1
|
Kang X, Chen X, He Y, Guo D, Guo L, Zhong J, Shu HB. DDB1 is a cellular substrate of NS3/4A protease and required for hepatitis C virus replication. Virology 2013; 435:385-94. [DOI: 10.1016/j.virol.2012.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
|
2
|
Characterization of the interaction of full-length HIV-1 Vif protein with its key regulator CBFβ and CRL5 E3 ubiquitin ligase components. PLoS One 2012; 7:e33495. [PMID: 22479405 PMCID: PMC3316577 DOI: 10.1371/journal.pone.0033495] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 02/14/2012] [Indexed: 01/07/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) viral infectivity factor (Vif) is essential for viral replication because of its ability to eliminate the host's antiviral response to HIV-1 that is mediated by the APOBEC3 family of cellular cytidine deaminases. Vif targets these proteins, including APOBEC3G, for polyubiquitination and subsequent proteasome-mediated degradation via the formation of a Cullin5-ElonginB/C-based E3 ubiquitin ligase. Determining how the cellular components of this E3 ligase complex interact with Vif is critical to the intelligent design of new antiviral drugs. However, structural studies of Vif, both alone and in complex with cellular partners, have been hampered by an inability to express soluble full-length Vif protein. Here we demonstrate that a newly identified host regulator of Vif, core-binding factor-beta (CBFβ), interacts directly with Vif, including various isoforms and a truncated form of this regulator. In addition, carboxyl-terminal truncations of Vif lacking the BC-box and cullin box motifs were sufficient for CBFβ interaction. Furthermore, association of Vif with CBFβ, alone or in combination with Elongin B/C (EloB/C), greatly increased the solubility of full-length Vif. Finally, a stable complex containing Vif-CBFβ-EloB/C was purified in large quantity and shown to bind purified Cullin5 (Cul5). This efficient strategy for purifying Vif-Cul5-CBFβ-EloB/C complexes will facilitate future structural and biochemical studies of Vif function and may provide the basis for useful screening approaches for identifying novel anti-HIV drug candidates.
Collapse
|
3
|
Abstract
The electrophoretic mobility shift assay (EMSA) can be used to study proteins that bind to DNA structures created by DNA-damaging agents. UV-damaged DNA-binding protein (UV-DDB), which is involved in nucleotide excision repair, binds to DNA damaged by ultraviolet radiation or the anticancer drug cisplatin. Ku, XRCC4/Ligase IV, and DNA-PKcs, which are involved in the repair of DNA double-strand breaks by nonhomologous end joining, assemble in complexes at DNA ends. This chapter will describe several EMSA protocols for detecting different DNA repair protein-DNA complexes. To obtain additional information, one can apply variations of the EMSA, which include the reverse EMSA to detect binding of (35)S-labeled protein to damaged DNA, and the antibody supershift assay to detect the presence of a specific protein in the protein-DNA complex.
Collapse
|
4
|
Tan L, Ehrlich E, Yu XF. DDB1 and Cul4A are required for human immunodeficiency virus type 1 Vpr-induced G2 arrest. J Virol 2007; 81:10822-30. [PMID: 17626091 PMCID: PMC2045451 DOI: 10.1128/jvi.01380-07] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Vpr-mediated induction of G2 cell cycle arrest has been postulated to be important for human immunodeficiency virus type 1 (HIV-1) replication, but the precise role of Vpr in this cell cycle arrest is unclear. In the present study, we have shown that HIV-1 Vpr interacts with damaged DNA binding protein 1 (DDB1) but not its partner DDB2. The interaction of Vpr with DDB1 was inhibited when DCAF1 (VprBP) expression was reduced by short interfering RNA (siRNA) treatment. The Vpr mutant (Q65R) that was defective for DCAF1 interaction also had a defect in DDB1 binding. However, Vpr binding to DDB1 was not sufficient to induce G2 arrest. A reduction in DDB1 or DDB2 expression in the absence of Vpr also did not induce G2 arrest. On the other hand, Vpr-induced G2 arrest was impaired when the intracellular level of DDB1 or Cullin 4A was reduced by siRNA treatment. Furthermore, Vpr-induced G2 arrest was largely abolished by a proteasome inhibitor. These data suggest that Vpr assembles with DDB1 through interaction with DCAF1 to form an E3 ubiquitin ligase that targets cellular substrates for proteasome-mediated degradation and G2 arrest.
Collapse
Affiliation(s)
- Lindi Tan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
5
|
Sugasawa K. UV-induced ubiquitylation of XPC complex, the UV-DDB-ubiquitin ligase complex, and DNA repair. J Mol Histol 2006; 37:189-202. [PMID: 16858626 DOI: 10.1007/s10735-006-9044-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 06/21/2006] [Indexed: 12/31/2022]
Abstract
The DNA nucleotide excision repair (NER) system is our major defense against carcinogenesis. Defects in NER are associated with several human genetic disorders including xeroderma pigmentosum (XP), which is characterized by a marked predisposition to skin cancer. For initiation of the repair reaction at the genome-wide level, a complex containing one of the gene products involved in XP, the XPC protein, must bind to the damaged DNA site. The UV-damaged DNA-binding protein (UV-DDB), which is impaired in XP group E patients, has also been implicated in damage recognition in global genomic NER, but its precise functions and its relationship to the XPC complex have not been elucidated. However, the recent discovery of the association of UV-DDB with a cullin-based ubiquitin ligase has functionally linked the two damage recognition factors and shed light on novel mechanistic and regulatory aspects of global genomic NER. This article summarizes our current knowledge of the properties of the XPC complex and UV-DDB and discusses possible roles for ubiquitylation in the molecular mechanisms that underlie the efficient recognition and repair of DNA damage, particularly that induced by ultraviolet light irradiation, in preventing damage-induced mutagenesis as well as carcinogenesis.
Collapse
Affiliation(s)
- Kaoru Sugasawa
- Genome Damage Response Research Unit, Discovery Research Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
6
|
Chen Z, Xu XS, Harrison J, Wang G. Defining the function of xeroderma pigmentosum group F protein in psoralen interstrand cross-link-mediated DNA repair and mutagenesis. Biochem J 2004; 379:71-8. [PMID: 14728600 PMCID: PMC1224063 DOI: 10.1042/bj20031143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 11/10/2003] [Accepted: 01/16/2004] [Indexed: 11/17/2022]
Abstract
Many commonly used drugs, such as psoralen and cisplatin, can generate a very unique type of DNA damage, namely ICL (interstrand cross-link). An ICL can severely block DNA replication and transcription and cause programmed cell death. The molecular mechanism of repairing the ICL damage has not been well established. We have studied the role of XPF (xeroderma pigmentosum group F) protein in psoralen-induced ICL-mediated DNA repair and mutagenesis. The results obtained from our mutagenesis studies revealed a very similar mutation frequency in both human normal fibroblast cells and XPF cells. The mutation spectra generated in both cells, however, were very different: most of the mutations generated in the normal fibroblast cells were T167-->A transversions, whereas most of the mutations generated in the XPF cells were T167-->G transversions. When a wild-type XPF gene cDNA was stably transfected into the XPF cells, the T167-->A mutations were increased and the T167-->G mutations were decreased. We also determined the DNA repair capability of the XPF cells using both the host-cell reactivation and the in vitro DNA repair assays. The results obtained from the host-cell reactivation experiments revealed an effective reactivation of a luciferase reporter gene from the psoralen-damaged plasmid in the XPF cells. The results obtained from the in vitro DNA repair experiments demonstrated that the XPF nuclear extract is normal in introducing dual incisions during the nucleotide excision repair process. These results suggest that the XPF protein has important roles in the psoralen ICL-mediated DNA repair and mutagenesis.
Collapse
MESH Headings
- Base Sequence
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Cells, Cultured/radiation effects
- Cross-Linking Reagents/pharmacology
- DNA Adducts/metabolism
- DNA Damage
- DNA Repair/genetics
- DNA Repair/physiology
- DNA, Complementary/genetics
- DNA, Recombinant/drug effects
- DNA, Recombinant/genetics
- DNA, Recombinant/radiation effects
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/radiation effects
- Genes, Reporter
- Genes, Suppressor
- Genes, Synthetic/drug effects
- Genes, Synthetic/radiation effects
- Humans
- Luciferases/biosynthesis
- Luciferases/genetics
- Molecular Sequence Data
- Mutagenesis
- Mutagenesis, Site-Directed
- Oligonucleotides/pharmacology
- Photochemistry
- Plasmids/drug effects
- Plasmids/radiation effects
- RNA, Transfer/genetics
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Transfection
- Trioxsalen/analogs & derivatives
- Trioxsalen/pharmacology
- Ultraviolet Rays
- Xeroderma Pigmentosum/genetics
- Xeroderma Pigmentosum/metabolism
- Xeroderma Pigmentosum/pathology
Collapse
Affiliation(s)
- Zhiwen Chen
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Avenue, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
7
|
Abstract
Although the overview above provides a partial molecular picture of the early stages of stepwise hepatocarcinogenesis. it should be emphasized that tumor and nontumor liver contain multiple changes, and that there is variability in their profile among different patients even within single studies. Variability in the number and types of genetic changes has also been observed geographically, and may be dependent upon the etiology of the tumor (viral, chemical or both). Interestingly, HBxAg inactivates tumor suppressors (such as p53 [by direct binding] and Rb [by stimulating its phosphorylation]) early in carcinogenesis that are mutated later during tumor progression. HBxAg also constitutively activates signal transduction pathways, such as those involving c-jun and ras, and activates oncogenes,such as c-nloc, that are otherwise activated by 3-catenin mutations. These findings suggest common molecular targets in hepatocarcinogenesis, despite different mechanisms of activation or inactivation. These observations need to be exploited in future drug discovery and in the development of new therapeutics. Heterogeneity in the mechanisms of tumor development, evidenced by the differences in the up- and down regulated genes reported in micro array analyses, as well as in the genetic loci that undergo mutation or LOH indifferent reports, has now been well documented. This suggests that there are multiple pathways to HCC, and that there is redundancy in the pathways that regulate cell growth and survival. These findings also reflect that,although hepatocarcinogenesis is multistep, the molecular changes that underpin histopathological changes in tumor development are likely to be different or only partially overlapping in individual tumors. Overall, the consequences of these changes suggest that the pathogenesis of HCC is accompanied by a progressive loss of differentiation, loss of normal cell adhesion, loss of the ECM, and constitutive activation of selected signal transduction pathways that promote cell growth and survival. Although mechanisms are important, attention also has to be paid to the target genes whose altered expression actually mediate the neoplastic phenotype. Other key avenues of work need to be explored. For example, it will be important to try to identify germline mutations in HBV-infected patients that are passed on to their children, resulting in the development of HCC in childhood. Clinical materials will also be important for the validation of new markers with diagnostic or prognostic potential. In this context, there is an urgent need to establish simple and low-cost tests based upon molecular changes that are hallmarks of HCC development. Identification of patients with early HCC will also significantly increase survival through its impact upon treatment. The discovery and validation of HCC markers may permit accurate staging of lesions, determine the proximity of such lesions to malignancy, and determine whether lesions with a particular genetic profile are still capable of remodeling through appropriate therapeutic intervention. The efficient reintroduction of the relevant tumor suppressors, or the inhibition of oncogene expression by siRNA, provide just some of the additional opportunities that will ultimately be useful in patient treatment. Together, these approaches will go far in reducing the very high morbidity and mortality associated with HCC.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
8
|
Inoki T, Yamagami S, Inoki Y, Tsuru T, Hamamoto T, Kagawa Y, Mori T, Endo H. Human DDB2 splicing variants are dominant negative inhibitors of UV-damaged DNA repair. Biochem Biophys Res Commun 2004; 314:1036-43. [PMID: 14751237 DOI: 10.1016/j.bbrc.2004.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Damaged DNA-binding protein (DDB) is a heterodimer (DDB1 and DDB2), which is implicated in the repair of UV-irradiated DNA damage. Here we have identified four DDB2 variants from HeLa cells (D1-D4) that are generated by alternative splicing. Analysis of tissue distribution by RT-PCR indicates that D1 is the most highly expressed in human brain and heart. A DNA repair assay revealed that both D1 and D2 are dominant negative inhibitors. Electrophoresis mobility shift assays indicated that D1 and D2 are not part of the damaged DNA-protein complex. Co-immunoprecipitation studies show that DDB2-WT interacts with D1 and itself. Nuclear import of DDB1 was less induced by transfection with D1 than WT. Based on these results, D1 and D2 are dominant negative inhibitors of DNA repair, which is probably due to disruption of complex formation between DDB1 and DDB2-WT and of DDB1 nuclear import.
Collapse
Affiliation(s)
- Taeko Inoki
- Department of Biochemistry, Jichi Medical School, Tochigi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ishibashi T, Kimura S, Yamamoto T, Furukawa T, Takata KI, Uchiyama Y, Hashimoto J, Sakaguchi K. Rice UV-damaged DNA binding protein homologues are most abundant in proliferating tissues. Gene 2003; 308:79-87. [PMID: 12711392 DOI: 10.1016/s0378-1119(03)00447-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultraviolet-damaged DNA binding protein (UV-DDB) is an important factor involved in DNA repair. To study the role of UV-DDB, we attempted to obtain the cDNA and the protein of a plant UV-DDB. We succeeded in isolating both genes for UV-DDB subunits from rice (Oryza sativa cv. Nipponbare), designated as OsUV-DDB1 and OsUV-DDB2. OsUV-DDB2 (65 kDa) was much larger than human UV-DDB2, but immunoprecipitation and gel mobility shift assay suggested that OsUV-DDB2 is a plant counterpart of UV-DDB2. The transcripts were expressed in proliferating tissues such as the meristem, but were detected at only low levels in the mature leaves, although the leaves are strongly exposed to UV. These transcripts were induced in the meristem after UV-irradiation. The expression levels of OsUV-DDB were significantly reduced when cell proliferation was temporarily halted. These results indicated that the level of OsUV-DDB expression is correlated with cell proliferation, and its expression may be required mostly for DNA repair in DNA replication.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Northern
- Blotting, Western
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Plant/radiation effects
- Meristem/genetics
- Meristem/radiation effects
- Molecular Sequence Data
- Oryza/genetics
- Oryza/metabolism
- Oryza/radiation effects
- Plant Leaves/genetics
- Plant Leaves/metabolism
- Plant Leaves/radiation effects
- Plant Roots/genetics
- Plant Roots/metabolism
- Plant Roots/radiation effects
- Plant Shoots/genetics
- Plant Shoots/radiation effects
- Protein Binding
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Plant/radiation effects
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Time Factors
- Ultraviolet Rays
Collapse
Affiliation(s)
- Toyotaka Ishibashi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
UV-damaged DNA-binding protein (UV-DDB) is composed of two subunits, DDB1 (p127) and DDB2 (p48). Mutations in the DDB2 gene inactivate UV-DDB in individuals from complementation group E of xeroderma pigmentosum (XP-E), an autosomal recessive disease characterized by sun sensitivity, severe risk for skin cancer and defective nucleotide excision repair. UV-DDB is also deficient in many rodent tissues, exposing a shortcoming in rodent models for cancer. In vitro, UV-DDB binds to cyclobutane pyrimidine dimers (CPDs), 6-4 photoproducts and other DNA lesions, stimulating the excision of CPDs, and to a lesser extent, of 6-4 photoproducts. In vivo, UV-DDB plays an important role in the p53-dependent response of mammalian cells to DNA damage. When cells are exposed to UV, the resulting accumulation of p53 activates DDB2 transcription, which leads to increased levels of UV-DDB. Binding of UV-DDB to CPDs targets these lesions for global genomic repair, suppressing mutations without affecting UV survival. Apparently, cells are able to survive with unrepaired CPDs because of the activity of bypass DNA polymerases. Finally, there is evidence that UV-DDB may have roles in the cell that are distinct from DNA repair.
Collapse
Affiliation(s)
- Jean Tang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305-5151, USA
| | | |
Collapse
|
11
|
Sun NK, Lu HP, Chao CCK. Identification of rat DDB1, a putative DNA repair protein, and functional correlation with its damaged-DNA recognition activity. J Biomed Sci 2002; 9:371-80. [PMID: 12145536 DOI: 10.1007/bf02256594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Recognition and incision of UV-DNA adducts play key roles in the efficacy of nucleotide excision repair. Damaged-DNA recognition activity has been identified from primate cells as a complex of DDB1 (127-kD) and DDB2 (48-kD) subunits. However, the function of damaged-DNA binding proteins (DDBs) in damaged-DNA recognition is not well understood. To assess the functional correlation between DDBs and UV-damaged-DNA recognition activity, we identified UV-damaged-DNA recognition activities in rodent cell lines. There is a cell type-dependent expression of DDB1 and DDB2. Rodent cells had less abundant DDBs and lower UV-damaged-DNA recognition activity than did human tumor cells. Interestingly, the profusion of DDBs is associated with UV-damaged-DNA recognition activity in these cell lines. We also discovered tissue-dependent expression of DDBs and its functional correlation with UV-damaged-DNA recognition activity. cDNA (3850 nucleotides) from rat ddb1 was isolated. It contained the complete length of the open reading frame that encodes an 1140-amino-acid polypeptide with a predicted molecular weight of 126.8 kD. The predicted protein size from the rat ddb1 gene resembles that from human DDB1 (127 kD). Rat DDB1 shares highly conserved sequencing (greater than 98% similarity) with those of mouse, human, and monkey. Rat and fruit fly DDB1 exhibit 62.23% identity and 57.66% homology. The evolutionary conservation of the DDB1 sequence suggests that DDB1 may play a pivotal role in mammals as well as in other eukaryotes. However, overexpression of DDB1 did not augment UV-damaged-DNA recognition activity in human HeLa, hamster V79, or rat PC12 cells. In contrast, restricting DDB2 expression by antisense ddb2 partially inhibited UV-damaged-DNA recognition activity in cells, whereas overexpressing DDB2 through a recombinant ddb2 adenovirus partly restored the recognition activity of these cells. These findings support the notion that DDB abundance is functionally correlated with UV-damaged-DNA recognition activity. These results also suggest that the profusion of DDB2, but not DDB1, may moderate UV-damaged-DNA recognition activity.
Collapse
Affiliation(s)
- Nian-Kang Sun
- Tumor Biology Laboratory, Department of Biochemistry, Chang Gung, University, Taoyuan, Taiwan, ROC
| | | | | |
Collapse
|
12
|
Abstract
The DDB2 gene, which is mutated in xeroderma pigmentosum group E, enhances global genomic repair of cyclobutane pyrimidine dimers and suppresses UV-induced mutagenesis. Because DDB2 transcription increases after DNA damage in a p53-dependent manner, we searched for and found a region in the human DDB2 gene that binds and responds transcriptionally to p53. The corresponding region in the mouse DDB2 gene shared significant sequence identity with the human gene but was deficient for p53 binding and transcriptional activation. Furthermore, when mouse cells were exposed to UV, DDB2 transcription remained unchanged, despite the accumulation of p53 protein. These results demonstrate direct activation of the human DDB2 gene by p53. They also explain an important difference in DNA repair between humans and mice and show how mouse models can be improved to better reflect cancer susceptibility in humans.
Collapse
Affiliation(s)
- Thomas Tan
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5151, USA
| | | |
Collapse
|
13
|
Sun NK, Kamarajan P, Huang H, Chao CCK. Restoration of UV sensitivity in UV-resistant HeLa cells by antisense-mediated depletion of damaged DNA-binding protein 2 (DDB2). FEBS Lett 2002; 512:168-72. [PMID: 11852074 DOI: 10.1016/s0014-5793(02)02250-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Damaged DNA-binding activity comprises two major protein components, DDB1 and DDB2, which are implicated in the repair of ultraviolet (UV) radiation-induced DNA damage. The possible role of DDB2 as a determinant of cellular sensitivity to UV was investigated. The abundance of DDB2 in UV-resistant HeLa cell lines was increased compared with that in the parental UV-sensitive cells. Stable transfection of the resistant cells with DDB2 antisense cDNA resulted in marked depletion of DDB2 protein and restored cellular sensitivity to UV-induced apoptosis. Whereas the extent of UV-induced activation of apoptosis executioners, including DNA fragmentation factor, and caspase-3 were reduced in the UV-resistant cells compared with those apparent in the sensitive cells, depletion of DDB2 from the resistant cells restored the normal activation patterns for these proteins. In contrast, overexpressing DDB2 in DDB2-depleted cells with recombinant adenovirus, which carries ddb2 cDNA, markedly inhibited the extent of UV-induced activation of DNA fragmentation factor, and caspase-3. Interestingly, a mutated form of DDB2, which is defective in interacting with DDB1 and binding to UV-damaged DNA, also markedly inhibited the activation of apoptosis executioners. These results indicate that DDB2 is a modulator of UV-induced apoptosis, and that UV resistance can be overcome by inhibition of DDB2. The findings also suggest that modulation of UV-induced apoptosis by DDB2 may be independent of DNA repair.
Collapse
Affiliation(s)
- Nian Kang Sun
- Tumor Biology Laboratory, Department of Biochemistry, Chang Gung University, 333, ROC, Taoyuan, Taiwan
| | | | | | | |
Collapse
|
14
|
Nag A, Datta A, Yoo K, Bhattacharyya D, Chakrabortty A, Wang X, Slagle BL, Costa RH, Raychaudhuri P. DDB2 induces nuclear accumulation of the hepatitis B virus X protein independently of binding to DDB1. J Virol 2001; 75:10383-92. [PMID: 11581406 PMCID: PMC114612 DOI: 10.1128/jvi.75.21.10383-10392.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2001] [Accepted: 07/30/2001] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B virus (HBV) X protein (HBx) is critical for the life cycle of the virus. HBx associates with several host cell proteins including the DDB1 subunit of the damaged-DNA binding protein DDB. Recent studies on the X protein encoded by the woodchuck hepadnavirus have provided correlative evidence indicating that the interaction with DDB1 is important for establishment of infection by the virus. In addition, the interaction with DDB1 has been implicated in the nuclear localization of HBx. Because the DDB2 subunit of DDB is required for the nuclear accumulation of DDB1, we investigated the role of DDB2 in the nuclear accumulation of HBx. Here we show that expression of DDB2 increases the nuclear levels of HBx. Several C-terminal deletion mutants of DDB2 that fail to bind DDB1 are able to associate with HBx, suggesting that DDB2 may associate with HBx independently of binding to DDB1. We also show that DDB2 enhances the nuclear accumulation of HBx independently of binding to DDB1, since a mutant that does not bind DDB1 is able to enhance the nuclear accumulation of HBx. HBV infection is associated with liver pathogenesis. We show that the nuclear levels of DDB1 and DDB2 are tightly regulated in hepatocytes. Studies with regenerating mouse liver indicate that during late G1 phase the nuclear levels of both subunits of DDB are transiently increased, followed by a sharp decrease in S phase. Taken together, these results suggest that DDB1 and DDB2 would participate in the nuclear functions of HBx effectively only during the late-G1 phase of the cell cycle.
Collapse
Affiliation(s)
- A Nag
- Department of Biochemistry and Molecular Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nag A, Bondar T, Shiv S, Raychaudhuri P. The xeroderma pigmentosum group E gene product DDB2 is a specific target of cullin 4A in mammalian cells. Mol Cell Biol 2001; 21:6738-47. [PMID: 11564859 PMCID: PMC99852 DOI: 10.1128/mcb.21.20.6738-6747.2001] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2001] [Accepted: 07/19/2001] [Indexed: 01/16/2023] Open
Abstract
The damaged-DNA binding protein DDB consists of two subunits, DDB1 (127 kDa) and DDB2 (48 kDa). Mutations in the DDB2 subunit have been detected in patients suffering from the repair deficiency disease xeroderma pigmentosum (group E). In addition, recent studies suggested a role for DDB2 in global genomic repair. DDB2 also exhibits transcriptional activity. We showed that expression of DDB1 and DDB2 stimulated the activity of the cell cycle regulatory transcription factor E2F1. Here we show that DDB2 is a cell cycle-regulated protein. It is present at a low level in growth-arrested primary fibroblasts, and after release the level peaks at the G(1)/S boundary. The cell cycle regulation of DDB2 involves posttranscriptional mechanisms. Moreover, we find that an inhibitor of 26S proteasome increases the level of DDB2, suggesting that it is regulated by the ubiquitin-proteasome pathway. Our previous study indicated that the cullin family protein Cul-4A associates with the DDB2 subunit. Because cullins are involved in the ubiquitin-proteasome pathway, we investigated the role of Cul-4A in regulating DDB2. Here we show that DDB2 is a specific target of Cul-4A. Coexpression of Cul-4A, but not Cul-1 or other highly related cullins, increases the ubiquitination and the decay rate of DDB2. A naturally occurring mutant of DDB2 (2RO), which does not bind Cul-4A, is not affected by coexpression of Cul-4A. Studies presented here identify a specific function of the Cul-4A gene, which is amplified and overexpressed in breast cancers.
Collapse
Affiliation(s)
- A Nag
- Department of Biochemistry and Molecular Biology (M/C 536), University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
16
|
Lin-Marq N, Bontron S, Leupin O, Strubin M. Hepatitis B virus X protein interferes with cell viability through interaction with the p127-kDa UV-damaged DNA-binding protein. Virology 2001; 287:266-74. [PMID: 11531405 DOI: 10.1006/viro.2001.1036] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The hepatitis B virus X protein (HBx) is essential for establishing natural viral infection and has been implicated in the development of liver cancer associated with chronic infection. The basis for HBx function in either process is not understood. In cell culture, HBx exhibits pleiotropic activities affecting transcription, DNA repair, cell growth, and apoptotic cell death. Numerous cellular proteins including the p127-kDa subunit of UV-damaged DNA-binding activity have been reported to interact with HBx but the functional significance of these interactions remains unclear. Here we show that the binding of HBx to p127 interferes with cell viability. Mutational analysis reveals that HBx contacts p127 via a region to which no function has been assigned previously. An HBx variant bearing a single-charge reversal substitution within this region loses p127 binding and concomitant cytotoxicity. This mutant regains activity when directly fused to p127. These studies confirm that p127 is an important cellular target of HBx, and they indicate that HBx does not exert its effect by sequestering p127, and thereby preventing its normal function, but instead by conferring to p127 a deleterious activity.
Collapse
Affiliation(s)
- N Lin-Marq
- Department of Genetics and Microbiology, University Medical Centre, Rue Michel-Servet 1, Geneva 4, 1211, Switzerland
| | | | | | | |
Collapse
|
17
|
Datta A, Bagchi S, Nag A, Shiyanov P, Adami GR, Yoon T, Raychaudhuri P. The p48 subunit of the damaged-DNA binding protein DDB associates with the CBP/p300 family of histone acetyltransferase. Mutat Res 2001; 486:89-97. [PMID: 11425514 DOI: 10.1016/s0921-8777(01)00082-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DDB has been implicated in DNA repair as well as transcription. Mutations in DDB have been correlated with the repair-deficiency disease, xeroderma pigmentosum group E (XP-E). The XP-E cells exhibit deficiencies in global genomic repair, suggesting a role for DDB in that process. DDB also possesses a transcription stimulatory activity. We showed that DDB could function as a transcriptional partner of E2F1. But the mechanism by which DDB stimulates E2F-regulated transcription or carry out its DNA repair function is not understood. To investigate the mechanisms, we looked for nuclear proteins that interact with DDB. Here we show that DDB associates with the CBP/p300 family of proteins, in vivo and in vitro. We suggest that DDB participates in global genomic repair by recruiting CBP/p300 to the damaged-chromatin. It is possible that the histone acetyltransferase activities of the CBP/p300 proteins induce chromatin remodeling at the damaged-sites to allow recruitment of the repair complexes. The observation offers insights into both transcription and repair functions of DDB.
Collapse
Affiliation(s)
- A Datta
- Department of Biochemistry and Molecular Biology (M/C 536), College of Medicine, University of Illinois at Chicago, 1819 W. Polk Street, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Wang G, Chen Z, Zhang S, Wilson GL, Jing K. Detection and determination of oligonucleotide triplex formation-mediated transcription-coupled DNA repair in HeLa nuclear extracts. Nucleic Acids Res 2001; 29:1801-7. [PMID: 11292853 PMCID: PMC31311 DOI: 10.1093/nar/29.8.1801] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2000] [Revised: 02/20/2001] [Accepted: 02/20/2001] [Indexed: 11/12/2022] Open
Abstract
Transcription-coupled repair (TCR) plays an important role in removing DNA damage from actively transcribed genes. It has been speculated that TCR is the most important mechanism for repairing DNA damage in non-dividing cells such as neurons. Therefore, abnormal TCR may contribute to the development of many age-related and neurodegenerative diseases. However, the molecular mechanism of TCR is not well understood. Oligonucleotide DNA triplex formation provides an ideal system to dissect the molecular mechanism of TCR since triplexes can be formed in a sequence-specific manner to inhibit transcription of target genes. We have recently studied the molecular mechanism of triplex-forming oligonucleotide (TFO)-mediated TCR in HeLa nuclear extracts. Using plasmid constructs we demonstrate that the level of TFO-mediated DNA repair activity is directly correlated with the level of transcription of the plasmid in HeLa nuclear extracts. TFO-mediated DNA repair activity was further linked with transcription since the presence of rNTPs in the reaction was essential for AG30-mediated DNA repair activity in HeLa nuclear extracts. The involvement of individual components, including TFIID, TFIIH, RNA polymerase II and xeroderma pigmentosum group A (XPA), in the triplex-mediated TCR process was demonstrated in HeLa nuclear extracts using immunodepletion assays. Importantly, our studies also demonstrated that XPC, a component involved in global genome DNA repair, is involved in the AG30-mediated DNA repair process. The results obtained in this study provide an important new understanding of the molecular mechanisms involved in the TCR process in mammalian cells.
Collapse
Affiliation(s)
- G Wang
- Department of Cell Biology and Neuroscience, University of South Alabama College of Medicine, 307 University Boulevard, MSB 2312, Mobile, AL 36688-0002, USA.
| | | | | | | | | |
Collapse
|
19
|
Ronen A, Glickman BW. Human DNA repair genes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 37:241-283. [PMID: 11317342 DOI: 10.1002/em.1033] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DNA repair systems are essential for the maintenance of genome integrity. Consequently, the disregulation of repair genes can be expected to be associated with significant, detrimental health effects, which can include an increased prevalence of birth defects, an enhancement of cancer risk, and an accelerated rate of aging. Although original insights into DNA repair and the genes responsible were largely derived from studies in bacteria and yeast, well over 125 genes directly involved in DNA repair have now been identified in humans, and their cDNA sequence established. These genes function in a diverse set of pathways that involve the recognition and removal of DNA lesions, tolerance to DNA damage, and protection from errors of incorporation made during DNA replication or DNA repair. Additional genes indirectly affect DNA repair, by regulating the cell cycle, ostensibly to provide an opportunity for repair or to direct the cell to apoptosis. For about 70 of the DNA repair genes listed in Table I, both the genomic DNA sequence and the cDNA sequence and chromosomal location have been elucidated. In 45 cases single-nucleotide polymorphisms have been identified and, in some cases, genetic variants have been associated with specific disorders. With the accelerating rate of gene discovery, the number of identified DNA repair genes and sequence variants is quickly rising. This report tabulates the current status of what is known about these genes. The report is limited to genes whose function is directly related to DNA repair.
Collapse
Affiliation(s)
- A Ronen
- Centre for Environmental Health, University of Victoria, Victoria, British Columbia, Canada.
| | | |
Collapse
|
20
|
Vermeulen W, Bergmann E, Auriol J, Rademakers S, Frit P, Appeldoorn E, Hoeijmakers JH, Egly JM. Sublimiting concentration of TFIIH transcription/DNA repair factor causes TTD-A trichothiodystrophy disorder. Nat Genet 2000; 26:307-13. [PMID: 11062469 DOI: 10.1038/81603] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The repair-deficient form of trichothiodystrophy (TTD) most often results from mutations in the genes XPB or XPD, encoding helicases of the transcription/repair factor TFIIH. The genetic defect in a third group, TTD-A, is unknown, but is also caused by dysfunctioning TFIIH. None of the TFIIH subunits carry a mutation and TFIIH from TTD-A cells is active in both transcription and repair. Instead, immunoblot and immunofluorescence analyses reveal a strong reduction in the TFIIH concentration. Thus, the phenotype of TTD-A appears to result from sublimiting amounts of TFIIH, probably due to a mutation in a gene determining the complex stability. The reduction of TFIIH mainly affects its repair function and hardly influences transcription.
Collapse
Affiliation(s)
- W Vermeulen
- Department of Cell Biology and Genetics, Medical Genetics Center, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Tang JY, Hwang BJ, Ford JM, Hanawalt PC, Chu G. Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol Cell 2000; 5:737-44. [PMID: 10882109 PMCID: PMC2894271 DOI: 10.1016/s1097-2765(00)80252-x] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
UV-damaged DNA-binding activity (UV-DDB) is deficient in some xeroderma pigmentosum group E individuals due to mutation of the p48 gene, but its role in DNA repair has been obscure. We found that UV-DDB is also deficient in cell lines and primary tissues from rodents. Transfection of p48 conferred UV-DDB to hamster cells, and enhanced removal of cyclobutane pyrimidine dimers (CPDs) from genomic DNA and from the nontranscribed strand of an expressed gene. Expression of p48 suppressed UV-induced mutations arising from the nontranscribed strand, but had no effect on cellular UV sensitivity. These results define the role of p48 in DNA repair, demonstrate the importance of CPDs in mutagenesis, and suggest how rodent models can be improved to better reflect cancer susceptibility in humans.
Collapse
Affiliation(s)
- Jean Y. Tang
- Department of Medicine Stanford University Stanford, California 94305
- Department of Biochemistry Stanford University Stanford, California 94305
| | - Byung Joon Hwang
- Department of Medicine Stanford University Stanford, California 94305
- Department of Biochemistry Stanford University Stanford, California 94305
| | - James M. Ford
- Department of Medicine Stanford University Stanford, California 94305
- Department of Genetics Stanford University Stanford, California 94305
| | - Philip C. Hanawalt
- Department of Biological Sciences Stanford University Stanford, California 94305
| | - Gilbert Chu
- Department of Medicine Stanford University Stanford, California 94305
- Department of Biochemistry Stanford University Stanford, California 94305
- To whom correspondence should be addressed ()
| |
Collapse
|
22
|
Abstract
Human DDB (Damaged DNA Binding protein) is a heterodimer of 48 and 127kDa subunits whose activity is absent from cell strains derived from a subset of Xeroderma Pigmentosum (XP) complementation group E individuals (Ddb(-)) [Keeney, S., Wein, H., and Linn, S., (1992). Mut. Res. 273, 49-56]. Whereas in vivo DNA repair appears to be compromised in both Ddb(-) and Ddb(+) XPE cells, DDB activity is not necessary for nucleotide excision repair (NER) in vitro. In this study, the presence of a specific UV-damaged DNA binding activity in mouse cell-free extracts that is comparable to the activity observed in HeLa cells was demonstrated. The mouse DDB2 cDNA, coding for DDB p48 subunit, was cloned and the partial genomic structure of DDB2 was obtained. A search of current databases revealed amino acid sequences of mouse and Drosophila predicted p127 homologues, but not of a Drosophila p48 homologue. The alignment of these higher eukaryotic p127 sequences uncovered the presence of three highly conserved domains in the p127 polypeptides which we hypothesize could function in DNA binding, transcription-transactivation, and protein-protein interaction, respectively.
Collapse
Affiliation(s)
- F Zolezzi
- Division of Biochemistry, Barker Hall, University of California, Berkeley, CA, USA
| | | |
Collapse
|
23
|
Murray JM, Johnson DI. Isolation and characterization of Nrf1p, a novel negative regulator of the Cdc42p GTPase in Schizosaccharomyces pombe. Genetics 2000; 154:155-65. [PMID: 10628977 PMCID: PMC1460887 DOI: 10.1093/genetics/154.1.155] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Cdc42p GTPase and its regulators, such as the Saccharomyces cerevisiae Cdc24p guanine-nucleotide exchange factor, control signal-transduction pathways in eukaryotic cells leading to actin rearrangements. A cross-species genetic screen was initiated based on the ability of negative regulators of Cdc42p to reverse the Schizosaccharomyces pombe Cdc42p suppression of a S. cerevisiae cdc24(ts) mutant. A total of 32 S. pombe nrf (negative regulator of Cdc forty two) cDNAs were isolated that reversed the suppression. One cDNA, nrf1(+), encoded an approximately 15 kD protein with three potential transmembrane domains and 78% amino-acid identity to a S. cerevisiae gene, designated NRF1. A S. pombe Deltanrf1 mutant was viable but overexpression of nrf1(+) in S. pombe resulted in dose-dependent lethality, with cells exhibiting an ellipsoidal morphology indicative of loss of polarized cell growth along with partially delocalized cortical actin and large vacuoles. nrf1(+) also displayed synthetic overdose phenotypes with cdc42 and pak1 alleles. Green fluorescent protein (GFP)-Cdc42p and GFP-Nrf1p colocalized to intracellular membranes, including vacuolar membranes, and to sites of septum formation during cytokinesis. GFP-Nrf1p vacuolar localization depended on the S. pombe Cdc24p homolog Scd1p. Taken together, these data are consistent with Nrf1p functioning as a negative regulator of Cdc42p within the cell polarity pathway.
Collapse
Affiliation(s)
- J M Murray
- Department of Microbiology and Molecular Genetics and the Markey Center for Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | | |
Collapse
|
24
|
Lambert MW, Lambert WC. DNA repair and chromatin structure in genetic diseases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:257-310. [PMID: 10506834 DOI: 10.1016/s0079-6603(08)60725-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interaction of DNA repair proteins with damaged DNA in eukaryotic cells is influenced by the packaging of DNA into chromatin. The basic repeating unit of chromatin, the nucleosome, plays an important role in regulating accessibility of repair proteins to sites of damage in DNA. There are a number of different pathways fundamental to the DNA repair process. Elucidation of the proteins involved in these pathways and the mechanisms they utilize for interacting with damaged nucleosomal and nonnucleosomal DNA has been aided by studies of genetic diseases where there are defects in the DNA repair process. Two of these diseases are xeroderma pigmentosum (XP) and Fanconi anemia (FA). Cells from patients with these disorders are similar in that they have defects in the initial steps of the repair process. However, there are a number of important differences in the nature of these defects. One of these is in the ability of repair proteins from XP and FA cells to interact with damaged nucleosomal DNA. In XP complementation group A (XPA) cells, for example, endonucleases present in a chromatin-associated protein complex involved in the initial steps in the repair process are defective in their ability to incise damaged nucleosomal DNA, but, like the normal complexes, can incise damaged naked DNA. In contrast, in FA complementation group A (FA-A) cells, these complexes are equally deficient in their ability to incise damaged naked and similarly damaged nucleosomal DNA. This ability to interact with damaged nucleosomal DNA correlates with the mechanism of action these endonucleases use for locating sites of damage. Whereas the FA-A and normal endonucleases act by a processive mechanism of action, the XPA endonucleases locate sites of damage distributively. Thus the mechanism of action utilized by a DNA repair enzyme may be of critical importance in its ability to interact with damaged nucleosomal DNA.
Collapse
Affiliation(s)
- M W Lambert
- Department of Pathology, UMDNJ-New Jersey Medical School, Newark 07103, USA
| | | |
Collapse
|
25
|
Fujiwara Y, Masutani C, Mizukoshi T, Kondo J, Hanaoka F, Iwai S. Characterization of DNA recognition by the human UV-damaged DNA-binding protein. J Biol Chem 1999; 274:20027-33. [PMID: 10391953 DOI: 10.1074/jbc.274.28.20027] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The UV-damaged DNA-binding (UV-DDB) protein is the major factor that binds DNA containing damage caused by UV radiation in mammalian cells. We have investigated the DNA recognition by this protein in vitro, using synthetic oligonucleotide duplexes and the protein purified from a HeLa cell extract. When a 32P-labeled 30-mer duplex containing the (6-4) photoproduct at a single site was used as a probe, only a single complex was detected in an electrophoretic mobility shift assay. It was demonstrated by Western blotting that both of the subunits (p48 and p127) were present in this complex. Electrophoretic mobility shift assays using various duplexes showed that the UV-DDB protein formed a specific, high affinity complex with the duplex containing an abasic site analog, in addition to the (6-4) photoproduct. By circular permutation analyses, these DNA duplexes were found to be bent at angles of 54 degrees and 57 degrees in the complexes with this protein. From the previously reported NMR studies and the fluorescence resonance energy transfer experiments in the present study, it can be concluded that the UV-DDB protein binds DNA that can be bent easily at the above angle.
Collapse
Affiliation(s)
- Y Fujiwara
- Department of Bioorganic Chemistry, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Shiyanov P, Hayes SA, Donepudi M, Nichols AF, Linn S, Slagle BL, Raychaudhuri P. The naturally occurring mutants of DDB are impaired in stimulating nuclear import of the p125 subunit and E2F1-activated transcription. Mol Cell Biol 1999; 19:4935-43. [PMID: 10373543 PMCID: PMC84302 DOI: 10.1128/mcb.19.7.4935] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/1999] [Accepted: 04/23/1999] [Indexed: 11/20/2022] Open
Abstract
The human UV-damaged-DNA binding protein DDB has been linked to the repair deficiency disease xeroderma pigmentosum group E (XP-E), because a subset of XP-E patients lack the damaged-DNA binding function of DDB. Moreover, the microinjection of purified DDB complements the repair deficiency in XP-E cells lacking DDB. Two naturally occurring XP-E mutations of DDB, 82TO and 2RO, have been characterized. They have single amino acid substitutions (K244E and R273H) within the WD motif of the p48 subunit of DDB, and the mutated proteins lack the damaged-DNA binding activity. In this report, we describe a new function of the p48 subunit of DDB, which reveals additional defects in the function of the XP-E mutants. We show that when the subunits of DDB were expressed individually, p48 localized in the nucleus and p125 localized in the cytoplasm. The coexpression of p125 with p48 resulted in an increased accumulation of p125 in the nucleus, indicating that p48 plays a critical role in the nuclear localization of p125. The mutant forms of p48, 2RO and 82TO, are deficient in stimulating the nuclear accumulation of the p125 subunit of DDB. In addition, the mutant 2RO fails to form a stable complex with the p125 subunit of DDB. Our previous studies indicated that DDB can associate with the transcription factor E2F1 and can function as a transcriptional partner of E2F1. Here we show that the two mutants, while they associate with E2F1 as efficiently as wild-type p48, are severely impaired in stimulating E2F1-activated transcription. This is consistent with our observation that both subunits of DDB are required to stimulate E2F1-activated transcription. The results provide insights into the functions of the subunits of DDB and suggest a possible link between the role of DDB in E2F1-activated transcription and the repair deficiency disease XP-E.
Collapse
Affiliation(s)
- P Shiyanov
- Department of Biochemistry and Molecular Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
van Steeg H, Kraemer KH. Xeroderma pigmentosum and the role of UV-induced DNA damage in skin cancer. MOLECULAR MEDICINE TODAY 1999; 5:86-94. [PMID: 10200950 DOI: 10.1016/s1357-4310(98)01394-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Xeroderma pigmentosum (XP) is a rare, autosomal recessive disease that is characterized by the extreme sensitivity of the skin to sunlight. Compared to normal individuals, XP patients have a more than 1000-fold increased risk of developing cancer on sun-exposed areas of the skin. Genetic and molecular analyses have revealed that the repair of ultraviolet (UV)-induced DNA damage is impaired in XP patients owing to mutations in genes that form part of a DNA-repair pathway known as nucleotide excision repair (NER). Two other diseases, Cockayne syndrome (CS) and the photosensitive form of trichothiodystrophy (TTD), are linked to a defect in the NER pathway. Strikingly, although CS and TTD patients are UV-sensitive, they do not develop skin cancer. The recently developed animal models that mimic the human phenotypes of XP, CS and TTD will contribute to a better understanding of the etiology of these diseases and the role of UV-induced DNA damage in the development of skin cancer.
Collapse
Affiliation(s)
- H van Steeg
- National Institute of Public Health and the Environment, Dept of Carcinogenesis, Mutagenesis and Genetics, Bilthoven, The Netherlands.
| | | |
Collapse
|
28
|
Hwang BJ, Ford JM, Hanawalt PC, Chu G. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc Natl Acad Sci U S A 1999; 96:424-8. [PMID: 9892649 PMCID: PMC15152 DOI: 10.1073/pnas.96.2.424] [Citation(s) in RCA: 410] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In human cells, efficient global genomic repair of DNA damage induced by ultraviolet radiation requires the p53 tumor suppressor, but the mechanism has been unclear. The p48 gene is required for expression of an ultraviolet radiation-damaged DNA binding activity and is disrupted by mutations in the subset of xeroderma pigmentosum group E cells that lack this activity. Here, we show that p48 mRNA levels strongly depend on basal p53 expression and increase further after DNA damage in a p53-dependent manner. Furthermore, like p53(-/-) cells, xeroderma pigmentosum group E cells are deficient in global genomic repair. These results identify p48 as the link between p53 and the nucleotide excision repair apparatus.
Collapse
Affiliation(s)
- B J Hwang
- Departments of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5115, USA
| | | | | | | |
Collapse
|
29
|
Hwang BJ, Toering S, Francke U, Chu G. p48 Activates a UV-damaged-DNA binding factor and is defective in xeroderma pigmentosum group E cells that lack binding activity. Mol Cell Biol 1998; 18:4391-9. [PMID: 9632823 PMCID: PMC109023 DOI: 10.1128/mcb.18.7.4391] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A subset of xeroderma pigmentosum (XP) group E cells lack a factor that binds to DNA damaged by UV radiation. This factor can be purified to homogeneity as p125, a 125-kDa polypeptide. However, when cDNA encoding p125 is translated in vitro, only a small fraction binds to UV-damaged DNA, suggesting that a second factor is required for the activation of p125. We discovered that most hamster cell lines expressed inactive p125, which was activated in somatic cell hybrids containing human chromosome region 11p11.2-11cen. This region excluded p125 but included p48, which encodes a 48-kDa polypeptide known to copurify with p125 under some conditions. Expression of human p48 activated p125 binding in hamster cells and increased p125 binding in human cells. No such effects were observed from expression of p48 containing single amino acid substitutions from XP group E cells that lacked binding activity, demonstrating that the p48 gene is defective in those cells. Activation of p125 occurred by a "hit-and-run" mechanism, since the presence of p48 was not required for subsequent binding. Nevertheless, p48 was capable of forming a complex with p125 either bound to UV-damaged DNA or in free solution. It is notable that hamster cells fail to efficiently repair cyclobutane pyrimidine dimers in nontranscribed DNA and fail to express p48, which contains a WD motif with homology to proteins that reorganize chromatin. We propose that p48 plays a role in repairing lesions that would otherwise remain inaccessible in nontranscribed chromatin.
Collapse
Affiliation(s)
- B J Hwang
- Departments of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
30
|
Rapić Otrin V, Kuraoka I, Nardo T, McLenigan M, Eker AP, Stefanini M, Levine AS, Wood RD. Relationship of the xeroderma pigmentosum group E DNA repair defect to the chromatin and DNA binding proteins UV-DDB and replication protein A. Mol Cell Biol 1998; 18:3182-90. [PMID: 9584159 PMCID: PMC108900 DOI: 10.1128/mcb.18.6.3182] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cells from complementation groups A through G of the heritable sun-sensitive disorder xeroderma pigmentosum (XP) show defects in nucleotide excision repair of damaged DNA. Proteins representing groups A, B, C, D, F, and G are subunits of the core recognition and incision machinery of repair. XP group E (XP-E) is the mildest form of the disorder, and cells generally show about 50% of the normal repair level. We investigated two protein factors previously implicated in the XP-E defect, UV-damaged DNA binding protein (UV-DDB) and replication protein A (RPA). Three newly identified XP-E cell lines (XP23PV, XP25PV, and a line formerly classified as an XP variant) were defective in UV-DDB binding activity but had levels of RPA in the normal range. The XP-E cell extracts did not display a significant nucleotide excision repair defect in vitro, with either UV-irradiated DNA or a uniquely placed cisplatin lesion used as a substrate. Purified UV-DDB protein did not stimulate repair of naked DNA by DDB- XP-E cell extracts, but microinjection of the protein into DDB- XP-E cells could partially correct the repair defect. RPA stimulated repair in normal, XP-E, or complemented extracts from other XP groups, and so the effect of RPA was not specific for XP-E cell extracts. These data strengthen the connection between XP-E and UV-DDB. Coupled with previous results, the findings suggest that UV-DDB has a role in the repair of DNA in chromatin.
Collapse
Affiliation(s)
- V Rapić Otrin
- Section on DNA Replication, Repair, and Mutagenesis, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-2725, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hayes S, Shiyanov P, Chen X, Raychaudhuri P. DDB, a putative DNA repair protein, can function as a transcriptional partner of E2F1. Mol Cell Biol 1998; 18:240-9. [PMID: 9418871 PMCID: PMC121483 DOI: 10.1128/mcb.18.1.240] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The transcription factor E2F1 is believed to be involved in the regulated expression of the DNA replication genes. To gain insights into the transcriptional activation function of E2F1, we looked for proteins in HeLa nuclear extracts that bind to the activation domain of E2F1. Here we show that DDB, a putative DNA repair protein, associates with the activation domain of E2F1. DDB was identified as a heterodimeric protein (48 and 127 kDa) that binds to UV-damaged DNA. We show that the UV-damaged-DNA binding activity from HeLa nuclear extracts can associate with the activation domain of E2F1. Moreover, the 48-kDa subunit of DDB, synthesized in vitro, binds to a fusion protein of E2F1 depending on the C-terminal activation domain. The interaction between DDB and E2F1 can also be detected by coimmunoprecipitation experiments. Immunoprecipitation of an epitope-tagged DDB from cell extracts resulted in the coprecipitation of E2F1. In a reciprocal experiment, immunoprecipitates of E2F1 were found to contain DDB. Fractionation of HeLa nuclear extracts also revealed a significant overlap in the elution profiles of E2F1 and DDB. For instance, DDB, which does not bind to the E2F sites, was enriched in the high-salt fractions containing E2F1 during chromatography through an E2F-specific DNA affinity column. We also observed evidence for a functional interaction between DDB and E2F1 in living cells. For instance, expression of DDB specifically stimulated E2F1-activated transcription. In addition, the transcriptional activation function of a heterologous transcription factor containing the activation domain of E2F1 was stimulated by coexpression of DDB. Moreover, DDB expression could overcome the retinoblastoma protein (Rb)-mediated inhibition of E2F1-activated transcription. The results suggest that this damaged-DNA binding protein can function as a transcriptional partner of E2F1. We speculate that the damaged-DNA binding function of DDB, besides repair, might serve as a negative regulator of E2F1-activated transcription, as damaged DNA will sequester DDB and make it unavailable for E2F1. Furthermore, the binding of DDB to damaged DNA might be involved in downregulating the replication genes during growth arrest induced by damaged DNA.
Collapse
Affiliation(s)
- S Hayes
- Department of Biochemistry and Molecular Biology, University of Illinois at Chicago, 60612, USA
| | | | | | | |
Collapse
|
32
|
Otrin VR, McLenigan M, Takao M, Levine AS, Protić M. Translocation of a UV-damaged DNA binding protein into a tight association with chromatin after treatment of mammalian cells with UV light. J Cell Sci 1997; 110 ( Pt 10):1159-68. [PMID: 9191040 DOI: 10.1242/jcs.110.10.1159] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A UV-damaged DNA binding protein (UV-DDB) is the major source of UV-damaged DNA binding activity in mammalian cell extracts. This activity is defective in at least some xeroderma pigmentosum group E (XP-E) patients; microinjection of the UV-DDB protein into their fibroblasts corrects nucleotide excision repair (NER). In an in vitro reconstituted NER system, small amounts of UV-DDB stimulate repair synthesis a few fold. After exposure to UV, mammalian cells show an early dose-dependent inhibition of the extractable UV-DDB activity; this inhibition may reflect a tight association of the binding protein with UV-damaged genomic DNA. To investigate the dynamics and location of UV-DDB with respect to damaged chromatin in vivo, we utilized nuclear fractionation and specific antibodies and detected translocation of the p127 component of UV-DDB from a loose to a tight association with chromatinized DNA immediately after UV treatment. A similar redistribution was found for other NER proteins, i.e. XPA, RP-A and PCNA, suggesting their tighter association with genomic DNA after UV. These studies revealed a specific protein-protein interaction between UV-DDB/p127 and RP-A that appears to enhance binding of both proteins to UV-damaged DNA in vitro, providing evidence for the involvement of UV-DDB in the damage-recognition step of NER. Moreover, the kinetics of the reappearance of extractable UV-DDB activity after UV treatment of human cells with differing repair capacities positively correlate with the cell's capacity to repair 6–4 pyrimidine dimers (6–4 PD) in the whole genome, a result consistent with an in vivo role for UV-DDB in recognizing this type of UV lesion.
Collapse
Affiliation(s)
- V R Otrin
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
33
|
Hwang BJ, Smith AJ, Chu G. Internal sequence analysis of proteins eluted from polyacrylamide gels. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1996; 686:165-75. [PMID: 8971597 DOI: 10.1016/s0378-4347(96)00230-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have developed an elution-digestion-sequencing (EDS) method, which yields the internal amino acid sequence of partially purified proteins. The overall yield for the method was greater than 60%. The method yielded peptide peaks that could be sequenced on HPLC for all tested proteins with masses from 45 to 200.10(3) and yielded internal amino acid sequence information when as little as 10 pmol of partially purified protein was used as the starting material. The EDS method was extremely reliable and gave sequence information for each of 25 proteins tested, including high-molecular-mass proteins (M(r) > 100.10(3)) that were difficult to sequence by other methods.
Collapse
Affiliation(s)
- B J Hwang
- Department of Medicine, Stanford University Medical Center, CA 94305, USA
| | | | | |
Collapse
|
34
|
Nichols AF, Ong P, Linn S. Mutations specific to the xeroderma pigmentosum group E Ddb- phenotype. J Biol Chem 1996; 271:24317-20. [PMID: 8798680 DOI: 10.1074/jbc.271.40.24317] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The activity of a damage-specific DNA-binding protein (DDB) is absent from a subset, Ddb-, of cell strains from patients with xeroderma pigmentosum group E (XP-E). DDB is a heterodimer of 127-kDa and 48-kDa subunits. We have now identified single-base mutations in the gene of the 48-kDa subunit in cells from the three known Ddb- individuals, but not in XP-E strains that have the activity. An A --> G transition causes a K244E change in XP82TO and a G --> A transition causes an R273H change in XP2RO and XP3RO. No mutations were found in the cDNA of the 127-kDa subunit. Overexpression of p48 in insect cells greatly increases DDB activity in the cells, especially if p127 is jointly overexpressed. These results demonstrate that p48 is required for DNA binding activity, but at the same time necessitate further definition of the genetic basis of XP group E.
Collapse
Affiliation(s)
- A F Nichols
- Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720-3202, USA
| | | | | |
Collapse
|
35
|
Alexander H, Lee SK, Yu SL, Alexander S. repE--the Dictyostelium homolog of the human xeroderma pigmentosum group E gene is developmentally regulated and contains a leucine zipper motif. Nucleic Acids Res 1996; 24:2295-301. [PMID: 8710499 PMCID: PMC145941 DOI: 10.1093/nar/24.12.2295] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have cloned and characterized the Dictyostelium discoideum repE gene, a homolog of the human xeroderma pigmentosum (XP) group E gene which encodes a UV-damaged DNA binding protein. The repE gene maps to chromosome 4 and it is the first gene identified in Dictyostelium that is homologous to those involved in nucleotide excision repair and their related XP diseases in humans. The predicted protein encodes a leucine zipper motif. The repE gene is not expressed by mitotically dividing cells, and repE mRNA is first detected during the aggregation phase of development when the cells have ceased dividing and replicating genomic DNA. The mRNA level plateaus by the time the developing cells have entered multicellular aggregates and remains at the same steady-state level for the remainder of development. In addition, we have demonstrated that the level of mRNA is very low in developing cells. These observations suggest that repE may play a regulatory role in development. The data indicate that potential developmental roles for XP-related genes can be profitably studied in this system.
Collapse
Affiliation(s)
- H Alexander
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
36
|
Chu G, Mayne L. Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy: do the genes explain the diseases? Trends Genet 1996; 12:187-92. [PMID: 8984734 DOI: 10.1016/0168-9525(96)10021-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy are three distinct human syndromes associated with sensitivity to ultraviolet radiation. We review evidence that these syndromes overlap with each other and arise from mutations in genes involved in nucleotide-excision repair and RNA transcription. Attempts have been made to explain the syndromes in terms of defects in repair and transcription. These two biochemical pathways do not easily account for all the features of the syndromes. Therefore, we propose a third pathway, in which the syndromes are due, in part, to defects in a demethylation mechanism involving the excision of methylated cytosine. Perturbation of demethylation could affect the developmentally regulated expression of some genes.
Collapse
Affiliation(s)
- G Chu
- Department of Medicine, Stanford University Medical Center, CA 94305, USA.
| | | |
Collapse
|