1
|
Kobashi Y, Nakayama E, Fukumori N, Shimojima A, Tabira M, Nishimura Y, Mukae M, Muto A, Nakashima N, Okutsu K, Yoshizaki Y, Futagami T, Takamine K, Tamaki H. Homozygous gene disruption in diploid yeast through a single transformation. J Biosci Bioeng 2024; 137:31-37. [PMID: 37981488 DOI: 10.1016/j.jbiosc.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/13/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
As industrial shochu yeast is a diploid strain, obtaining a strain with mutations in both allelic genes was considered difficult. We investigated a method for disrupting two copies of a homozygous gene with a single transformation. We designed a disruption cassette containing an intact LYS5 flanked by nonfunctional ura3 gene fragments divided into the 5'- and 3'-regions. These fragments had overlapping sequences that enabled LYS5 removal as well as URA3 regeneration through loop-out. Furthermore, both ends of the disruption cassette had an additional repeat sequence that allowed the cassette to be removed from the chromosome through loop-out. First, 45 bases of 5'- and 3'-regions of target gene sequences were added on both ends of this cassette using polymerase chain reaction; the resultant disruption cassette was introduced into a shochu yeast strain (ura3/ura3 lys5/lys5); then, single allele disrupted strains were selected on Lys drop-out plates; and after cultivation in YPD medium, double-disrupted strains, in which replacement of another allelic gene with disruption cassette by loss of heterozygosity and regeneration of URA3 in one of the cassettes by loop-out, were obtained by selection on Ura and Lys drop-out plates. The disruption cassettes were removed from the double-disrupted strain via loop-out between repeat sequences in the disruption cassette. The strains that lost either URA3 or LYS5 were counter-selected on 5-fluoroorotic acid or α-amino adipic acid plates, respectively. Using this method, we obtained leu2/leu2 and leu2/leu2 his3/his3 strains in shochu yeast, demonstrating the effectiveness and repeatability of this gene disruption technique in diploid yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Yuki Kobashi
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Eri Nakayama
- Graduate School of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Naoki Fukumori
- Graduate School of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Ayane Shimojima
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Manami Tabira
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Yuki Nishimura
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Manami Mukae
- Graduate School of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Ai Muto
- Graduate School of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Naoto Nakashima
- Graduate School of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kayu Okutsu
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Yumiko Yoshizaki
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Taiki Futagami
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kazunori Takamine
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Hisanori Tamaki
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
2
|
Hotta N, Kotaka A, Matsumura K, Sasano Y, Hata Y, Harada T, Sugiyama M, Harashima S, Ishida H. Effect of yeast chromosome II aneuploidy on malate production in sake brewing. J Biosci Bioeng 2024; 137:24-30. [PMID: 37989703 DOI: 10.1016/j.jbiosc.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Chromosome aneuploidy is a common phenomenon in industrial yeast. Aneuploidy is considered one of the strategies to enhance the industrial properties of Saccharomyces cerevisiae strains. However, the effects of chromosomal aneuploidy on the brewing properties of sake have not been extensively studied. In this study, sake brewing was performed using a series of genome-wide segmental duplicated laboratory S. cerevisiae strains, and the effects of each segmentally duplicated region on sake brewing were investigated. We found that the duplication of specific chromosomal regions affected the production of organic acids and aromatic compounds in sake brewing. As organic acids significantly influence the taste of sake, we focused on the segmental duplication of chromosome II that alters malate levels. Sake yeast Kyokai No. 901 strains with segmental chromosome II duplication were constructed using a polymerase chain reaction-mediated chromosomal duplication method, and sake was brewed using the resultant aneuploid sake yeast strains. The results showed the possibility of developing sake yeast strains exhibiting low malate production without affecting ethanol production capacity. Our study revealed that aneuploidy in yeast alters the brewing properties; in particular, the aneuploidy of chromosome II alters malate production in sake brewing. In conclusion, aneuploidization can be a novel and useful tool to breed sake yeast strains with improved traits, possessing industrial significance.
Collapse
Affiliation(s)
- Natsuki Hotta
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan.
| | - Atsushi Kotaka
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Kengo Matsumura
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Yu Sasano
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Yoji Hata
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Tomoka Harada
- Department of Food Sciences and Biotechnology, Faculty of Life Sciences, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
| | - Minetaka Sugiyama
- Department of Food Sciences and Biotechnology, Faculty of Life Sciences, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
| | - Satoshi Harashima
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Hiroki Ishida
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| |
Collapse
|
3
|
Negoro H, Ishida H. Development of sake yeast breeding and analysis of genes related to its various phenotypes. FEMS Yeast Res 2022; 22:6825454. [PMID: 36370450 DOI: 10.1093/femsyr/foac057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Sake is a traditional Japanese alcoholic beverage made from rice and water, fermented by the filamentous fungi Aspergillus oryzae and the yeast Saccharomyces cerevisiae. Yeast strains, also called sake yeasts, with high alcohol yield and the ability to produce desired flavor compounds in the sake, have been isolated from the environment for more than a century. Furthermore, numerous methods to breed sake yeasts without genetic modification have been developed. The objectives of breeding include increasing the efficiency of production, improving the aroma and taste, enhancing safety, imparting functional properties, and altering the appearance of sake. With the recent development of molecular biology, the suitable sake brewing characteristics in sake yeasts, and the causes of acquisition of additional phenotypes in bred yeasts have been elucidated genetically. This mini-review summarizes the history and lineage of sake yeasts, their genetic characteristics, the major breeding methods used, and molecular biological analysis of the acquired strains. The data in this review on the metabolic mechanisms of sake yeasts and their genetic profiles will enable the development of future strains with superior phenotypes.
Collapse
Affiliation(s)
- Hiroaki Negoro
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Hiroki Ishida
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| |
Collapse
|
4
|
Crossbreeding of Yeasts Domesticated for Fermentation: Infertility Challenges. Int J Mol Sci 2020; 21:ijms21217985. [PMID: 33121129 PMCID: PMC7662550 DOI: 10.3390/ijms21217985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 01/07/2023] Open
Abstract
Sexual reproduction is almost a universal feature of eukaryotic organisms, which allows the reproduction of new organisms by combining the genetic information from two individuals of different sexes. Based on the mechanism of sexual reproduction, crossbreeding provides an attractive opportunity to improve the traits of animals, plants, and fungi. The budding yeast Saccharomyces cerevisiae has been widely utilized in fermentative production since ancient times. Currently it is still used for many essential biotechnological processes including the production of beer, wine, and biofuels. It is surprising that many yeast strains used in the industry exhibit low rates of sporulation resulting in limited crossbreeding efficiency. Here, I provide an overview of the recent findings about infertility challenges of yeasts domesticated for fermentation along with the progress in crossbreeding technologies. The aim of this review is to create an opportunity for future crossbreeding of yeasts used for fermentation.
Collapse
|
5
|
Shimoi H, Kawamura N, Yamada M. Cloning of the SPO11 gene that complements a meiotic recombination defect in sake yeast. J Biosci Bioeng 2020; 130:367-373. [PMID: 32646632 DOI: 10.1016/j.jbiosc.2020.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/04/2023]
Abstract
Cross hybridization breeding of sake yeasts is hampered by difficulty in acquisition of haploid cells through sporulation. We previously demonstrated that typical sake yeast strains were defective in meiotic chromosome recombination, which caused poor sporulation and loss of spore viability. In this study, we screened a single copy plasmid genomic DNA library of the laboratory Saccharomyces cerevisiae GRF88 for genes that might complement the meiotic recombination defect of UTCAH-3, a strain derived from the sake yeast Kyokai no. 7 (K7). We identified the SPO11 gene of the laboratory strain (ScSPO11), encoding a meiosis-specific endonuclease that catalyzes DNA double-strand breaks required for meiotic recombination, as a gene that restored meiotic recombination and spore viability of UTCAH-3. K7SPO11 could not restore sporulation efficiency and spore viability of UTCAH-3 and a laboratory strain BY4743 spo11Δ/spo11Δ, indicating that K7SPO11 is not functional. Sequence analysis of the SPO11 genes of various Kyokai sake yeasts (K1, and K3-K10) revealed that the K7 group of sake yeasts (K6, K7, K9, and K10) had a mutual missense mutation (C73T) in addition to other three common mutations present in all Kyokai yeasts tested. ScSPO11C73T created through in vitro mutagenesis could not restore spore viability of BY4743 spo11Δ/spo11Δ. On the other hand, K8SPO11, which have the three common mutations except for C73T could restore spore viability of BY4743 spo11Δ/spo11Δ. These results suggest that C73T might be a causative mutation of recombination defect in K7SPO11. Moreover, we found that the introduction of ScRIM15 restored sporulation efficiency but not spore viability.
Collapse
Affiliation(s)
- Hitoshi Shimoi
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; Brewing Society of Japan, 2-6-30, Takinogawa, Kita-ku, Tokyo 114-0023, Japan.
| | - Natsuki Kawamura
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Miwa Yamada
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
6
|
Yamasaki R, Goshima T, Oba K, Kanai M, Ohdoi R, Hirata D, Akao T. Development of sake yeast haploid set with diverse brewing properties using sake yeast strain Hiroshima no. 6 exhibiting sexual reproduction. J Biosci Bioeng 2020; 129:706-714. [PMID: 32085973 DOI: 10.1016/j.jbiosc.2020.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
Abstract
Among sake yeast strains, Kyokai no. 7 (K7) and its closely related strains (K7 group) are predominantly used because of their excellent brewing properties. In the sake industrial sector, the need for various types of yeast strains is high. Although crossbreeding is an effective method for generating genetic diversity that should result in diverse characteristics, most K7 group strains lack normal sporulation ability, including the ability to undergo meiotic chromosomal recombination, which leads to difficulties in crossbreeding. Accordingly, the improvement of sake yeast strains primarily depends on mutagenesis and suitable selection in a stepwise manner. Our recent study revealed that the long-preserved sake yeast strain Hiroshima no. 6 (H6) does not belong to the K7 group despite genetically being extremely similar. In addition, H6 exhibited normal sporulation. Thus, we isolated haploid cells from H6 and mated them with previously isolated haploid cells of K7 group strains. The crossbred diploid strains had normal sporulation ability; hence, we performed tetrad analysis. The brewing characteristics of the obtained haploid set were extremely diverse. Principal component analysis based on the volatile and organic acid components measured using small-scale sake brewing tests revealed that the haploid strains derived from each diploid strain displayed a characteristic distribution. Thus, we demonstrated the availability of genetic crossbreeding using H6 with sporulation ability to facilitate both the development of novel sake yeast strains with many desirable characteristics and analyses of the function of sake yeast.
Collapse
Affiliation(s)
- Risa Yamasaki
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima 739-0046, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan; Food Technology Research Center, Hiroshima Prefectural Technology Research Institute, 12-70 Hijiyamahonmachi, Minami-Ku, Hiroshima 732-0816, Japan
| | - Tetsuya Goshima
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| | - Kenji Oba
- Food Technology Research Center, Hiroshima Prefectural Technology Research Institute, 12-70 Hijiyamahonmachi, Minami-Ku, Hiroshima 732-0816, Japan
| | - Muneyoshi Kanai
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| | - Ritsushi Ohdoi
- Food Technology Research Center, Hiroshima Prefectural Technology Research Institute, 12-70 Hijiyamahonmachi, Minami-Ku, Hiroshima 732-0816, Japan
| | - Dai Hirata
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan; Sakeology Center, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan; Sake Research Center, Asahi Sake Brewing Co., Ltd., 880-1 Asahi, Nagaoka, Niigata 949-5494, Japan
| | - Takeshi Akao
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima 739-0046, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan.
| |
Collapse
|
7
|
Yamasaki R, Goshima T, Oba K, Isogai A, Ohdoi R, Hirata D, Akao T. Characteristic analysis of the fermentation and sporulation properties of the traditional sake yeast strain Hiroshima no.6. Biosci Biotechnol Biochem 2019; 84:842-853. [PMID: 31868109 DOI: 10.1080/09168451.2019.1706441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
General sake yeasts (e.g., Kyokai no.7, K7) show high fermentation ability and low sporulation frequency. Former is related to stress-response defect due to the loss-of-function of MSN4 and RIM15. Later is mainly caused by low IME1 expression, leading to difficulty in breeding and genetic analysis. Sake yeast Hiroshima no.6 (H6), which had been applied for sake fermentation, has sporulation ability. However, its detailed properties have not been unveiled. Here we present that the fermentation ability of H6 is suitable for sake brewing, and the precursor of dimethyl trisulfide in sake from H6 is low. MSN4 but not RIM15 of H6 has the same mutation as K7. Our phylogenetic analysis indicated that H6 is closely related to the K7 group. Unlike K7, H6 showed normal sporulation frequency in a partially RIM15-dependent manner, and IME1 in H6 was expressed. H6 possesses excellent properties as a partner strain for breeding by crossing.
Collapse
Affiliation(s)
- Risa Yamasaki
- National Research Institute of Brewing, Higashi-Hiroshima, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Food Technology Research Center, Hiroshima Prefectural Technology Research Institute, Hiroshima, Japan
| | - Tetsuya Goshima
- National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Kenji Oba
- Food Technology Research Center, Hiroshima Prefectural Technology Research Institute, Hiroshima, Japan
| | - Atsuko Isogai
- National Research Institute of Brewing, Higashi-Hiroshima, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ritsushi Ohdoi
- Food Technology Research Center, Hiroshima Prefectural Technology Research Institute, Hiroshima, Japan
| | - Dai Hirata
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Sake Research Center, Asahi Sake Brewing Co., Niigata, Japan.,Sakeology Center, Niigata University, Niigata, Japan
| | - Takeshi Akao
- National Research Institute of Brewing, Higashi-Hiroshima, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
8
|
Abstract
Completion of the whole genome sequence of a laboratory yeast strain Saccharomyces cerevisiae in 1996 ushered in the development of genome-wide experimental tools and accelerated subsequent genetic study of S. cerevisiae. The study of sake yeast also shared the benefit of such tools as DNA microarrays, gene disruption-mutant collections, and others. Moreover, whole genome analysis of representative sake yeast strain Kyokai no. 7 was performed in the late 2000s, and enabled comparative genomics between sake yeast and laboratory yeast, resulting in some notable finding for of sake yeast genetics. Development of next-generation DNA sequencing and bioinformatics also drastically changed the field of the genetics, including for sake yeast. Genomics and the genome-wide study of sake yeast have progressed under these circumstances during the last two decades, and are summarized in this article. Abbreviations: AFLP: amplified fragment length polymorphism; CGH: comparative genomic hybridization; CNV: copy number variation; DMS: dimethyl succinate; DSW: deep sea water; LOH: loss of heterozygosity; NGS: next generation sequencer; QTL: quantitative trait loci; QTN: quantitative trait nucleotide; SAM: S-adenosyl methionine; SNV: single nucleotide variation.
Collapse
Affiliation(s)
- Takeshi Akao
- a National Research Institute of Brewing , Higashi-hiroshima , Japan
| |
Collapse
|
9
|
Fay JC, Liu P, Ong GT, Dunham MJ, Cromie GA, Jeffery EW, Ludlow CL, Dudley AM. A polyploid admixed origin of beer yeasts derived from European and Asian wine populations. PLoS Biol 2019; 17:e3000147. [PMID: 30835725 PMCID: PMC6400334 DOI: 10.1371/journal.pbio.3000147] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/30/2019] [Indexed: 11/18/2022] Open
Abstract
Strains of Saccharomyces cerevisiae used to make beer, bread, and wine are genetically and phenotypically distinct from wild populations associated with trees. The origins of these domesticated populations are not always clear; human-associated migration and admixture with wild populations have had a strong impact on S. cerevisiae population structure. We examined the population genetic history of beer strains and found that ale strains and the S. cerevisiae portion of allotetraploid lager strains were derived from admixture between populations closely related to European grape wine strains and Asian rice wine strains. Similar to both lager and baking strains, ale strains are polyploid, providing them with a passive means of remaining isolated from other populations and providing us with a living relic of their ancestral hybridization. To reconstruct their polyploid origin, we phased the genomes of two ale strains and found ale haplotypes to both be recombinants between European and Asian alleles and to also contain novel alleles derived from extinct or as yet uncharacterized populations. We conclude that modern beer strains are the product of a historical melting pot of fermentation technology.
Collapse
Affiliation(s)
- Justin C. Fay
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- Department of Genetics, Washington University, St. Louis, Missouri, United States of America
- * E-mail:
| | - Ping Liu
- Department of Genetics, Washington University, St. Louis, Missouri, United States of America
| | - Giang T. Ong
- Department of Genome Sciences, Seattle, Washington, United States of America
| | - Maitreya J. Dunham
- Department of Genome Sciences, Seattle, Washington, United States of America
| | - Gareth A. Cromie
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Eric W. Jeffery
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Catherine L. Ludlow
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Aimée M. Dudley
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
10
|
Shimoi H, Hanazumi Y, Kawamura N, Yamada M, Shimizu S, Suzuki T, Watanabe D, Akao T. Meiotic chromosomal recombination defect in sake yeasts. J Biosci Bioeng 2019; 127:190-196. [DOI: 10.1016/j.jbiosc.2018.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/19/2018] [Accepted: 07/29/2018] [Indexed: 10/28/2022]
|
11
|
Omura F, Shibano Y, Fukui N, Nakatani K. Reduction of Hydrogen Sulfide Production in Brewing Yeast by Constitutive Expression of MET25 Gene. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-53-0058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Fumihiko Omura
- Institute for Fundamental Research, 1-1-1, Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618, Japan
| | - Yuji Shibano
- Institute for Fundamental Research, 1-1-1, Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618, Japan
| | - Nobuyuki Fukui
- Institute for Beer Brewing Technology, Suntory Ltd., 1-1-1, Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618, Japan
| | - Kazuo Nakatani
- Institute for Beer Brewing Technology, Suntory Ltd., 1-1-1, Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618, Japan
| |
Collapse
|
12
|
Watanabe D, Takagi H. Pleiotropic functions of the yeast Greatwall-family protein kinase Rim15p: a novel target for the control of alcoholic fermentation. Biosci Biotechnol Biochem 2017; 81:1061-1068. [DOI: 10.1080/09168451.2017.1295805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Rim15p, a Greatwall-family protein kinase in yeast Saccharomyces cerevisiae, is required for cellular nutrient responses, such as the entry into quiescence and the induction of meiosis and sporulation. In higher eukaryotes, the orthologous gene products are commonly involved in the cell cycle G2/M transition. How are these pleiotropic functions generated from a single family of protein kinases? Recent advances in both research fields have identified the conserved Greatwall-mediated signaling pathway and a variety of downstream target molecules. In addition, our studies of S. cerevisiae sake yeast strains revealed that Rim15p also plays a significant role in the control of alcoholic fermentation. Despite an extensive history of research on glycolysis and alcoholic fermentation, there has been no critical clue to artificial modification of fermentation performance of yeast cells. Our finding of an in vivo metabolic regulatory mechanism is expected to provide a major breakthrough in yeast breeding technologies for fermentation applications.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
13
|
Ohara S, Kato T, Fukushima Y, Sakoda A. Selective ethanol production from reducing sugars in a saccharide mixture. J Biosci Bioeng 2013; 115:540-3. [DOI: 10.1016/j.jbiosc.2012.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/05/2012] [Accepted: 11/14/2012] [Indexed: 11/27/2022]
|
14
|
Kitagaki H, Kitamoto K. Breeding Research on Sake Yeasts in Japan: History, Recent Technological Advances, and Future Perspectives. Annu Rev Food Sci Technol 2013; 4:215-35. [DOI: 10.1146/annurev-food-030212-182545] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hiroshi Kitagaki
- Department of Environmental Sciences, Faculty of Agriculture, Saga University, Saga 840-8502, Japan;
- Department of Biochemistry and Applied Biosciences, United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-8580, Japan
| | - Katsuhiko Kitamoto
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan;
| |
Collapse
|
15
|
Isolation of Meiotic Segregants from a Bottom Fermenting Yeast. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2011.tb00461.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Akao T, Yashiro I, Hosoyama A, Kitagaki H, Horikawa H, Watanabe D, Akada R, Ando Y, Harashima S, Inoue T, Inoue Y, Kajiwara S, Kitamoto K, Kitamoto N, Kobayashi O, Kuhara S, Masubuchi T, Mizoguchi H, Nakao Y, Nakazato A, Namise M, Oba T, Ogata T, Ohta A, Sato M, Shibasaki S, Takatsume Y, Tanimoto S, Tsuboi H, Nishimura A, Yoda K, Ishikawa T, Iwashita K, Fujita N, Shimoi H. Whole-genome sequencing of sake yeast Saccharomyces cerevisiae Kyokai no. 7. DNA Res 2011; 18:423-34. [PMID: 21900213 PMCID: PMC3223075 DOI: 10.1093/dnares/dsr029] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The term ‘sake yeast’ is generally used to indicate the Saccharomyces cerevisiae strains that possess characteristics distinct from others including the laboratory strain S288C and are well suited for sake brewery. Here, we report the draft whole-genome shotgun sequence of a commonly used diploid sake yeast strain, Kyokai no. 7 (K7). The assembled sequence of K7 was nearly identical to that of the S288C, except for several subtelomeric polymorphisms and two large inversions in K7. A survey of heterozygous bases between the homologous chromosomes revealed the presence of mosaic-like uneven distribution of heterozygosity in K7. The distribution patterns appeared to have resulted from repeated losses of heterozygosity in the ancestral lineage of K7. Analysis of genes revealed the presence of both K7-acquired and K7-lost genes, in addition to numerous others with segmentations and terminal discrepancies in comparison with those of S288C. The distribution of Ty element also largely differed in the two strains. Interestingly, two regions in chromosomes I and VII of S288C have apparently been replaced by Ty elements in K7. Sequence comparisons suggest that these gene conversions were caused by cDNA-mediated recombination of Ty elements. The present study advances our understanding of the functional and evolutionary genomics of the sake yeast.
Collapse
Affiliation(s)
- Takeshi Akao
- National Research Institute of Brewing, Higashi-hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gene copy number and polyploidy on products formation in yeast. Appl Microbiol Biotechnol 2010; 88:849-57. [PMID: 20803138 DOI: 10.1007/s00253-010-2850-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/11/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
Abstract
Yeast, such as Saccharomyces cerevisiae or Kluyveromyces lactis is appropriate strain for ethanol production or some useful compounds production. Cellulases expressing yeast can ferment ethanol from cellulosic materials; however, the productivity should be increase more and more. To improve and engineer the productivity, the target gene(s) were introduced into yeast genome. Generally, using genetic engineering, increasing integrated gene numbers are increased, the expressed protein ability such as enzymatic activities are also increased. In this mini-review, we focused on the effect of integrated gene copy number and the polyploidy on the productivity such as enzymatic activity and/or product yield.
Collapse
|
18
|
Nakazawa N, Abe K, Koshika Y, Iwano K. Cln3 blocks IME1 transcription and the Ime1-Ume6 interaction to cause the sporulation incompetence in a sake yeast, Kyokai no. 7. J Biosci Bioeng 2010; 110:1-7. [PMID: 20541107 DOI: 10.1016/j.jbiosc.2010.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/28/2009] [Accepted: 01/05/2010] [Indexed: 01/10/2023]
Abstract
Industrial yeasts, including a sake yeast Kyokai no. 7 (K7), are generally unable to sporulate. In K7 (Saccharomyces cerevisiae) cells, IME1 transcription was not induced under sporulation conditions, and K7 cells partially restored sporulation ability when transformed with a multicopy plasmid bearing IME1. However, the mechanisms of sporulation incompetence in industrial yeasts are poorly understood. We demonstrated that the deletion of the G1 cyclin CLN3, a key activator of the cell cycle, allows K7 cells to induce IME1 transcription and sporulate under sporulation conditions. In K7 cells, CLN3 mRNA and protein were not down-regulated despite sporulation conditions. Moreover, using a two-hybrid assay, we found that Ime1-Ume6 interaction was promoted in Cln3-deficient K7 cells. Thus, Cln3 is involved in the mechanism underlying sporulation incompetence by inhibiting IME1 transcription and the Ime1-Ume6 interaction. Based on these findings, we hypothesize that the absence of transmission of nutrient starvation signals to CLN3 leads to sporulation incompetence in K7 cells.
Collapse
Affiliation(s)
- Nobushige Nakazawa
- Department of Biotechnology, Faculty of Bioresource Science, Akita Prefectural University, 241-438 Kaidoubata-Nishi, Shimoshinjyo-Nakano, Akita-shi, Akita Prefecture 010-0195, Japan.
| | | | | | | |
Collapse
|
19
|
Katou T, Namise M, Kitagaki H, Akao T, Shimoi H. QTL mapping of sake brewing characteristics of yeast. J Biosci Bioeng 2009; 107:383-93. [PMID: 19332297 DOI: 10.1016/j.jbiosc.2008.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/15/2008] [Accepted: 12/16/2008] [Indexed: 11/28/2022]
Abstract
A haploid sake yeast strain derived from the commercial diploid sake yeast strain Kyokai no. 7 showed better characteristics for sake brewing compared to the haploid laboratory yeast strain X2180-1B, including higher production of ethanol and aromatic components. A hybrid of these two strains showed intermediate characteristics in most cases. After sporulation of the hybrid strain, we obtained 100 haploid segregants of the hybrid. Small-scale sake brewing tests of these segregants showed a smooth continuous distribution of the sake brewing characteristics, suggesting that these traits are determined by multiple quantitative trait loci (QTLs). To examine these sake brewing characteristics at the genomic level, we performed QTL analysis of sake brewing characteristics using 142 DNA markers that showed heterogeneity between the two parental strains. As a result, we identified 25 significant QTLs involved in the specification of sake brewing characteristics such as ethanol fermentation and the production of aromatic components.
Collapse
Affiliation(s)
- Taku Katou
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Japan
| | | | | | | | | |
Collapse
|
20
|
Katou T, Kitagaki H, Akao T, Shimoi H. Brewing characteristics of haploid strains isolated from sake yeast Kyokai No. 7. Yeast 2009; 25:799-807. [PMID: 19061192 DOI: 10.1002/yea.1634] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sake yeast exhibit various characteristics that make them more suitable for sake brewing compared to other yeast strains. Since sake yeast strains are Saccharomyces cerevisiae heterothallic diploid strains, it is likely that they have heterozygous alleles on homologous chromosomes (heterozygosity) due to spontaneous mutations. If this is the case, segregation of phenotypic traits in haploid strains after sporulation and concomitant meiosis of sake yeast strains would be expected to occur. To examine this hypothesis, we isolated 100 haploid strains from Kyokai No. 7 (K7), a typical sake yeast strain in Japan, and compared their brewing characteristics in small-scale sake-brewing tests. Analyses of the resultant sake samples showed a smooth and continuous distribution of analytical values for brewing characteristics, suggesting that K7 has multiple heterozygosities that affect brewing characteristics and that these heterozygous alleles do segregate after sporulation. Correlation and principal component analyses suggested that the analytical parameters could be classified into two groups, indicating fermentation ability and sake flavour.
Collapse
Affiliation(s)
- Taku Katou
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima 739-8530, Japan
| | | | | | | |
Collapse
|
21
|
Nakazawa N, Okawa K, Sato T, Enei H, Harashima S. Mass mating method in combination with G418- and aureobasidin A-resistance markers for efficient selection of hybrids from homothallic strains in Saccharomyces cerevisiae. J Biosci Bioeng 2005; 88:468-71. [PMID: 16232646 DOI: 10.1016/s1389-1723(00)87660-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/1999] [Accepted: 08/10/1999] [Indexed: 10/18/2022]
Abstract
We have developed a mass mating method using the spore suspensions of homothallic yeasts of Saccharomyces cerevisiae in combination with dominant selective drug resistance markers, Tn601(903) against geneticin and AUR1-C against aureobasidin A for the selection of the hybrids. To examine the effectiveness of these markers in the mass mating method, each marker was introduced into a homothallic wine yeast. Using a mixed culture of spore suspensions from the resultant transformants, many hybrids were screened by the drug resistance markers. This method is more practical than the spore-to-spore mating method because it does not require the use of a micromanipulator and many hybrids are obtained at one time. The resultant hybrids could be utilized for industrial brewing because plasmids, which are used to confer resistance markers, are easily eliminated from the hybrids by cultivation in a medium without drugs. We propose that the mass mating method using spore suspensions in combination with dominant selective geneticin- and aureobasidin A-resistance markers is useful for the selection of hybrids from industrial homothallic yeasts.
Collapse
Affiliation(s)
- N Nakazawa
- Department of Biotechnology, Faculty of Bioresource Science, Akita Prefectural University, 241-7 Kaidoubata-Nishi, Shimoshinjyou-Nakano, Akita Prefecture 010-0146, Japan
| | | | | | | | | |
Collapse
|
22
|
Hashimoto S, Aritomi K, Minohara T, Nishizawa Y, Hoshida H, Kashiwagi S, Akada R. Direct mating between diploid sake strains of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2005; 69:689-96. [PMID: 15988574 DOI: 10.1007/s00253-005-0039-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 05/27/2005] [Accepted: 05/30/2005] [Indexed: 10/25/2022]
Abstract
Various auxotrophic mutants of diploid heterothallic Japanese sake strains of Saccharomyces cerevisiae were utilized for selecting mating-competent diploid isolates. The auxotrophic mutants were exposed to ultraviolet (UV) irradiation and crossed with laboratory haploid tester strains carrying complementary auxotrophic markers. Zygotes were then selected on minimal medium. Sake strains exhibiting a MATa or MATalpha mating type were easily obtained at high frequency without prior sporulation, suggesting that the UV irradiation induced homozygosity at the MAT locus. Flow cytometric analysis of a hybrid showed a twofold higher DNA content than the sake diploid parent, consistent with tetraploidy. By crossing strains of opposite mating type in all possible combinations, a number of hybrids were constructed. Hybrids formed in crosses between traditional sake strains and between a natural nonhaploid isolate and traditional sake strains displayed equivalent fermentation ability without any apparent defects and produced comparable or improved sake. Isolation of mating-competent auxotrophic mutants directly from industrial yeast strains allows crossbreeding to construct polyploids suitable for industrial use without dependence on sporulation.
Collapse
Affiliation(s)
- Shinji Hashimoto
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Akada R. Genetically modified industrial yeast ready for application. J Biosci Bioeng 2002; 94:536-44. [PMID: 16233347 DOI: 10.1016/s1389-1723(02)80192-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Accepted: 08/27/2002] [Indexed: 11/27/2022]
Abstract
Tremendous progress in the genetic engineering of yeast had been achieved at the end of 20th century, including the complete genome sequence, genome-wide gene expression profiling, and whole gene disruption strains. Nevertheless, genetically modified (GM) baking, brewing, wine, and sake yeasts have not, as yet, been used commercially, although numerous industrial recombinant yeasts have been constructed. The recent progress of genetic engineering for the construction of GM yeast is reviewed and possible requirements for their application are discussed. 'Self-cloning' yeast will be the most likely candidate for the first commercial application of GM microorganisms in food and beverage industries.
Collapse
Affiliation(s)
- Rinji Akada
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi University, Tokiwadai, Ube 755-8611, Japan.
| |
Collapse
|
24
|
Shimoi H, Sakamoto K, Okuda M, Atthi R, Iwashita K, Ito K. The Awa1 gene is required for the foam-forming phenotype and cell surface hydrophobicity of sake yeast. Appl Environ Microbiol 2002; 68:2018-25. [PMID: 11916725 PMCID: PMC123892 DOI: 10.1128/aem.68.4.2018-2025.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sake, a traditional alcoholic beverage in Japan, is brewed with sake yeasts, which are classified as Saccharomyces cerevisiae. Almost all sake yeasts form a thick foam layer on sake mash during the fermentation process because of their cell surface hydrophobicity, which increases the cells' affinity for bubbles. To reduce the amount of foam, nonfoaming mutants were bred from foaming sake yeasts. Nonfoaming mutants have hydrophilic cell surfaces and no affinity for bubbles. We have cloned a gene from a foam-forming sake yeast that confers foaming ability to a nonfoaming mutant. This gene was named AWA1 and structures of the gene and its product were analyzed. The N- and C-terminal regions of Awa1p have the characteristic sequences of a glycosylphosphatidylinositol anchor protein. The entire protein is rich in serine and threonine residues and has a lot of repetitive sequences. These results suggest that Awa1p is localized in the cell wall. This was confirmed by immunofluorescence microscopy and Western blotting analysis using hemagglutinin-tagged Awa1p. Moreover, an awa1 disruptant of sake yeast was hydrophilic and showed a nonfoaming phenotype in sake mash. We conclude that Awa1p is a cell wall protein and is required for the foam-forming phenotype and the cell surface hydrophobicity of sake yeast.
Collapse
Affiliation(s)
- Hitoshi Shimoi
- National Research Institute of Brewing, 3-7-1, Kagamiyama, Higashihiroshima 739-0046, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Kodama Y, Omura F, Ashikari T. Isolation and characterization of a gene specific to lager brewing yeast that encodes a branched-chain amino acid permease. Appl Environ Microbiol 2001; 67:3455-62. [PMID: 11472919 PMCID: PMC93043 DOI: 10.1128/aem.67.8.3455-3462.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We found two types of branched-chain amino acid permease gene (BAP2) in the lager brewing yeast Saccharomyces pastorianus BH-225 and cloned one type of BAP2 gene (Lg-BAP2), which is identical to that of Saccharomyces bayanus (by-BAP2-1). The other BAP2 gene of the lager brewing yeast (cer-BAP2) is very similar to the Saccharomyces cerevisiae BAP2 gene. This result substantiates the notion that lager brewing yeast is a hybrid of S. cerevisiae and S. bayanus. The amino acid sequence homology between S. cerevisiae Bap2p and Lg-Bap2p was 88%. The transcription of Lg-BAP2 was not induced by the addition of leucine to the growth medium, while that of cer-BAP2 was induced. The transcription of Lg-BAP2 was repressed by the presence of ethanol and weak organic acid, while that of cer-BAP2 was not affected by these compounds. Furthermore, Northern analysis during beer fermentation revealed that the transcription of Lg-BAP2 was repressed at the beginning of the fermentation, while cer-BAP2 was highly expressed throughout the fermentation. These results suggest that the transcription of Lg-BAP2 is regulated differently from that of cer-BAP2 in lager brewing yeasts.
Collapse
Affiliation(s)
- Y Kodama
- Institute for Fundamental Research, Suntory Research Center, Mishima-gun, Osaka 618-8503, Japan.
| | | | | |
Collapse
|
27
|
Shimoi H, Okuda M, Ito K. Molecular cloning and application of a gene complementing pantothenic acid auxotrophy of sake yeast kyokai no. 7. J Biosci Bioeng 2000. [DOI: 10.1016/s1389-1723(00)90010-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Shimoi H, Okuda M, Ito K. Molecular Cloning and Application of a Gene Complementing Pantothenic Acid Auxotrophy of Sake Yeast Kyokai No.7. J Biosci Bioeng 2000; 90:643-7. [PMID: 16232925 DOI: 10.1263/jbb.90.643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2000] [Accepted: 09/28/2000] [Indexed: 11/17/2022]
Abstract
Kyokai no. 7 is the most widely used yeast in sake brewing. This yeast is a pantothenic acid auxotroph at 35 degrees C, and this phenotype has been used to distinguish Kyokai no. 7 from other sake yeasts. We cloned a DNA fragment complementing the pantothenic acid auxotrophy from a genomic library of a Saccharomyces cerevisiae laboratory strain. DNA sequence analysis revealed that the DNA fragment encodes ECM31, the deletion of which had previously been identified as a calcofluor white-sensitive mutation. The ECM31 product is similar to the Escherichia coli ketopantoate hydroxymethyltransferase. Disruption of ECM31 in a laboratory S. cerevisiae strain resulted in pantothenic acid auxotrophy, indicating that ECM31 is also involved in pantothenic acid synthesis in yeast. A hybrid of a Kyokai no. 7 haploid and the ecm31 disruptant required pantothenic acid at 35 degrees C for its growth, suggesting that Kyokai no. 7 possesses a temperature-sensitive allele of ECM31. Thus, the ECM31 gene can be used as a selective marker in the transformation of Kyokai no. 7.
Collapse
Affiliation(s)
- H Shimoi
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| | | | | |
Collapse
|
29
|
Mizoguchi H, Watanabe M, Nishimura A. Characterization of a PDR1 mutant allele from a clotrimazole-resistant sake yeast mutant with improved fermentative activity. J Biosci Bioeng 1999; 88:20-5. [PMID: 16232567 DOI: 10.1016/s1389-1723(99)80169-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/1998] [Accepted: 03/26/1999] [Indexed: 11/29/2022]
Abstract
Clotrimazole-resistant mutants from various sake yeasts show improved fermentative activity in sake mash while retaining their parental advantages for sake making. These mutants also exhibit pleiotropic drug resistance (PDR) phenotypes. To investigate the relationship between the improvement of fermentative activity and PDR phenotypes, a PDR1 mutant allele (pdr1-h176) encoding a transcription factor was cloned from a clotrimazole-resistant mutant, HL176 (MATa/MATalpha), using PCR amplification. The nucleotide sequences of pdr1-h176 and its wild allele were determined. The mutant allele contained a missense point mutation (L309S) that can confer a PDR phenotype on yeast. This amino acid substitution is located in the conserved motif II in the inhibitory domain of Pdr1p, and is very close to the cluster of three mutation points (P298A, K302Q, and M308I) described by Carvajal et al. (Mol. Gen. Genet., 256, 406-415, 1997) in laboratory strains. A PDR1 wild allele of HL163, the parent strain of HL176, was replaced by pdr1-h176 using gene recombination at the homologous site. The resultant transformants (PDR1/pdr1-h176) showed the same PDR phenotype as HL176, and they fermented sake mash efficiently even in the final fermentation stage, while HL163 did not. The amino acid substitution (L309S) in pdr1-h176 was considered to be sufficient to improve the fermentative activity of sake yeast, in addition to conferring the PDR phenotype.
Collapse
Affiliation(s)
- H Mizoguchi
- Research & Development Department, Hakutsuru Sake Brewing Co. Ltd., 4-5-5 Sumiyoshiminami-machi, Higashinada-ku, Kobe 658-0041, Japan
| | | | | |
Collapse
|
30
|
|
31
|
Suizu T, Tsutsumi H, Kawado A, Imayasu S, Inose T, Kimura A, Murata K. Induction of yeast sporulation by lysine-related compounds and glutathione in nutrition-rich conditions. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0922-338x(94)90132-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
A method for direct selection of mating-competent clones from mating-incompetent industrial strains of Saccharomyces cerevisiae. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0922-338x(94)90170-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Suizu T, Tsutsumi H, Kawado A, Murata K, Imayasu S. On the importance of calcium and magnesium ions in yeast sporulation. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0922-338x(94)90233-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Kawado A, Suizu T, Imayasu S, Shigematsu T, Kimura A, Murata K. Highly efficient sporulation induced by glutathione or glutathione thiol esters in sake (Kyokai no. 7) and a wild-type yeast. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/0922-338x(92)90032-p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|