Seraskeris S, Lazou A. alpha(1)-adrenergic stimulation mediates Ca(2+)-dependent inositol phosphate formation through the alpha(1B)-like adrenoceptor subtype in adult rat cardiac myocytes.
J Cell Biochem 2002;
84:201-10. [PMID:
11746528 DOI:
10.1002/jcb.1281]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We studied the effects of increased Ca(2+) influx on alpha(1)-adrenoceptor-stimulated InsP formation in adult rat cardiac myocytes. We further examined if such effects could be mediated through a specific alpha(1)-adrenoceptor subtype. [(3)H]InsP responses to adrenaline were dependent on extracellular Ca(2+) concentration, from 0.1 microM to 2 mM, and were completely blocked by Ca(2+) removal. However, in cardiac myocytes preloaded with BAPTA, a highly selective calcium chelating agent, Ca(2+) concentrations higher than 1 microM had no effect on adrenaline-stimulated [(3)H]InsP formation. Taken together these results suggest that [(3)H]InsP formation induced by alpha(1)-adrenergic stimulation is in part mediated by increased Ca(2+) influx. Consistent with this, ionomycin, a calcium ionophore, stimulated [(3)H]InsP formation. This response was additive with the response to adrenaline stimulation implying that different signaling mechanisms may be involved. In cardiac myocytes treated with the alpha(1B)-adrenoceptor alkylating agent, CEC, [(3)H]InsP formation remained unaffected by increased Ca(2+) concentrations, a pattern similar to that observed when intracellular Ca(2+) was chelated with BAPTA. In contrast, addition of the alpha(1A)-subtype antagonist, 5'-methyl urapidil, did not affect the Ca(2+) dependence of [(3)H]InsP formation. Neither nifedipine, a voltage-dependent Ca(2+) channel blocker nor the inorganic Ca(2+) channel blockers, Ni(2+) and Co(2+), had any effect on adrenaline stimulated [(3)H]InsP, at concentrations that inhibit Ca(2+) channels. The results suggest that in adult rat cardiac myocytes, in addition to G protein-mediated response, alpha(1)-adrenergic-stimulated [(3)H]InsP formation is activated by increased Ca(2+) influx mediated by the alpha(1B)-subtype.
Collapse