1
|
Selby CP, Sancar A. The second chromophore in Drosophila photolyase/cryptochrome family photoreceptors. Biochemistry 2011; 51:167-71. [PMID: 22175817 DOI: 10.1021/bi201536w] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photolyase/cryptochrome family of proteins are FAD-containing flavoproteins which carry out blue-light-dependent functions including DNA repair, plant growth and development, and regulation of the circadian clock. In addition to FAD, many members of the family contain a second chromophore which functions as a photo-antenna, harvesting light and transferring the excitation energy to FAD and thus increasing the efficiency of the system. The second chromophore is methenyltetrahydrofolate (MTHF) in most photolyases characterized to date and FAD, FMN, or 5-deazariboflavin in others. To date, no second chromophore has been identified in cryptochromes. Drosophila contains three members of the cryptochrome/photolyase family: cyclobutane pyrimidine dimer (CPD) photolyase, (6-4) photoproduct photolyase, and cryptochrome. We developed an expression system capable of incorporating all known second chromophores into the cognate cryptochrome/photolyase family members. Using this system, we demonstrate that Drosophila CPD photolyase and (6-4) photolyase employ 5-deazariboflavin as their second chromophore, but Drosophila cryptochrome, which is evolutionarily closer to (6-4) photolyase than the CPD photolyase, lacks a second chromophore.
Collapse
Affiliation(s)
- Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260, United States
| | | |
Collapse
|
2
|
Light-induced activation of class II cyclobutane pyrimidine dimer photolyases. DNA Repair (Amst) 2010; 9:495-505. [PMID: 20227927 DOI: 10.1016/j.dnarep.2010.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/16/2010] [Accepted: 01/19/2010] [Indexed: 11/23/2022]
Abstract
Light-induced activation of class II cyclobutane pyrimidine dimer (CPD) photolyases of Arabidopsis thaliana and Oryza sativa has been examined by UV/Vis and pulsed Davies-type electron-nuclear double resonance (ENDOR) spectroscopy, and the results compared with structure-known class I enzymes, CPD photolyase and (6-4) photolyase. By ENDOR spectroscopy, the local environment of the flavin adenine dinucleotide (FAD) cofactor is probed by virtue of proton hyperfine couplings that report on the electron-spin density at the positions of magnetic nuclei. Despite the amino-acid sequence dissimilarity as compared to class I enzymes, the results indicate similar binding motifs for FAD in the class II photolyases. Furthermore, the photoreduction kinetics starting from the FAD cofactor in the fully oxidized redox state, FAD(ox), have been probed by UV/Vis spectroscopy. In Escherichia coli (class I) CPD photolyase, light-induced generation of FADH from FAD(ox), and subsequently FADH(-) from FADH, proceeds in a step-wise fashion via a chain of tryptophan residues. These tryptophans are well conserved among the sequences and within all known structures of class I photolyases, but completely lacking from the equivalent positions of class II photolyase sequences. Nevertheless, class II photolyases show photoreduction kinetics similar to those of the class I enzymes. We propose that a different, but also effective, electron-transfer cascade is conserved among the class II photolyases. The existence of such electron transfer pathways is supported by the observation that the catalytically active fully reduced flavin state obtained by photoreduction is maintained even under oxidative conditions in all three classes of enzymes studied in this contribution.
Collapse
|
3
|
Isely N, Lamare M, Marshall C, Barker M. Expression of the DNA repair enzyme, photolyase, in developmental tissues and larvae, and in response to ambient UV-R in the Antarctic sea urchin Sterechinus neumayeri. Photochem Photobiol 2009; 85:1168-76. [PMID: 19500294 DOI: 10.1111/j.1751-1097.2009.00566.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gene expression of the DNA repair enzyme, photolyase (E.C. 4.1.99.3) was examined in the gonads, eggs, embryos and larval stages of the Antarctic sea urchin, Sterechinus neumayeri. Partial sequencing of the gene revealed two highly conserved regions, including a 300 bp region representing the binding site for the cofactor flavin adenine dinucleotide. The second 1200 bp region, likely representing a second light-harvesting cofactor binding site, was identified in a second sea urchin species, Strongylocentrotus frascicanus. Probes for photolyase were developed from the shorter sequence, and expression in sea urchin developmental tissue and stages, and in response to in situ exposure to ultraviolet radiation was quantified using PCR and RT-qPCR, with concentrations of photolyase normalized to actin concentrations. Photolyase was expressed in all tissues and developmental stages examined. In controlled field-based experiments in McMurdo Sound, Antarctica, we found evidence of both constitutive expression of photolyase and induction in response to in situ exposure of embryos to UV-R. Induction of photolyase was observed in response to greater ambient UV-R (such as shallower water depths or sea ice-free regions).
Collapse
Affiliation(s)
- Nikolas Isely
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
4
|
Dong Q, Todd Monroe W, Tiersch TR, Svoboda KR. UVA-induced photo recovery during early zebrafish embryogenesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2008; 93:162-71. [PMID: 18845445 DOI: 10.1016/j.jphotobiol.2008.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 07/14/2008] [Accepted: 07/28/2008] [Indexed: 01/29/2023]
Abstract
DNA photorepair has been widely studied in simple aquatic organisms that live in the marine environment, but is less understood in more complex species that live in freshwater. In the present study, we evaluated UVA-induced DNA photo recovery in embryonic stages of zebrafish, Danio rerio, a freshwater model species. Evaluation of UVB exposure and UVA photo recovery of zebrafish embryos revealed different UVB tolerances and capacities for UVA photo recovery at different stages of development. Effective UVA photo recovery was observed at 3h post-fertilization (hpf), 6-7 hpf, and 12 hpf, but not in the early cleavage stage (2-32 cells). UVA photo recovery was most effective during the gastrula stage (6-7 hpf) of development, and less effective at earlier stages (e.g., 3 hpf) or later stages (e.g., 12 hpf). Embryos at the cleavage stage of development were found to be tolerant to extreme levels of UVB exposure, and possible mechanisms were discussed. For embryos at 6-7 hpf, examination of time window (or delay of UVA exposure) that would still permit recovery from UVB exposure suggested a short time period of 2h. The transgenic fli-1 zebrafish with fluorescent vascular structure was used to show that embryos with normal morphological appearance could exhibit a disrupted vascular patterning, suggesting that this endpoint could provide a sensitive tool for detection of UV damage.
Collapse
Affiliation(s)
- Qiaoxiang Dong
- Department of Biological and Agricultural Engineering, Louisiana State University and LSU Agricultural Center, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
5
|
Yoshihara R, Nakane C, Sato R, Yasuda A, Takimoto K. Silencing of CPD Photolyase Makes Arabidopsis Hypersensitive and Hypermutable in Response to UV-B Radiation. Genes Environ 2008. [DOI: 10.3123/jemsge.30.53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
6
|
Tanida H, Tahara E, Mochizuki M, Yamane Y, Ryoji M. Purification, cDNA cloning, and expression profiles of the cyclobutane pyrimidine dimer photolyase of Xenopus laevis. FEBS J 2006; 272:6098-108. [PMID: 16302973 DOI: 10.1111/j.1742-4658.2005.05004.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photolyase is a light-dependent enzyme that repairs pyrimidine dimers in DNA. Two types of photolyases have been found in frog Xenopus laevis, one for repairing cyclobutane pyrimidine dimers (CPD photolyase) and the other for pyrimidine-pyrimidone (6-4)photoproduct [(6-4)photolyase]. However, little is known about the former type of the Xenopus photolyases. To characterize this enzyme and its expression profiles, we isolated the entire coding region of a putative CPD photolyase cDNA by extending an EST (expressed sequence tag) sequence obtained from the Xenopus database. Nucleotide sequence analysis of the cDNA revealed a protein of 557 amino acids with close similarity to CPD photolyase of rat kangaroo. The identity of this cDNA was further established by the molecular mass (65 kDa) and the partial amino acid sequences of the major CPD photolyase that we purified from Xenopus ovaries. The gene of this enzyme is expressed in various tissues of Xenopus. Even internal organs like heart express relatively high levels of mRNA. A much smaller amount was found in skin, although UV damage is thought to occur most frequently in this tissue. Such expression profiles suggest that CPD photolyase may have roles in addition to the photorepair function.
Collapse
Affiliation(s)
- Hiroaki Tanida
- Laboratory of Molecular Biology, Department of Life Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
7
|
Daiyasu H, Ishikawa T, Kuma KI, Iwai S, Todo T, Toh H. Identification of cryptochrome DASH from vertebrates. Genes Cells 2005; 9:479-95. [PMID: 15147276 DOI: 10.1111/j.1356-9597.2004.00738.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new type of cryptochrome, CRY-DASH, has been recently identified. The CRY-DASH proteins constitute the fifth subfamily of the photolyase/cryptochrome family. CRY-DASHs have been identified from Synechocystis sp. PCC 6803, Vibrio cholerae, and Arabidopsis thaliana. The Synechocystis CRY-DASH was the first cryptochrome identified from bacteria, and its biochemical features and tertiary structure have been extensively investigated. To determine how broadly the subfamily is distributed within living organisms, we searched for new CRY-DASH candidates within several databases. We found five sequences as new CRY-DASH candidates, which are derived from four marine bacteria and Neurospora crassa. We also found many CRY-DASH candidates from the EST databases, which included sequences from fish and amphibians. We cloned and sequenced the cDNAs of the zebrafish and Xenopus laevis candidates, based on the EST sequences. The proteins encoded by the two genes were purified and characterized. Both proteins contained folate and flavin cofactors, and have a weak DNA photolyase activity. A phylogenetic analysis revealed that the seven candidates actually belong to the new type of cryptochrome subfamily. This is the first report of the CRY-DASH members from vertebrates and fungi.
Collapse
Affiliation(s)
- Hiromi Daiyasu
- Bioinformatics Centre, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Weber S. Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1707:1-23. [PMID: 15721603 DOI: 10.1016/j.bbabio.2004.02.010] [Citation(s) in RCA: 254] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Accepted: 02/02/2004] [Indexed: 11/19/2022]
Abstract
More than 50 years ago, initial experiments on enzymatic photorepair of ultraviolet (UV)-damaged DNA were reported [Proc. Natl. Acad. Sci. U. S. A. 35 (1949) 73]. Soon after this discovery, it was recognized that one enzyme, photolyase, is able to repair UV-induced DNA lesions by effectively reversing their formation using blue light. The enzymatic process named DNA photoreactivation depends on a non-covalently bound cofactor, flavin adenine dinucleotide (FAD). Flavins are ubiquitous redox-active catalysts in one- and two-electron transfer reactions of numerous biological processes. However, in the case of photolyase, not only the ground-state redox properties of the FAD cofactor are exploited but also, and perhaps more importantly, its excited-state properties. In the catalytically active, fully reduced redox form, the FAD absorbs in the blue and near-UV ranges of visible light. Although there is no direct experimental evidence, it appears generally accepted that starting from the excited singlet state, the chromophore initiates a reductive cleavage of the two major DNA photodamages, cyclobutane pyrimidine dimers and (6-4) photoproducts, by short-distance electron transfer to the DNA lesion. Back electron transfer from the repaired DNA segment is believed to eventually restore the initial redox states of the cofactor and the DNA nucleobases, resulting in an overall reaction with net-zero exchanged electrons. Thus, the entire process represents a true catalytic cycle. Many biochemical and biophysical studies have been carried out to unravel the fundamentals of this unique mode of action. The work has culminated in the elucidation of the three-dimensional structure of the enzyme in 1995 that revealed remarkable details, such as the FAD-cofactor arrangement in an unusual U-shaped configuration. With the crystal structure of the enzyme at hand, research on photolyases did not come to an end but, for good reason, intensified: the geometrical structure of the enzyme alone is not sufficient to fully understand the enzyme's action on UV-damaged DNA. Much effort has therefore been invested to learn more about, for example, the geometry of the enzyme-substrate complex, and the mechanism and pathways of intra-enzyme and enzyme <-->DNA electron transfer. Many of the key results from biochemical and molecular biology characterizations of the enzyme or the enzyme-substrate complex have been summarized in a number of reviews. Complementary to these articles, this review focuses on recent biophysical studies of photoreactivation comprising work performed from the early 1990s until the present.
Collapse
Affiliation(s)
- Stefan Weber
- Institute of Experimental Physics, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
9
|
Nakayama T, Todo T, Notsu S, Nakazono M, Zaitsu K. Assay method for Escherichia coli photolyase activity using single-strand cis-syn cyclobutane pyrimidine dimer DNA as substrate. Anal Biochem 2005; 329:263-8. [PMID: 15158485 DOI: 10.1016/j.ab.2004.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Indexed: 11/21/2022]
Abstract
A high-performance liquid chromatography method for the assay of Escherichia coli photolyase activity was developed. When cis-syn cyclobutane pyrimidine dimer was used as substrate, the Michaelis constant (K(m)) value for the photolyase activity was 100 nM. The linear range of the calibration curve of the photolyase activity was 0.026-6.64 microU/assay tube. The correlation coefficient for this linearity was 0.998. The limit of detection (S/N = 3) was 26 nU/assay tube. The photolyase activity was increased 1.6-fold in the presence of 5,10-methenyltetrahydrofolic acid in the enzyme reaction mixture.
Collapse
Affiliation(s)
- Takuya Nakayama
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
10
|
van Oers MM, Herniou EA, Usmany M, Messelink GJ, Vlak JM. Identification and characterization of a DNA photolyase-containing baculovirus from Chrysodeixis chalcites. Virology 2005; 330:460-70. [PMID: 15567439 DOI: 10.1016/j.virol.2004.09.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 09/20/2004] [Accepted: 09/22/2004] [Indexed: 11/17/2022]
Abstract
A hitherto unknown single nucleocapsid nucleopolyhedrovirus (SNPV) with a unique property was isolated from larvae of the looper Chrysodeixis chalcites (Lepidoptera, Noctuidae, Plusiinae). Polyhedrin, lef-8, and pif-2 gene sequences were obtained by PCR with degenerate primers and used for phylogenetic analysis. ChchNPV belonged to class II NPVs and its polyhedrin sequence was most similar to that of class II NPVs of other members of the subfamily Plusiinae. Further genetic characterization involved the random cloning of HindIII fragments into a plasmid vector and analysis by end-in sequencing. A gene so far unique to baculoviruses was identified, which encodes a putative DNA repair enzyme: cyclobutane pyrimidine dimer (CPD) DNA photolyase (dpl). The transcriptional activity of this gene was demonstrated in both ChchNPV-infected C. chalcites larvae and infected Trichoplusia ni High Five cells by RT-PCR and 5' and 3' RACE analysis. The possible role of this gene in the biology of the virus is discussed.
Collapse
Affiliation(s)
- Monique M van Oers
- Laboratory of Virology, Wageningen University, 6709 PD Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Abstract
Preservation of the structural integrity of DNA in any organism is crucial to its health and survival. Such preservation is achieved by an extraordinary cellular arsenal of damage surveillance and repair functions, many of which are now being defined at the gene and protein levels. Mutants hypersensitive to the killing effects of DNA-damaging agents have been instrumental in helping to identify DNA repair-related genes and to elucidate repair mechanisms. In Drosophila melanogaster, such strains are generally referred to as mutagen-sensitive (mus) mutants and currently define more than 30 genetic loci. Whereas most mus mutants have been recovered on the basis of hypersensitivity to the monofunctional alkylating agent methyl methanesulfonate, they nevertheless constitute a phenotypically diverse group, with many mutants having effects beyond mutagen sensitivity. These phenotypes include meiotic dysfunctions, somatic chromosome instabilities, chromatin abnormalities, and cell proliferation defects. Within the last few years numerous mus and other DNA repair-related genes of Drosophila have been molecularly cloned, providing new insights into the functions of these genes. This article outlines strategies for isolating mus mutations and reviews recent advances in the Drosophila DNA repair field, emphasizing mutant analysis and gene cloning.
Collapse
Affiliation(s)
- D S Henderson
- Department of Anatomy and Physiology, University of Dundee, Dundee, DD1 4HN, Scotland, United Kingdom
| |
Collapse
|
12
|
Affiliation(s)
- T Todo
- Radiation Biology Center, Kyoto University, Japan.
| |
Collapse
|
13
|
Berrocal-Tito G, Sametz-Baron L, Eichenberg K, Horwitz BA, Herrera-Estrella A. Rapid blue light regulation of a Trichoderma harzianum photolyase gene. J Biol Chem 1999; 274:14288-94. [PMID: 10318850 DOI: 10.1074/jbc.274.20.14288] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photolyases and blue light receptors belong to a superfamily of flavoproteins that make use of blue and UVA light either to catalyze DNA repair or to control development. We have isolated a DNA photolyase gene (phr1) from Trichoderma harzianum, a common soil fungus that is of interest as a biocontrol agent against soil-borne plant pathogens and as a model for the study of light-dependent development. The sequence of phr1 is similar to other Class I Type I eukaryotic photolyase genes. Low fluences of blue light rapidly induced phr1 expression both in vegetative mycelia, which lack photoprotective pigments, and, to a greater extent, in conidiophores. Thus, visible light induces the development of pigmented, resistant spores as well as the expression of phr1, perhaps announcing in this way the imminent exposure to the more damaging short wavelengths of sunlight. Light induction of phr1 in non-sporulating mutants shows that a complete sporulation pathway is not required for photoregulation. The light requirements for photoinduction of phr1 were not altered in dimY photoperception mutants. This suggests that photoinduction of sporulation and of photolyase expression is distinct in their photoreceptor system or in the transduction of the blue light signal.
Collapse
Affiliation(s)
- G Berrocal-Tito
- Department of Plant Genetic Engineering, Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Apartado Posta 629, Irapuato, Guanajuato 36500, México
| | | | | | | | | |
Collapse
|
14
|
Eisses KT. Concurrent teratogenic and mutagenic action of 2-methoxyethanol inDrosophila melanogaster larvae resulted in similar phenotypes: Close resemblance to directed mutations. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1520-6866(1999)19:3<183::aid-tcm2>3.0.co;2-i] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Okano S, Kanno SI, Takao M, Eker APM, Lsono K, Tsukahara Y, Yasui A. A Putative Blue-Light Receptor From Drosophila melanogaster. Photochem Photobiol 1999. [DOI: 10.1111/j.1751-1097.1999.tb05314.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Todo T, Ryo H, Borden A, Lawrence C, Sakaguchi K, Hirata H, Nomura T. Non-mutagenic repair of (6-4)photoproducts by (6-4)photolyase purified from Drosophila melanogaster. Mutat Res 1997; 385:83-93. [PMID: 9447230 DOI: 10.1016/s0921-8777(97)00045-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The (6-4)photoproduct DNA photolyase ((6-4)photolyase) repairs UV-induced pyrimidine (6-4) pyrimidone photoproduct ((6-4)photoproduct, pyr[6,4]pyr) in a light dependent manner. Drosophila (6-4)photolyase was purified to near homogeneity from Drosophila embryonic cells and is shown to be a 62 kDa protein as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified (6-4)photolyase repairs (6-4)photoproducts induced at 5'-CC-3' site (C[6,4]C) as well as T[6,4]T and T[6,4]C. Photoreactivation of (6-4)photoproduct constructed in M13 phage eliminates the replication block and abolishes induced mutagenesis in E. coli cells, suggesting that the (6-4)photolyase repairs the photoproduct to the unmodified form.
Collapse
Affiliation(s)
- T Todo
- Department of Radiation Biology, Faculty of Medicine, Osaka Univ., Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Todo T, Tsuji H, Otoshi E, Hitomi K, Kim ST, Ikenaga M. Characterization of a human homolog of (6-4) photolyase. Mutat Res 1997; 384:195-204. [PMID: 9330615 DOI: 10.1016/s0921-8777(97)00032-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
(6-4)Photolyase catalyzes light-dependent repair of UV-induced pyrimidine (6-4) pyrimidone photoproducts. A human cDNA clone which has high sequence homology to the (6-4)photolyase gene (H64PRH gene) was identified. In this paper we also isolated a genomic clone corresponding to the H64PRH cDNA and mapped it to chromosome 12q24.1 by fluorescence in situ hybridization (FISH). Northern-blot analysis revealed transcription of this gene in all human tissues examined. The H64PRH protein was overproduced in E. coli, partially purified and characterized. Like (6-4)photolyase, the enzyme contains two chromophores, one of which is FAD. However, the enzyme does not show any detectable photolyase activity.
Collapse
Affiliation(s)
- T Todo
- Radiation Biology Center, Kyoto University, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Uchida N, Mitani H, Todo T, Ikenaga M, Shima A. Photoreactivating enzyme for (6-4) photoproducts in cultured goldfish cells. Photochem Photobiol 1997; 65:964-8. [PMID: 9188275 DOI: 10.1111/j.1751-1097.1997.tb07955.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We previously reported that when cultured goldfish cells are illuminated with fluorescent light, photorepair ability for both cyclobutane pyrimidine dimers and (6-4) photoproducts increased. In the present study, it was found that the duration of the induced photorepair ability for cyclobutane pyrimidine dimers was longer than that for (6-4) photoproducts, suggesting the presence of different photolyases for repair of these two major forms of DNA damage. A gel shift assay was then performed to show the presence of protein(s) binding to (6-4) photoproducts and its dissociation from (6-4) photoproducts under fluorescent light illumination. In addition, at 8 h after fluorescent light illumination of the cell, the binding of protein(s) to (6-4) photoproducts increased. The restriction enzymes that have recognition sites containing TT or TC sequences failed to digest the UV-irradiated DNA photoreactivated by using Escherichia coli photolyase for cyclobutane pyrimidine dimers, indicating that restriction enzymes could not function because (6-4) photoproducts remained in recognition sites. But, when UV-irradiated DNA depleted of cyclobutane pyrimidine dimers was incubated with extract of cultured goldfish cells under fluorescent light illumination, it was digested with those restriction enzymes. These results suggested the presence of (6-4) photolyase in cultured goldfish cells as in Drosophila, Xenopus and Crotalus.
Collapse
Affiliation(s)
- N Uchida
- Department of Biological Sciences, University of Tokyo, Japan.
| | | | | | | | | |
Collapse
|
19
|
Todo T, Kim ST, Hitomi K, Otoshi E, Inui T, Morioka H, Kobayashi H, Ohtsuka E, Toh H, Ikenaga M. Flavin adenine dinucleotide as a chromophore of the Xenopus (6-4)photolyase. Nucleic Acids Res 1997; 25:764-8. [PMID: 9016626 PMCID: PMC146514 DOI: 10.1093/nar/25.4.764] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two types of enzyme utilizing light from the blue and near-UV spectral range (320-520 nm) are known to have related primary structures: DNA photolyase, which repairs UV-induced DNA damage in a light-dependent manner, and the blue light photoreceptor of plants, which mediates light-dependent regulation of seedling development. Cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts [(6-4)photoproducts] are the two major photoproducts produced in DNA by UV irradiation. Two types of photolyases have been identified, one specific for CPDs (CPD photolyase) and another specific for (6-4)photoproducts [(6-4)photolyase]. (6-4)Photolyase activity was first found in Drosophila melanogaster and to date this gene has been cloned only from this organism. The deduced amino acid sequence of the cloned gene shows that (6-4)photolyase is a member of the CPD photolyase/blue light photoreceptor family. Both CPD photolyase and blue light photoreceptor are flavoproteins and bound flavin adenine dinucleotides (FADs) are essential for their catalytic activity. Here we report isolation of a Xenopus laevis(6-4)photolyase gene and show that the (6-4)photolyase binds non- covalently to stoichiometric amounts of FAD. This is the first indication of FAD as the chromophore of (6-4)photolyase.
Collapse
Affiliation(s)
- T Todo
- Radiation Biology Center, Kyoto University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- R L Dusenbery
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
21
|
Kim ST, Malhotra K, Ryo H, Sancar A, Todo T. Purification and characterization of Drosophila melanogaster photolyase. Mutat Res 1996; 363:97-104. [PMID: 8676930 DOI: 10.1016/0921-8777(96)00003-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Animal-type photolyases have very limited sequence homology to microbial-type photolyases. We wanted to find out whether the two types of enzymes have different or similar biochemical and photochemical properties. In particular, the chromophore/cofactor composition of animal photolyases is of special interest since the presence and nature of a second chromophore in these enzymes are not known in contrast to the microbial photolyases which contain FAD cofactor, and folate or deazaflavin as second chromophores. We overproduced the Drosophila melanogaster photolyase in Escherichia coli using the cloned gene. The enzyme contains FAD and folate and thus belongs in the folate class of enzymes but with an action spectrum peak at 420 nm.
Collapse
Affiliation(s)
- S T Kim
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | | | | | | | |
Collapse
|
22
|
Funayama T, Mitani H, Shima A. Overexpression of Medaka (Oryzias latipes) photolyase gene in Medaka cultured cells and early embryos. Photochem Photobiol 1996; 63:633-8. [PMID: 8628755 DOI: 10.1111/j.1751-1097.1996.tb05667.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To study the role and the regulation of the photolyase gene in the Medaka (small teleost), we constructed a eukaryotic expression plasmid of the Medaka photolyase gene and introduced it into Medaka cells in vivo and in vivo. The expression plasmid contains a cytomegalovirus enhancer and a thymidine kinase promoter to overexpress the photolyase gene of the Medaka. First, we transfected this construct into cultured Medaka cells and established several lines of transfectant. Every transfectant showed enhanced ability of pyrimidine dimer repair in the presence of fluorescent light. In the transfectant that showed the most enhanced ability of photorepair, the augmented transcription of photolyase gene was observed compared with that of progenitor OL32 cells. In this transfectant, we also observed an enhanced rate of UV survival with 20 min of fluorescent light treatment after irradiation with a 400 J/m2 UV sunlamp. Next, the expression construct was microinjected into the embryos of the Medaka at the one cell stage. Compared with the nontreated counterparts, the overexpression of a photolyase gene was detected in the microinjected embryos, but we failed to detect a significant increase in photo-reactivability of death at the midblastula stage.
Collapse
Affiliation(s)
- T Funayama
- Department of Biological Sciences, University of Tokyo, Japan.
| | | | | |
Collapse
|
23
|
Todo T, Ryo H, Yamamoto K, Toh H, Inui T, Ayaki H, Nomura T, Ikenaga M. Similarity among the Drosophila (6-4)photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family. Science 1996; 272:109-12. [PMID: 8600518 DOI: 10.1126/science.272.5258.109] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ultraviolet light (UV)-induced DNA damage can be repaired by DNA photolyase in a light-dependent manner. Two types of photolyase are known, one specific for cyclobutane pyrimidine dimers (CPD photolyase) and another specific for pyrimidine (6-4) pyrimidone photoproducts[(6-4)photolyase]. In contrast to the CPD photolyase, which has been detected in a wide variety of organisms, the (6-4)photolyase has been found only in Drosophila melanogaster. In the present study a gene encoding the Drosophila(6-4)photolyase ws cloned, and the deduced amino acid sequence of the product was found to be similar to the CPD photolyase and to the blue-light photoreceptor of plants. A homolog of the Drosophila (6-4)photolyase gene was also cloned from human cells.
Collapse
Affiliation(s)
- T Todo
- Radiation Biology Center, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Photolyase repairs ultraviolet (UV) damage to DNA by splitting the cyclobutane ring of the major UV photoproduct, the cis, syn-cyclobutane pyrimidine dimer (Pyr <> Pyr). The reaction is initiated by blue light and proceeds through long-range energy transfer, single electron transfer, and enzyme catalysis by a radical mechanism. The three-dimensional crystallographic structure of DNA photolyase from Escherichia coli is presented and the atomic model was refined to an R value of 0.172 at 2.3 A resolution. The polypeptide chain of 471 amino acids is folded into an amino-terminal alpha/beta domain resembling dinucleotide binding domains and a carboxyl-terminal helical domain; a loop of 72 residues connects the domains. The light-harvesting cofactor 5,10-methenyltetrahydrofolylpolyglutamate (MTHF) binds in a cleft between the two domains. Energy transfer from MTHF to the catalytic cofactor flavin adenine dinucleotide (FAD) occurs over a distance of 16.8 A. The FAD adopts a U-shaped conformation between two helix clusters in the center of the helical domain and is accessible through a hole in the surface of this domain. Dimensions and polarity of the hole match those of a Pyr <> Pyr dinucleotide, suggesting that the Pyr <> Pyr "flips out" of the helix to fit into this hole, and that electron transfer between the flavin and the Pyr <> Pyr occurs over van der Waals contact distance.
Collapse
Affiliation(s)
- H W Park
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | |
Collapse
|