtubule polymerization and depolymerization are capable of generating forces sufficient for chromosome movement in vitro; whether they do so in vivo is as yet unclear. An important realization that has emerged is that some spindle activities can be accomplished by more than one motor so that functional redundancy is evident. In addition, some meiotic or mitotic movements apparently occur through the cooperative action of independent semiredundant processes. Finally, the molecular characterization of kinesin-related proteins has revealed that variations both in primary sequence and in associations with other proteins can produce motor complexes that may use a variety of mechanisms to transduce force in association with microtubules. Much remains to be learned about the regulation of these activities and the coordination of opposing and cooperative events involved in chromosome segregation; this set of problems represents one of the most important future frontiers of research.
Collapse
Affiliation(s)
- N R Barton
- Howard Hughes Medical Institute, Department of Pharmacology, University of California San Diego, La Jolla 92093-0683, USA
| | | |
Collapse
|
49
|
Pfister KK, Salata MW, Dillman JF, Torre E, Lye RJ. Identification and developmental regulation of a neuron-specific subunit of cytoplasmic dynein. Mol Biol Cell 1996; 7:331-43. [PMID: 8688562 PMCID: PMC275883 DOI: 10.1091/mbc.7.2.331] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cytoplasmic dynein is the microtubule minus-end-directed motor for the retrograde axonal transport of membranous organelles. Because of its similarity to the intermediate chains of flagellar dynein, the 74-kDa intermediate chain (IC74) subunit of dynein is thought to be involved in binding dynein to its membranous organelle cargo. Previously, we identified six isoforms of the IC74 cytoplasmic dynein subunit in the brain. We further demonstrated that cultured glia and neurons expressed different dynein IC74 isoforms and phospho-isoforms. Two isoforms were observed when dynein from glia was analyzed. When dynein from cultured neurons was analyzed, six IC74 isoforms were observed, although the relative amounts of the dynein isoforms from cultured neurons differed from those found in dynein from brain. To better understand the role of the neuronal IC74 isoforms and identify neuron-specific IC74 dynein subunits, the expression of the IC74 protein isoforms and mRNAs of various tissues were compared. As a result of this comparison, the identity of each of the isoform spots observed on two-dimensional gels was correlated with the products of each of the IC74 mRNAs. We also found that between the fifteenth day of gestation (E15) and the fifth day after birth (P5), the relative expression of the IC74 protein isoforms changes, demonstrating that the expression of IC74 isoforms is developmentally regulated in brain. During this time period, there is relatively little change in the abundance of the various IC74 mRNAs. The E15 to P5 time period is one of rapid process extension and initial pattern formation in the rat brain. This result indicates that the changes in neuronal IC74 isoforms coincide with neuronal differentiation, in particular the extension of processes. This suggests a role for the neuronal IC74 isoforms in the establishment or regulation of retrograde axonal transport.
Collapse
Affiliation(s)
- K K Pfister
- Department of Cell Biology, School of Medicine, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | | | | | |
Collapse
|
50
|
Andrews KL, Nettesheim P, Asai DJ, Ostrowski LE. Identification of seven rat axonemal dynein heavy chain genes: expression during ciliated cell differentiation. Mol Biol Cell 1996; 7:71-9. [PMID: 8741840 PMCID: PMC278613 DOI: 10.1091/mbc.7.1.71] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Axonemal dyneins are molecular motors that drive the beating of cilia and flagella. We report here the identification and partial cloning of seven unique axonemal dynein heavy chains from rat tracheal epithelial (RTE) cells. Combinations of axonemal-specific and degenerate primers to conserved regions around the catalytic site of dynein heavy chains were used to obtain cDNA fragments of rat dynein heavy chains. Southern analysis indicates that these are single copy genes, with one possible exception, and Northern analysis of RNA from RTE cells shows a transcript of approximately 15 kb for each gene. Expression of these genes was restricted to tissues containing axonemes (trachea, testis, and brain). A time course analysis during ciliated cell differentiation of RTE cells in culture demonstrated that the expression of axonemal dynein heavy chains correlated with the development of ciliated cells, while cytoplasmic dynein heavy chain expression remained constant. In addition, factors that regulate the development of ciliated cells in culture regulated the expression of axonemal dynein heavy chains in a parallel fashion. These are the first mammalian dynein heavy chain genes shown to be expressed specifically in axonemal tissues. Identification of the mechanisms that regulate the cell-specific expression of these axonemal dynein heavy chains will further our understanding of the process of ciliated cell differentiation.
Collapse
Affiliation(s)
- K L Andrews
- Laboratory of Pulmonary Pathobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|