1
|
Lu C, Wei J, Gao C, Sun M, Dong D, Mu Z. Molecular signaling pathways in doxorubicin-induced nephrotoxicity and potential therapeutic agents. Int Immunopharmacol 2025; 144:113373. [PMID: 39566381 DOI: 10.1016/j.intimp.2024.113373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
Doxorubicin (DOX), an anthracycline chemotherapeutic agent, is extensively utilized in the clinical management of both solid and hematological malignancies. Nevertheless, the clinical application of this treatment is significantly limited by adverse reactions and toxicity that may arise during or after administration. Its cytotoxic effects are multifaceted, with cardiotoxicity being the most prevalent side effect. Furthermore, it has the potential to adversely affect other organs, including the brain, kidneys, liver, and so on. Notably, it has been reported that DOX may cause renal failure in patients and there is currently no effective treatment for DOX-induced kidney damage, which has raised a high concern about DOX-induced nephrotoxicity (DIN). Although the precise molecular mechanisms underlying DIN remain incompletely elucidated, prior research has indicated that reactive oxygen species (ROS) are pivotal in this process, triggering a cascade of detrimental pathways including apoptosis, inflammation, dysregulated autophagic flux, and fibrosis. In light of these mechanisms, decades of research have uncovered several DIN-associated signaling pathways and found multiple potential therapeutic agents targeting them. Thus, this review intends to delineate the DIN associated signaling pathways, including AMPK, JAKs/STATs, TRPC6/RhoA/ROCK1, YAP/TEAD, SIRTs, Wnt/β-catenin, TGF-β/Smad, MAPK, Nrf2/ARE, NF-κB, and PI3K/AKT, and to summarize their potential regulatory agents, which provide a reference for the development of novel medicines against DIN.
Collapse
Affiliation(s)
- Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China; Department of Urology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China.
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China.
| | - Zhongyi Mu
- Department of Urology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Morrison HA, Trusiano B, Rowe AJ, Allen IC. Negative regulatory NLRs mitigate inflammation via NF-κB pathway signaling in inflammatory bowel disease. Biomed J 2023; 46:100616. [PMID: 37321320 PMCID: PMC10494316 DOI: 10.1016/j.bj.2023.100616] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023] Open
Abstract
A subset of Nucleotide-binding and leucine-rich repeat-containing receptors (NLRs) function to mitigate overzealous pro-inflammatory signaling produced by NF-κB activation. Under normal pathophysiologic conditions, proper signaling by these NLRs protect against potential autoimmune responses. These NLRs associate with several different proteins within both the canonical and noncanonical NF-κB signaling pathways to either prevent activation of the pathway or inhibit signal transduction. Inhibition of the NF-κB pathways ultimately dampens the production of pro-inflammatory cytokines and activation of other downstream pro-inflammatory signaling mechanisms. Dysregulation of these NLRs, including NLRC3, NLRX1, and NLRP12, have been reported in human inflammatory bowel disease (IBD) and colorectal cancer patients, suggesting the potential of these NLRs as biomarkers for disease detection. Mouse models deficient in these NLRs also have increased susceptibility to colitis and colitis-associated colorectal cancer. While current standard of care for IBD patients and FDA-approved therapeutics function to remedy symptoms associated with IBD and chronic inflammation, these negative regulatory NLRs have yet to be explored as potential drug targets. In this review, we describe a comprehensive overview of recent studies that have evaluated the role of NLRC3, NLRX1, and NLRP12 in IBD and colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Holly A Morrison
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg VA, USA
| | - Brie Trusiano
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg VA, USA
| | - Audrey J Rowe
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg VA, USA
| | - Irving C Allen
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg VA, USA; Virginia Tech, Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke VA, USA; Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA.
| |
Collapse
|
3
|
Oswal M, Varghese R, Zagade T, Dhatrak C, Sharma R, Kumar D. Dietary supplements and medicinal plants in urolithiasis: diet, prevention, and cure. J Pharm Pharmacol 2023:7148056. [PMID: 37130140 DOI: 10.1093/jpp/rgac092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/16/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Urolithiasis has been a major health concern for centuries, primarily owing to the limited treatment options in the physician's armamentarium. However, various studies have underscored a lesser incidence of urolithiasis in cohorts predominantly consuming fruits and vegetables. This article aims to review various dietary plants, medicinal herbs and phytochemicals in the prevention and management of urolithiasis. METHODS To provide context and evidence, relevant publications were identified on Google Scholar, PubMed and Science-Direct using keywords such as urolithiasis, nephrolithiasis, urolithiasis, renal stones, phytochemicals and dietary plants. RESULTS Growing bodies of evidence suggest the incorporation of plant-based foods, medicinal and herbal supplements, and crude drugs containing phytochemicals into the staple diet of people. The anti-urolithiatic activity of these plant bioactives can be attributed to their antioxidant, antispasmodic, diuretic, and inhibitory effect on the crystallization, nucleation and crystal aggregation effects. These mechanisms would help alleviate the events and symptoms that aid in the development and progression of renal calculi. In addition, it will also avoid the exacerbation of secondary disorders like inflammation and injury, which can initiate a vicious circle in turn worsening the disease progression. CONCLUSION In conclusion, the results presented in the review demonstrate the promising role of various dietary plants, medicinal and herbal supplements, and phytochemicals in preventing and managing the precipitation of uroliths. However, more conclusive and cogent evidence from preclinical and clinical studies is required to substantiate their safety, efficacy and toxicity profiles in humans.
Collapse
Affiliation(s)
- Mitul Oswal
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra, 411038, India
| | - Ryan Varghese
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra, 411038, India
| | - Tanmay Zagade
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra, 411038, India
| | - Chetan Dhatrak
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra, 411038, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra, 411038, India
| |
Collapse
|
4
|
Liu M, Wang Z, Zhang J, Ye D, Wang M, Xu Y, Zhao M, Feng Y, Lu X, Pan H, Pan W, Wei C, Tian D, Li W, Lyu J, Ye J, Wan J. IL-12p40 deletion aggravates lipopolysaccharide-induced cardiac dysfunction in mice. Front Cardiovasc Med 2022; 9:950029. [PMID: 36186987 PMCID: PMC9523082 DOI: 10.3389/fcvm.2022.950029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cardiac dysfunction is one of the most common complications of sepsis and is associated with the adverse outcomes and high mortality of sepsis patients. IL-12p40, the common subunit of IL-12 and IL-23, has been shown to be involved in a variety of inflammation-related diseases, such as psoriasis and inflammatory bowel disease. However, the role of IL-12p40 in lipopolysaccharide (LPS)-induced cardiac dysfunction remains obscure. This study aimed to explore the role of IL-12p40 in LPS-induced cardiac dysfunction and its potential mechanisms. METHODS In this study, mice were treated with LPS and the cardiac expression of IL-12p40 was determined. Then, IL-12p40-/- mice were used to detect the role and mechanisms of IL-12p40 in LPS-induced cardiac injury. In addition, monocytes were adoptively transferred to IL-12p40-/- mice to explore their effects on LPS-induced cardiac dysfunction. RESULTS The results showed that cardiac IL-12p40 expression was significantly increased after treated with LPS. In addition, IL-12p40 deletion significantly aggravated LPS-induced cardiac dysfunction, evidenced by the increased serum levels of cardiomyocyte injury markers and heart injury scores, as well as by the deteriorated cardiac function. Moreover, IL-12p40 deletion increased LPS-induced monocyte accumulation and cardiac expression of inflammatory cytokines, as well as enhanced the activation of the NF-κB and MAPK pathways. Furthermore, adoptive transfer WT mouse monocytes to IL-12p40-/- mice alleviated LPS-induced cardiac dysfunction and decreased the phosphorylation of p65. CONCLUSION IL-12p40 deletion significantly aggravated LPS-induced cardiac injury and cardiac dysfunction in mice by regulating the NF-κB and MAPK signaling pathways, and this process was related to monocytes. Therefore, IL-12p40 show a protective role in SIC, and IL-12p40 deficiency or anti-IL-12p40 monoclonal antibodies may be detrimental to patients with SIC.
Collapse
Affiliation(s)
- Menglin Liu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dan Tian
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenqiang Li
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjun Lyu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Zhao Y, Goto M, Vaziri ND, Khazaeli M, Liu H, Farahanchi N, Khanifar E, Farzaneh T, Haslett PA, Moradi H, Soundarapandian MM. RNA Interference Targeting Liver Angiopoietin-Like Protein 3 Protects from Nephrotic Syndrome in a Rat Model Via Amelioration of Pathologic Hypertriglyceridemia. J Pharmacol Exp Ther 2021; 376:428-435. [PMID: 33443084 DOI: 10.1124/jpet.120.000257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/04/2020] [Indexed: 11/22/2022] Open
Abstract
Nephrotic syndrome (NS) is associated with metabolic perturbances including profound dyslipidemia characterized by hypercholesterolemia and hypertriglyceridemia. A major underlying mechanism of hypertriglyceridemia in NS is lipoprotein lipase (LPL) deficiency and dysfunction. There is emerging evidence that elevated angiopoietin-like protein 3 (ANGPTL3), an LPL inhibitor that is primarily expressed and secreted by hepatocytes, may be in part responsible for these findings. Furthermore, there is evidence pointing to the contribution of ANGPTL3 to the pathogenesis of proteinuria in NS. Therefore, we hypothesized that inhibition of hepatic ANGPTL3 by RNA interference will ameliorate dyslipidemia and other symptoms of NS and pave the way for a new therapeutic strategy. To this end, we used a subcutaneously delivered, GalNAc (N-Acetylgalactosamine)-conjugated small interfering RNA (siRNA) to selectively target and suppress liver Angptl3 in rats with puromycin-induced NS, which exhibits clinical features of NS including proteinuria, hypoalbuminemia, hyperlipidemia, and renal histologic abnormalities. The study demonstrated that siRNA-mediated knockdown of the liver Angptl3 relieved its inhibitory effect on LPL and significantly reduced hypertriglyceridemia in nephrotic rats. This was accompanied by diminished proteinuria and hypoalbuminemia, which are the hallmarks of NS, and significant attenuation of renal tissue inflammation and oxidative stress. Taken together, this study confirmed the hypothesis that suppression of Angptl3 is protective in NS and points to the possibility that the use of RNA interference to suppress hepatic Angptl3 can serve as a novel therapeutic strategy for NS. SIGNIFICANCE STATEMENT: The current standard of care for mitigating nephrotic dyslipidemia in nephrotic syndrome is statins therapy. However, the efficacy of statins and its safety in the context of impaired kidney function is not well established. Here, we present an alternate therapeutic approach by using siRNA targeting Angptl3 expressed in hepatocytes. As the liver is the major source of circulating Angptl3, siRNA treatment reduced the profound hypertriglyceridemia in a rat model of nephrotic syndrome and was also effective in improving kidney and cardiac function.
Collapse
Affiliation(s)
- Yitong Zhao
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| | - Masaki Goto
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| | - Mahyar Khazaeli
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| | - Han Liu
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| | - Nazli Farahanchi
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| | - Elham Khanifar
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| | - Ted Farzaneh
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| | - Patrick A Haslett
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| | - Hamid Moradi
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| | - Mangala M Soundarapandian
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| |
Collapse
|
6
|
Fan HY, Wang XK, Li X, Ji K, Du SH, Liu Y, Kong LL, Xu JC, Yang GQ, Chen DQ, Qi D. Curcumin, as a pleiotropic agent, improves doxorubicin-induced nephrotic syndrome in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112502. [PMID: 31881321 DOI: 10.1016/j.jep.2019.112502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcumin, a phenolic compound extracted from the rhizome of turmeric (Curcuma longa L.), has been reported to have broad biological functions including potent antioxidant and renoprotective effects. It has been reported that Curcumin has a certain protective effect on the kidney. However, its mechanism of action needs further study. AIM OF THE STUDY The present research aims at investigating the therapeutic effects and its underlying mechanism of curcumin on NS. MATERIALS AND METHODS The conditionally immortalized mouse podocyte cell line was utilized to evaluate the podocyte-protective effect of curcumin and its effects on NF-κB pathway and Nrf2/ARE pathway in podocyte in vitro. Furthermore, the DOX-induced NS rats were utilized to investigate the therapeutic effects and its underlying mechanism of curcumin against NS in vivo. RESULTS The consequences of this study revealed that curcumin activated Nrf2, inhibited NF-κB pathway and up-regulated podocin in DOX-induced podocyte. Further research results showed that curcumin can considerably alleviate proteinuria and improve hypoalbuminemia in NS rats, and lower blood lipid levels to alleviate hyperlipidemia in NS rats, indicating that curcumin has significant therapeutic effects on rat NS. Further observation by electron microscopy and detection showed that curcumin can improve renal function and podocyte injury, which may be related to the repairment of mRNA expression and podocin protein. Interestingly, the results of the blood rheology test showed that curcumin can effectively reduce whole blood viscosity (WBV) and plasma viscosity (PV), and reduce hematocrit (Hct). In addition, the oxidative stress state of kidney in NS rats was considerably reversed by curcumin, which may be achieved by activating Nrf2 and increasing the expression of antioxidant enzymes HO-1, NQO-1. We also found that NF-κB pathway is activated in the kidney of NS rats, and curcumin can inhibit the activation of NF-κB by down-regulating the expression of NF-κB p65, reducing the level of p-IκBα and up-regulating the expression of IκBα. CONCLUSION These findings suggest that curcumin, as a multifunctional agent, exerts a protective effect on DOX-induced nephrotic syndrome in rats, which provides a pharmacological basis for the further development of curcumin and also provides a basis for the advantages of multi-targeted drugs in the processing of NS.
Collapse
Affiliation(s)
- Hua-Ying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Xue-Kai Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Kai Ji
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Shi-Hao Du
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yu Liu
- Fushan District People's Hospital of Yantai City, 265500, Yantai, Shandong, PR China
| | - Lin-Lin Kong
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Jing-Chen Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Gang-Qiang Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Da-Quan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Dong Qi
- Department of Nephrology, Yu-Huang-Ding Hospital/Qingdao University, 264000, Yantai, Shandong, PR China.
| |
Collapse
|
7
|
Li S, Jiang L, Yang Y, Cao J, Zhang Q, Zhang J, Wang R, Deng X, Li Y. Siglec1 enhances inflammation through miR-1260-dependent degradation of IκBα in COPD. Exp Mol Pathol 2020; 113:104398. [PMID: 32007531 DOI: 10.1016/j.yexmp.2020.104398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/24/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
It has been documented that sialic acid-binding Ig-like lectin 1 (Siglec1) is a cell surface protein with a variety of functions in the immune system. In the present study, we evaluated whether Siglec1 plays a role in chronic obstructive pulmonary disease (COPD). Results show that the expression of Siglec1 was increased in the lung of COPD rats, and that Siglec1 overexpression greatly enhanced the expression of inflammatory cytokines including tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and IL-6 in cigarette smoke extract (CSE)-treated NR8383 cells, a rat lung-derived macrophage cell line. Notably, the proinflammatory effect of Siglec1 was totally inhibited by overexpression of nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor α (IκBα). Importantly, Siglec1 overexpression increased miR-1260, which then degraded IκBα through its 3' untranslated region (3'UTR). Further study demonstrated that miR-1260 inhibitor attenuated inflammation in CSE-induced rat COPD lung and in CSE-treated NR8383 cells. Finally, the inhibitory effect of miR-1260 on inflammation was totally lost when IκBα was inhibited. In summary, the present study demonstrated that Siglec1 exerts its proinflammatory effects through increasing miR-1260, leading to decreased expression of IκBα.
Collapse
Affiliation(s)
- Sensen Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China; Department of Pharmacy, Luohe Central Hospital, Luohe 462000, Henan, China
| | - Longfeng Jiang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210002, Jiangsu, China
| | - Yanbing Yang
- Department of Respiratory Medicine, Luohe Central Hospital, Luohe 462000, Henan, China
| | - Juan Cao
- Department of Respiratory Medicine, Luohe Central Hospital, Luohe 462000, Henan, China
| | - Qi Zhang
- Huadong Research Institute for Medicine and Biotechnics, Nanjing 210002, Jiangsu, China
| | - Jinghai Zhang
- Huadong Research Institute for Medicine and Biotechnics, Nanjing 210002, Jiangsu, China
| | - Rui Wang
- Department of Pharmacy, Luohe Central Hospital, Luohe 462000, Henan, China
| | - Xiaozhao Deng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China; Huadong Research Institute for Medicine and Biotechnics, Nanjing 210002, Jiangsu, China.
| | - Yaojun Li
- Department of Respiratory Medicine, Luohe Central Hospital, Luohe 462000, Henan, China.
| |
Collapse
|
8
|
Li R, Liang P, Yuan J, He F. Exosomal miR-103a-3p ameliorates lipopolysaccharide-induced immune response in BEAS-2B cells via NF-κB pathway by targeting transducin β-like 1X related protein 1. Clin Exp Pharmacol Physiol 2020; 47:620-627. [PMID: 31876003 DOI: 10.1111/1440-1681.13241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 12/30/2022]
Abstract
Abnormal immune response contributes to pathophysiology of pneumonia and is recognized as a main factor for high incidence rate in children. The association between exosomes and inflammation has been reported in diverse cell types and diseases. The current study focuses on exploring the effects of exosomal miR-103a-3p on lipopolysaccharide (LPS)-induced inflammation, and investigates the underlying mechanisms. We proved that miR-103a-3p was lowly expressed in blood samples of pneumonia patients and LPS-induced lung cells, and overexpression of miR-103a-3p weaken the LPS-induced inflammation. Using luciferase reporter assay and immunoprecipitation assay, we demonstrated that miR-103a-3p directly binds to a specific region of transducin β-like 1X related protein 1 (TBL1XR1), mediating the NF-κB signalling pathway, thus regulating immune response. Taken together, our data revealed that miR-103a-3p functions as an anti-inflammatory gene in childhood pneumonia and can be applied as therapeutic targets for the treatment of childhood pneumonia in the future.
Collapse
Affiliation(s)
- Ruina Li
- The Third Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Pengbo Liang
- Chinese and Western Medicine, Xi'an Children's Hospital, Xi'an, China
| | - Juan Yuan
- The Second Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Fangzhi He
- Outpatient of Infectious Diseases, Xi'an Children's Hospital, Xi'an, China
| |
Collapse
|
9
|
Jing W, Nunes ACF, Farzaneh T, Khazaeli M, Lau WL, Vaziri ND. Phosphate Binder, Ferric Citrate, Attenuates Anemia, Renal Dysfunction, Oxidative Stress, Inflammation, and Fibrosis in 5/6 Nephrectomized CKD Rats. J Pharmacol Exp Ther 2018; 367:129-137. [PMID: 30093458 DOI: 10.1124/jpet.118.249961] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/01/2018] [Indexed: 03/08/2025] Open
Abstract
Chronic kidney disease (CKD) causes anemia and impairs intestinal iron absorption. However, use of the phosphate binder ferric citrate (FC) increases body iron stores and hemoglobin levels in CKD patients. By intensifying oxidative stress and inflammation iron overload resulting from excessive use of intravenous iron can accelerate CKD progression. The present study explored the route of absorption and tissue distribution of iron with FC administration and its effect on renal function, histology, and inflammatory, oxidative, and fibrosis pathways in CKD rats. Male Sprague Dawley rats were randomized to sham-operated control (CTL) group and 5/6 nephrectomized (CKD) groups fed either regular or 4% FC-supplemented diets for 6 weeks. Animals were then sacrificed, and blood and target tissues were harvested and processed. The untreated CKD rats exhibited anemia, hypertension, upregulation of renal tissue inflammatory, oxidative, and fibrotic pathways, impaired nuclear translocation, and downregulation of Nrf2's target gene products and depletion of colonic epithelial tight junction proteins. FC administration raised serum iron, improved anemia, attenuated hyperphosphatemia, partially improved renal function, reduced oxidative stress, inflammation, and fibrosis, and restored colonic epithelial zonula occludens-1 protein abundance. Tissue iron staining detected presence of iron in epithelial cells and subepithelium of colon and in renal proximal tubules. In conclusion ferric citrate administration resulted in modest amelioration of renal function and histology and partial improvements of fibrosis, inflammation, and oxidative stress in the kidney tissues of CKD rats.
Collapse
Affiliation(s)
- Wanghui Jing
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China (W.J.); and Division of Nephrology and Hypertension, Department of Physiology and Biophysics (W.J., A.C.F.N., M.K., W.L.L., N.D.V.) and Department of Pathology and Laboratory Medicine (T.F.), University of California, Irvine, California
| | - Ane C F Nunes
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China (W.J.); and Division of Nephrology and Hypertension, Department of Physiology and Biophysics (W.J., A.C.F.N., M.K., W.L.L., N.D.V.) and Department of Pathology and Laboratory Medicine (T.F.), University of California, Irvine, California
| | - Ted Farzaneh
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China (W.J.); and Division of Nephrology and Hypertension, Department of Physiology and Biophysics (W.J., A.C.F.N., M.K., W.L.L., N.D.V.) and Department of Pathology and Laboratory Medicine (T.F.), University of California, Irvine, California
| | - Mahyar Khazaeli
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China (W.J.); and Division of Nephrology and Hypertension, Department of Physiology and Biophysics (W.J., A.C.F.N., M.K., W.L.L., N.D.V.) and Department of Pathology and Laboratory Medicine (T.F.), University of California, Irvine, California
| | - Wei Ling Lau
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China (W.J.); and Division of Nephrology and Hypertension, Department of Physiology and Biophysics (W.J., A.C.F.N., M.K., W.L.L., N.D.V.) and Department of Pathology and Laboratory Medicine (T.F.), University of California, Irvine, California
| | - Nosratola D Vaziri
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China (W.J.); and Division of Nephrology and Hypertension, Department of Physiology and Biophysics (W.J., A.C.F.N., M.K., W.L.L., N.D.V.) and Department of Pathology and Laboratory Medicine (T.F.), University of California, Irvine, California
| |
Collapse
|
10
|
Ubale RV, Shastri PN, Oettinger C, D’Souza MJ. Pulmonary Administration of Microparticulate Antisense Oligonucleotide (ASO) for the Treatment of Lung Inflammation. AAPS PharmSciTech 2018; 19:1908-1919. [PMID: 29663290 DOI: 10.1208/s12249-018-1002-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/19/2018] [Indexed: 01/01/2023] Open
Abstract
Targeted delivery to the lung for controlling lung inflammation is an area that we have explored in this study. The purpose was to use microparticles containing an antisense oligonucleotide (ASO) to NF-κB to inhibit the production of proinflammatory cytokines. Microparticles were prepared using the B-290 Buchi Spray Dryer using albumin as the microparticle matrix. Physicochemical characterization of the microparticles showed the size ranged from 2 to 5 μm, the charge was - 38.4 mV, and they had a sustained release profile over 72 h. Uptake of FITC-labeled ASO-loaded microparticles versus FITC-labeled ASO solution by RAW264.7 murine macrophage cells was 5-10-fold higher. After pulmonary delivery of microparticles to Sprague-Dawley rats, the microparticles were uniformly distributed throughout the lung and were retained in the lungs until 48 h. Serum cytokine (TNF-α and IL-1β) levels of rats after induction of lung inflammation by lipopolysaccharide were measured until 72 h. Animals receiving ASO-loaded microparticles were successful in significantly controlling lung inflammation during this period as compared to animals receiving no treatment. This study was successful in proving that microparticulate ASO therapy was capable of controlling lung inflammation.
Collapse
|
11
|
Zhao X, Hwang DY, Kao HY. The Role of Glucocorticoid Receptors in Podocytes and Nephrotic Syndrome. NUCLEAR RECEPTOR RESEARCH 2018; 5. [PMID: 30417008 PMCID: PMC6224173 DOI: 10.11131/2018/101323] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Glucocorticoid receptor (GC), a founding member of the nuclear hormone receptor superfamily, is a glucocorticoid-activated transcription factor that regulates gene expression and controls the development and homeostasis of human podocytes. Synthetic glucocorticoids are the standard treatment regimens for proteinuria (protein in the urine) and nephrotic syndrome (NS) caused by kidney diseases. These include minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), membranous nephropathy (MN) and immunoglobulin A nephropathy (IgAN) or subsequent complications due to diabetes mellitus or HIV infection. However, unwanted side effects and steroid-resistance remain major issues for their long-term use. Furthermore, the mechanism by which glucocorticoids elicit their renoprotective activity in podocyte and glomeruli is poorly understood. Podocytes are highly differentiated epithelial cells that contribute to the integrity of kidney glomerular filtration barrier. Injury or loss of podocytes leads to proteinuria and nephrotic syndrome. Recent studies in multiple experimental models have begun to explore the mechanism of GC action in podocytes. This review will discuss progress in our understanding of the role of glucocorticoid receptor and glucocorticoids in podocyte physiology and their renoprotective activity in nephrotic syndrome.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Daw-Yang Hwang
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Ying Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| |
Collapse
|
12
|
Is hydrogen sulfide a potential novel therapy to prevent renal damage during ureteral obstruction? Nitric Oxide 2018; 73:15-21. [DOI: 10.1016/j.niox.2017.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/12/2017] [Accepted: 12/17/2017] [Indexed: 12/28/2022]
|
13
|
Korte EA, Caster DJ, Barati MT, Tan M, Zheng S, Berthier CC, Brosius FC, Vieyra MB, Sheehan RM, Kosiewicz M, Wysoczynski M, Gaffney PM, Salant DJ, McLeish KR, Powell DW. ABIN1 Determines Severity of Glomerulonephritis via Activation of Intrinsic Glomerular Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2799-2810. [PMID: 28935578 PMCID: PMC5718094 DOI: 10.1016/j.ajpath.2017.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/15/2017] [Accepted: 08/17/2017] [Indexed: 10/24/2022]
Abstract
Transcription factor NF-κB regulates expression of numerous genes that control inflammation and is activated in glomerular cells in glomerulonephritis (GN). We previously identified genetic variants for a NF-κB regulatory, ubiquitin-binding protein ABIN1 as risk factors for GN in systemic autoimmunity. The goal was to define glomerular inflammatory events controlled by ABIN1 function in GN. Nephrotoxic serum nephritis was induced in wild-type (WT) and ubiquitin-binding deficient ABIN1[D485N] mice, and renal pathophysiology and glomerular inflammatory phenotypes were assessed. Proteinuria was also measured in ABIN1[D485N] mice transplanted with WT mouse bone marrow. Inflammatory activation of ABIN1[D472N] (D485N homolog) cultured human-derived podocytes, and interaction with primary human neutrophils were also assessed. Disruption of ABIN1 function exacerbated proteinuria, podocyte injury, glomerular NF-κB activity, glomerular expression of inflammatory mediators, and glomerular recruitment and retention of neutrophils in antibody-mediated nephritis. Transplantation of WT bone marrow did not prevent the increased proteinuria in ABIN1[D845N] mice. Tumor necrosis factor-stimulated enhanced expression and secretion of NF-κB-targeted proinflammatory mediators in ABIN1[D472N] cultured podocytes compared with WT cells. Supernatants from ABIN1[D472N] podocytes accelerated chemotaxis of human neutrophils, and ABIN1[D472N] podocytes displayed a greater susceptibility to injurious morphologic findings induced by neutrophil granule contents. These studies define a novel role for ABIN1 dysfunction and NF-κB in mediating GN through proinflammatory activation of podocytes.
Collapse
Affiliation(s)
- Erik A Korte
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Dawn J Caster
- Department of Medicine University of Louisville, Louisville, Kentucky; Robley Rex VA Medical Center, Louisville, Kentucky
| | - Michelle T Barati
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Min Tan
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Shirong Zheng
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Celine C Berthier
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Frank C Brosius
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Mark B Vieyra
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Ryan M Sheehan
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Michele Kosiewicz
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | | | - Patrick M Gaffney
- Arthritis and Clinical Immunology Program and Clinical Pharmacology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - David J Salant
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Kenneth R McLeish
- Department of Medicine University of Louisville, Louisville, Kentucky; Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan
| | - David W Powell
- Department of Medicine University of Louisville, Louisville, Kentucky.
| |
Collapse
|
14
|
Liu Z, Yu H, Guo Q. MicroRNA‑20a promotes inflammation via the nuclear factor‑κB signaling pathway in pediatric pneumonia. Mol Med Rep 2017; 17:612-617. [PMID: 29115456 DOI: 10.3892/mmr.2017.7899] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/22/2017] [Indexed: 11/06/2022] Open
Abstract
Pneumonia is a common respiratory disease worldwide, which is preventable and treatable; however, it is recognized as a leading cause of mortality in children. The present study aimed to investigate the role and mechanism of microRNA (miR)‑20a in inflammation in pediatric pneumonia. Clinical serum samples were collected from children with pneumonia and healthy children. Initially, the serum expression levels of miR‑20a were detected by reverse transcription‑quantitative polymerase chain reaction. Subsequently, A549 cells were randomly divided into four groups: Control group; lipopolysaccharide (LPS; 1 µg/ml) group; LPS + miR‑20a group; and LPS + miR‑20a + pyrrolidine dithiocarbamate (PDTC; 100 mmol/l) group. The concentrations of interleukin‑6 (IL‑6), tumor necrosis factor (TNF)‑α and C‑reactive protein (CRP) in clinical serum samples and A549 cells were determined by ELISA. In addition, the protein expression levels of inhibitor of nuclear factor (NF)‑κB α (IκBα) and phosphorylated (p)‑NF‑κB were measured by western blotting. The results demonstrated that miR‑20a was upregulated in children with pneumonia and in lung cells with LPS‑induced inflammatory injury (P<0.01). In addition, compared with the LPS group, cells in the LPS + miR‑20a group exhibited increased expression levels of IL‑6, TNF‑α and CRP (P<0.05). Overexpression of miR‑20a also resulted in upregulation of the expression levels of IκBα and p‑NF‑κB compared with in the LPS group (P<0.05). Furthermore, treatment with the NF‑κB inhibitor PDTC inhibited the expression of inflammatory factors compared with in the LPS + miR‑20a group (P<0.05). In conclusion, the present study indicated that miR‑20a is upregulated in pediatric pneumonia, and overexpression of miR‑20a may promote inflammation through activation of the NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Zhihong Liu
- Department of Emergency, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250001, P.R. China
| | - Haiying Yu
- Department of Pediatrics, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Qiuye Guo
- Department of Respiratory Medicine, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| |
Collapse
|
15
|
Kho MC, Park JH, Han BH, Tan R, Yoon JJ, Kim HY, Ahn YM, Lee YJ, Kang DG, Lee HS. Plantago asiatica L. Ameliorates Puromycin Aminonucleoside-Induced Nephrotic Syndrome by Suppressing Inflammation and Apoptosis. Nutrients 2017; 9:nu9040386. [PMID: 28420111 PMCID: PMC5409725 DOI: 10.3390/nu9040386] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022] Open
Abstract
Objective: Nephrotic syndrome, a kidney disease with a variety of causes, is mainly characterized by heavy proteinuria, hypoproteinemia, and ascites. This study was designed to evaluate the underlying mechanism of action of Plantago asiatica L. (PAL) in treating nephrotic syndrome induced by puromycin aminonucleoside. Methods: PAL has been used in Asia as a traditional medicine and dietary health supplement. Sprague-Dawley (SD) rats were intravenously injected with puromycin aminonucleoside (75 mg/kg/day), then treated with either Losartan (30 mg/kg/day) or PAL (200 mg/kg/day) by oral gavage for seven days. Results: PAL significantly decreased ascites, proteinuria level, and plasma lipid parameters. In addition, treatment with PAL attenuated histological damage and hypoalbuminemia. Treatment with PAL also restored podocin expression and reduced inflammation markers such as intracellular adhesion molecules (ICAM-1), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor alpha (TNF-α) and high-mobility group box-1 (HMGB1). Lower expression levels of the apoptosis markers Bax, caspase-3 and capase-9 were documented in SD rats receiving PAL. PAL also significantly decreased the phosphorylation levels of MAPKs such as ERK, JNK and p38. Conclusion: As a multifunctional agent, PAL has a renoprotective effect in nephrotic syndrome rat models. The anti-inflammatory and anti-apoptotic properties, along with reductions in hyperlipidemia and ascites, represent important therapeutic effects. These results indicate that Plantago asiatica is likely to be a promising agent in the treatment of nephrotic syndrome.
Collapse
Affiliation(s)
- Min Chul Kho
- Hanbang Body-fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Ji Hun Park
- Hanbang Body-fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Byung Hyuk Han
- Hanbang Body-fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Rui Tan
- Hanbang Body-fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Jung Joo Yoon
- Hanbang Body-fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Hye Yoom Kim
- Hanbang Body-fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - You Mee Ahn
- Hanbang Body-fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Yun Jung Lee
- Hanbang Body-fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Dae Gill Kang
- Hanbang Body-fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Ho Sub Lee
- Hanbang Body-fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| |
Collapse
|
16
|
Salvianolic acid A as a multifunctional agent ameliorates doxorubicin-induced nephropathy in rats. Sci Rep 2015; 5:12273. [PMID: 26194431 PMCID: PMC4508635 DOI: 10.1038/srep12273] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/22/2015] [Indexed: 11/08/2022] Open
Abstract
Nephrotic syndrome (NS) is still a therapeutic challenge. To date there is no ideal treatment. Evidence suggest that multidrug therapy has more effect than monotherapy in amelioration of renal injury. Salvianolic acid A (SAA) is the major active component of Salviae Miltiorrhizae Bunge. Previous studies have demonstrated that SAA is a multi-target agent and has various pharmacological activities. The pleiotropic properties of SAA predict its potential in the treatment of NS. The study investigated the effect of SAA on doxorubicin-induced nephropathy. The kidney function related-biochemical changes, hemorheological parameters and oxidative stress status were determined, and histological examination using light and transmission electron microcopies and western blot analysis were also performed. Results revealed that treatment with SAA alleviated histological damages, relieved proteinuria, hypoalbuminemia and hyperlipidemia, reduced oxidative stress, as well as improving hemorheology. Furthermore, SAA restored podocin expression, down-regulated the expression of NF-κB p65 and p-IκBα while up-regulating IκBα protein expression. Overall, as a multifunctional agent, SAA has a favorable renoprotection in doxorubicin-induced nephropathy. The anti-inflammation, antioxidant, amelioration of podocyte injury, improvement of hemorheology and hypolipidemic properties may constituent an important part of its therapeutic effects. All these indicate that SAA is likely to be a promising agent for NS.
Collapse
|
17
|
Ta MHT, Rao P, Korgaonkar M, Foster SF, Peduto A, Harris DCH, Rangan GK. Pyrrolidine dithiocarbamate reduces the progression of total kidney volume and cyst enlargement in experimental polycystic kidney disease. Physiol Rep 2014; 2:2/12/e12196. [PMID: 25501440 PMCID: PMC4332200 DOI: 10.14814/phy2.12196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Heterocyclic dithiocarbamates have anti‐inflammatory and anti‐proliferative effects in rodent models of chronic kidney disease. In this study, we tested the hypothesis that pyrrolidine dithiocarbamate (PDTC) reduces the progression of polycystic kidney disease (PKD). Male Lewis polycystic kidney (LPK) rats (an ortholog of Nek8/NPHP9) received intraperitoneal injections of either saline vehicle or PDTC (40 mg/kg once or twice daily) from postnatal weeks 4 until 11. By serial magnetic resonance imaging at weeks 5 and 10, the relative within‐rat increase in total kidney volume and cyst volume were 1.3‐fold (P =0.01) and 1.4‐fold (P < 0.01) greater, respectively, in LPK + Vehicle compared to the LPK + PDTC(40 mg/kg twice daily) group. At week 11 in LPK rats, PDTC attenuated the increase in kidney weight to body weight ratio by 25% (P < 0.01) and proteinuria by 66% (P < 0.05 vs. LPK + Vehicle) but did not improve renal dysfunction. By quantitative whole‐slide image analysis, PDTC did not alter interstitial CD68+ cell accumulation, interstitial fibrosis, or renal cell proliferation in LPK rats at week 11. The phosphorylated form of the nuclear factor (NF)‐κB subunit, p105, was increased in cystic epithelial cells of LPK rats, but was not altered by PDTC. Moreover, PDTC did not significantly alter nuclear expression of the p50 subunit or NF‐κB (p65)‐DNA binding. Kidney enlargement in LPK rats was resistant to chronic treatment with a proteasome inhibitor, bortezomib. In conclusion, PDTC reduced renal cystic enlargement and proteinuria but lacked anti‐inflammatory effects in LPK rats. Lewis polycystic kidney rats were treated with pyrrolidine dithiocarbamate (PDTC) from weeks 4 to 11. Quantitative analysis of serial magnetic resonance images indicated that over time, the change in total kidney volume was 1.3‐fold higher in PDTC‐treated than in vehicle‐treated rats. PDTC treatment also decreased kidney weight to body weight ratio, renal cystic volume, and proteinuria.
Collapse
Affiliation(s)
- Michelle H T Ta
- Michael Stern Laboratory for Polycystic Kidney Disease, Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Padmashree Rao
- Michael Stern Laboratory for Polycystic Kidney Disease, Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Mayuresh Korgaonkar
- Brain Dynamics Centre, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Sheryl F Foster
- Department of Radiology, Westmead Hospital and The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony Peduto
- Department of Radiology, Westmead Hospital and The University of Sydney, Sydney, New South Wales, Australia
| | - David C H Harris
- Michael Stern Laboratory for Polycystic Kidney Disease, Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Gopala K Rangan
- Michael Stern Laboratory for Polycystic Kidney Disease, Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Vaziri ND, Liu SM, Lau WL, Khazaeli M, Nazertehrani S, Farzaneh SH, Kieffer DA, Adams SH, Martin RJ. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS One 2014; 9:e114881. [PMID: 25490712 PMCID: PMC4260945 DOI: 10.1371/journal.pone.0114881] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/14/2014] [Indexed: 12/30/2022] Open
Abstract
Inflammation is a major mediator of CKD progression and is partly driven by altered gut microbiome and intestinal barrier disruption, events which are caused by: urea influx in the intestine resulting in dominance of urease-possessing bacteria; disruption of epithelial barrier by urea-derived ammonia leading to endotoxemia and bacterial translocation; and restriction of potassium-rich fruits and vegetables which are common sources of fermentable fiber. Restriction of these foods leads to depletion of bacteria that convert indigestible carbohydrates to short chain fatty acids which are important nutrients for colonocytes and regulatory T lymphocytes. We hypothesized that a high resistant starch diet attenuates CKD progression. Male Sprague Dawley rats were fed a chow containing 0.7% adenine for 2 weeks to induce CKD. Rats were then fed diets supplemented with amylopectin (low-fiber control) or high fermentable fiber (amylose maize resistant starch, HAM-RS2) for 3 weeks. CKD rats consuming low fiber diet exhibited reduced creatinine clearance, interstitial fibrosis, inflammation, tubular damage, activation of NFkB, upregulation of pro-inflammatory, pro-oxidant, and pro-fibrotic molecules; impaired Nrf2 activity, down-regulation of antioxidant enzymes, and disruption of colonic epithelial tight junction. The high resistant starch diet significantly attenuated these abnormalities. Thus high resistant starch diet retards CKD progression and attenuates oxidative stress and inflammation in rats. Future studies are needed to explore the impact of HAM-RS2 in CKD patients.
Collapse
Affiliation(s)
- Nosratola D. Vaziri
- Division of Nephrology, University of California Irvine, Irvine, California, United States of America
| | - Shu-Man Liu
- Division of Nephrology, University of California Irvine, Irvine, California, United States of America
| | - Wei Ling Lau
- Division of Nephrology, University of California Irvine, Irvine, California, United States of America
| | - Mahyar Khazaeli
- Division of Nephrology, University of California Irvine, Irvine, California, United States of America
| | - Sohrab Nazertehrani
- Division of Nephrology, University of California Irvine, Irvine, California, United States of America
| | - Seyed H. Farzaneh
- Division of Nephrology, University of California Irvine, Irvine, California, United States of America
| | - Dorothy A. Kieffer
- Graduate Group in Nutritional Biology and Department of Nutrition, University of California Davis, Sacramento, California, United States of America
- Obesity & Metabolism Research Unit, USDA-ARS Western Human Nutrition Research Center, Davis, California, United States of America
| | - Sean H. Adams
- Graduate Group in Nutritional Biology and Department of Nutrition, University of California Davis, Sacramento, California, United States of America
- Obesity & Metabolism Research Unit, USDA-ARS Western Human Nutrition Research Center, Davis, California, United States of America
| | - Roy J. Martin
- Graduate Group in Nutritional Biology and Department of Nutrition, University of California Davis, Sacramento, California, United States of America
| |
Collapse
|
19
|
Maghsoumi-Norouzabad L, Alipoor B, Abed R, Eftekhar Sadat B, Mesgari-Abbasi M, Asghari Jafarabadi M. Effects of Arctium lappa L. (Burdock) root tea on inflammatory status and oxidative stress in patients with knee osteoarthritis. Int J Rheum Dis 2014; 19:255-61. [PMID: 25350500 DOI: 10.1111/1756-185x.12477] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM This study was designed to examine the effect of Burdock root tea on inflammatory markers and oxidative stress indicators in patients with knee osteoarthritis (OA). METHODS Thirty-six patients (10 men and 26 women) aged 50-70 years old with knee osteoarthritis referred to the Physical Medicine and Rehabilitation Department of the Tabriz University of Medical Sciences Hospitals, were selected for the study and randomly divided into two groups. Anthropometric measurements, including height, weight and body mass index (BMI) were measured. For all individuals along the 42 days of study period, the same drug treatments, including two lots of 500 mg acetaminophen twice a day and one glucosamine 500 mg once a day,were considered. The intervention group received daily three cups of Burdock root tea (each cup containing 2 g/150 mL boiled water) half-hour after the meal. The control group received three cups containing 150 cc boiled water daily. We assessed inflammatory markers such as high sensitivity C-reactive protein (hs-CRP) and interleukin-6 (IL-6) and oxidative stress indicators such as total antioxidants capacity (TAC), glutathione peroxidase (GPX), superoxide dismutase (SOD) and thiobarbituric acid reactive substances before and after the intervention. RESULTS The results showed that burdock root tea significantly decreased the levels of serum IL-6 (P = 0.002), hs-CRP (P = 0.003) and malondialdehyde (P < 0.001), while the levels of serum TAC (P < 0.001) and activities of SOD (P = 0.009) were significantly increased. GPX activities increased but not significantly. CONCLUSIONS The results suggested that Arctium lappa L. root tea improves inflammatory status and oxidative stress in patients with knee osteoarthritis.
Collapse
Affiliation(s)
| | - Beitollah Alipoor
- Department of Community Nutrition, Faculty of Nutrition, Tabriz University (Medical Sciences), Tabriz, Iran
| | - Reza Abed
- Students' Research Committee, Tabriz University (Medical Sciences), Tabriz, Iran
| | - Bina Eftekhar Sadat
- Physical Medicine and Rehabilitation, Faculty of Medicine, Tabriz University (Medical Sciences), Tabriz, Iran
| | | | | |
Collapse
|
20
|
Molecular mechanisms underlying the Nephroprotective effects of PACAP in diabetes. J Mol Neurosci 2014; 54:300-9. [PMID: 24535559 DOI: 10.1007/s12031-014-0249-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
Diabetic nephropathy is the leading cause of end-stage renal failure and accounts for 30-40 % of patients entering renal transplant programmes. The nephroprotective effects of the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP38) against diabetes have been shown previously, but the molecular mechanisms responsible for these effects remain unknown. In the present study, we showed that PACAP treatment counteracted the diabetes-induced increase in the level of the proapoptotic pp38MAPK and cleaved caspase-3 and also decreased the p60 subunit of NFκB. The examined antiapoptotic factors, including pAkt and pERK1/2, showed a slight increase in the diabetic kidneys, while PACAP treatment resulted in a notable elevation of these proteins. PCR and Western blot revealed the downregulation of fibrotic markers, like collagen IV and TGF-β1 in the kidney. PACAP treatment resulted in increased expression of the antioxidant glutathione. We conclude that the nephroprotective effect of PACAP in diabetes is, at least partly, due to its antiapoptotic, antifibrotic and antioxidative effect in addition to the previously described antiinflammatory effect.
Collapse
|
21
|
Abstract
Experimental and human studies have shown that proteinuria contributes to the progression of renal disease. Overexposure to filtered proteins promotes the expression and release of chemokines by tubular epithelial cells, thus leading to inflammatory cell recruitment and renal impairment. This review focuses on recent progress in cellular and molecular understanding of the role of chemokines in the pathogenesis of proteinuria-induced renal injury, as well as their clinical implications and therapeutic potential.
Collapse
|
22
|
Aminzadeh MA, Nicholas SB, Norris KC, Vaziri ND. Role of impaired Nrf2 activation in the pathogenesis of oxidative stress and inflammation in chronic tubulo-interstitial nephropathy. Nephrol Dial Transplant 2013; 28:2038-45. [PMID: 23512109 DOI: 10.1093/ndt/gft022] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Tubulo-interstitial nephropathy (TIN) is a common cause of chronic kidney disease (CKD). Consumption of an adenine-containing diet causes the accumulation of 2,8-dihydroxyadenine in the renal tubules triggering intense chronic TIN and progressive CKD in rats. CKD in this model is associated with, and largely driven by, oxidative stress and inflammation. Oxidative stress and inflammation in rats with spontaneous focal segmental glomerulosclerosis and rats with CKD induced by 5/6 nephrectomy are associated with an impaired activation of nuclear factor-erythroid-2-related factor 2 (Nrf2) which is the master regulator of genes encoding many antioxidant and detoxifying enzymes. The effect of TIN on the Nrf2 pathway and its key target genes is unknown and was investigated here. METHODS Sprague-Dawley rats were randomized to control and adenine-treated (rat chow-containing 0.7% adenine for 2 weeks) groups and followed up for 4 weeks. RESULTS The adenine-treated animals exhibited marked azotemia, impaired urinary concentrating capacity, intense tubular and glomerular damage, interstitial inflammation and fibrosis. This was associated with an increased expression of NAD(P)H oxidase, cyclooxygenase-2 and 12-lipoxygenase, and activation of NF-κB, the master regulator of pro-inflammatory cytokines and chemokines. Oxidative stress and inflammation in the kidneys of adenine-treated animals was accompanied by an impaired activation of Nrf2 and down-regulation of its target gene products including, catalase, heme oxygenase-1 and glutamate-cysteine ligase. CONCLUSIONS Chronic TIN is associated with impaired Nrf2 activity which contributes to the pathogenesis of oxidative stress and inflammation and amplifies their damaging effects on the kidney.
Collapse
Affiliation(s)
- Mohammad A Aminzadeh
- Division of Nephrology and Hypertension, University of California, Irvine, CA, USA
| | | | | | | |
Collapse
|
23
|
Jin K, Norris K, Vaziri ND. Dysregulation of hepatic fatty acid metabolism in chronic kidney disease. Nephrol Dial Transplant 2012; 28:313-20. [PMID: 23045433 DOI: 10.1093/ndt/gfs350] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) results in hypertriglyceridemia which is largely due to impaired clearance of triglyceride-rich lipoproteins occasioned by downregulation of lipoprotein lipase and very low-density lipoprotein (LDL) receptor in the skeletal muscle and adipose tissue and of hepatic lipase and LDL receptor-related protein in the liver. However, data on the effect of CKD on fatty acid metabolism in the liver is limited and was investigated here. METHODS Male Sprague-Dawley rats were randomized to undergo 5/6 nephrectomy (CRF) or sham operation (control) and observed for 12 weeks. The animals were then euthanized and their liver tissue tested for nuclear translocation (activation) of carbohydrate-responsive element binding protein (ChREBP) and sterol-responsive element binding protein-1 (SREBP-1) which independently regulate the expression of key enzyme in fatty acid synthesis, i.e. fatty acid synthase (FAS) and acyl-CoA carboxylase (ACC) as well as nuclear Peroxisome proliferator-activated receptor alpha (PPARα) which regulates the expression of enzymes involved in fatty acid oxidation and transport, i.e. L-FABP and CPT1A. In addition, the expression of ATP synthase α, ATP synthase β, glycogen synthase and diglyceride acyltransferase 1 (DGAT1) and DGAT2 were determined. RESULTS Compared with controls, the CKD rats exhibited hypertriglyceridemia, elevated plasma and liver tissue free fatty acids, increased nuclear ChREBP and reduced nuclear SREBP-1 and PPARα, upregulation of ACC and FAS and downregulation of L-FABP, CPT1A, ATP synthase α, glycogen synthase and DGAT in the liver tissue. CONCLUSION Liver in animals with advanced CKD exhibits ChREBP-mediated upregulation of enzymes involved in fatty acid synthesis, downregulation of PPARα-regulated fatty acid oxidation system and reduction of DGAT resulting in reduced fatty acid incorporation in triglyceride.
Collapse
Affiliation(s)
- Kyubok Jin
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, CA, USA
| | | | | |
Collapse
|
24
|
Aminzadeh MA, Sato T, Vaziri ND. Participation of endoplasmic reticulum stress in the pathogenesis of spontaneous glomerulosclerosis--role of intra-renal angiotensin system. Transl Res 2012; 160:309-18. [PMID: 22683418 DOI: 10.1016/j.trsl.2012.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/11/2012] [Accepted: 03/09/2012] [Indexed: 01/13/2023]
Abstract
Endoplasmic reticulum (ER) is the site of synthesis, folding, assembly, and degradation of proteins. Disruption of ER function leads to ER stress, which is marked by accumulation of unfolded proteins in the ER lumen. Detection of unfolded proteins by the ER membrane receptors triggers the "unfolded protein response (UPR)" designed to restore ER function via activation of the adaptive/cytoprotective responses. Failure of UPR or persistent stress triggers activation of ER stress-mediated apoptotic pathway. Several in vivo and in vitro studies have demonstrated the association of ER stress with glomerular diseases. Imai rats develop progressive glomerulosclerosis (GS), which is associated with oxidative stress, inflammation and activation of intra-renal angiotensin system, and can be prevented by AT-1 receptor blockade (ARB). Since persistent oxidative and inflammatory stresses trigger ER stress-induced apoptosis and tissue injury, we hypothesized that kidneys in the Imai rats may exhibit failure of the adaptive and activation of the apoptotic ER stress responses, which could be prevented by ARB. To this end 10-week old Imai rats were randomized to untreated and ARB-treated groups and observed for 24 weeks. At age 34 weeks, untreated rats showed heavy proteinuria, azotemia, advanced GS, impaired ER stress adaptive/cytoprotective responses (depletion of UPR-mediating proteins), and activation of ER stress apoptotic responses. ARB treatment attenuated GS, suppressed intra-renal oxidative stress, restored ER-associated adaptive/cytoprotective system, and prevented the ER stress mediated apoptotic response in this model. Thus, progressive GS in Imai rats is accompanied by activation of ER stress-associated apoptosis, which can be prevented by ARB.
Collapse
Affiliation(s)
- Mohammad A Aminzadeh
- Division of Nephrology and Hypertension, University of California Irvine, Irvine, CA, USA
| | | | | |
Collapse
|
25
|
Kim HJ, Sato T, Rodríguez-Iturbe B, Vaziri ND. Role of intrarenal angiotensin system activation, oxidative stress, inflammation, and impaired nuclear factor-erythroid-2-related factor 2 activity in the progression of focal glomerulosclerosis. J Pharmacol Exp Ther 2011; 337:583-90. [PMID: 21357516 DOI: 10.1124/jpet.110.175828] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Imai rat is a model of spontaneous focal glomerulosclerosis, which leads to heavy proteinuria, hyperlipidemia, hypertension, and progressive renal failure. Treatment with AT1 blockers (ARBs) ameliorates proteinuria, hyperlipidemia, and nephropathy in this model. Progression of renal disease in 5/6 nephrectomized rats is associated with activation of the intrarenal angiotensin system, up-regulation of the oxidative, inflammatory, and fibrogenic pathways, and impaired activity of nuclear factor-erythroid-2-related factor 2 (Nrf2), the master regulator of genes encoding antioxidant molecules. We hypothesized that progressive nephropathy in the Imai rat is accompanied by oxidative stress, inflammation, and impaired Nrf2 activation and that amelioration of nephropathy with AT1 receptor blockade in this model may be associated with the reversal of these abnormalities. Ten-week-old Imai rats were randomized to the ARB-treated (olmesartan, 10 mg/kg/day for 24 weeks) or vehicle-treated groups. Sprague-Dawley rats served as controls. At 34 weeks of age Imai rats showed heavy proteinuria, hypoalbuminemia, hypertension, azotemia, glomerulosclerosis, tubulointerstitial inflammation, increased angiotensin II expressing cell population, up-regulations of AT1 receptor, AT2 receptor, NAD(P)H oxidase, and inflammatory mediators, activation of nuclear factor-κB and reduction of Nrf2 activity and expression of its downstream gene products in the renal cortex. ARB therapy prevented nephropathy, suppressed oxidative stress and inflammation, and restored Nrf2 activation and expression of the antioxidant enzymes. Thus progressive focal glomerulosclerosis in the Imai rats is associated with oxidative stress, inflammation, and impaired Nrf2 activation. These abnormalities are accompanied by activation of intrarenal angiotensin system and can be prevented by ARB administration.
Collapse
Affiliation(s)
- Hyun Ju Kim
- World Institute of Kimchi, Korea Food Research Institute, Gyeonggi-do, Republic of Korea
| | | | | | | |
Collapse
|
26
|
Surfactant blocks lipopolysaccharide signaling by inhibiting both NFκB and PARP activation in experimental ARDS. Mol Cell Biochem 2011; 354:113-22. [DOI: 10.1007/s11010-011-0810-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
|
27
|
Yagil Y, Hessner M, Schulz H, Gosele C, Lebedev L, Barkalifa R, Sapojnikov M, Hubner N, Yagil C. Geno-transcriptomic dissection of proteinuria in the uninephrectomized rat uncovers a molecular complexity with sexual dimorphism. Physiol Genomics 2010; 42A:301-16. [PMID: 20876844 DOI: 10.1152/physiolgenomics.00149.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Investigation of proteinuria, whose pathophysiology remains incompletely understood, is confounded by differences in the phenotype between males and females. We initiated a sex-specific geno-transcriptomic dissection of proteinuria in uninephrectomized male and female Sabra rats that spontaneously develop focal and segmental glomerulosclerosis, testing the hypothesis that different mechanisms might underlie the pathophysiology of proteinuria between the sexes. In the genomic arm, we scanned the genome of 136 male and 111 female uninephrectomized F2 populations derived from crosses between SBH/y and SBN/y. In males, we identified proteinuria-related quantitative trait loci (QTLs) on RNO2 and 20 and protective QTLs on RNO6 and 9. In females, we detected proteinuria-related QTLs on RNO11, 13, and 20. The only QTL overlap between the sexes was on RNO20. Using consomic strains, we confirmed the functional significance of this QTL in both sexes. In the transcriptomic arm, we searched on a genomewide scale for genes that were differentially expressed in kidneys of SBH/y and SBN/y with and without uninephrectomy. These studies identified within each sex differentially expressed genes of relevance to proteinuria. Integrating genomics with transcriptomics, we identified differentially expressed genes that mapped within the boundaries of the proteinuria-related QTLs, singling out 24 transcripts in males and 30 in females, only 4 of which (Tubb5, Ubd, Psmb8, and C2) were common to both sexes. Data mining revealed that these transcripts are involved in multiple molecular mechanisms, including immunity, inflammation, apoptosis, matrix deposition, and protease activity, with no single molecular pathway predominating in either sex. These results suggest that the pathophysiology of proteinuria is highly complex and that some of the underlying mechanisms are shared between the sexes, while others are sex specific and may account for the difference in the proteinuric phenotype between males and females.
Collapse
Affiliation(s)
- Yoram Yagil
- Laboratory for Molecular Medicine and Israeli Rat Genome Center, Faculty of Health Sciences, Ben-Gurion University, Barzilai Medical Center Campus, Ashkelon, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Vaziri ND, Kim HJ, Moradi H, Farmand F, Navab K, Navab M, Hama S, Fogelman AM, Quiroz Y, Rodriguez-Iturbe B. Amelioration of nephropathy with apoA-1 mimetic peptide in apoE-deficient mice. Nephrol Dial Transplant 2010; 25:3525-34. [PMID: 20488818 DOI: 10.1093/ndt/gfq274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND There is mounting evidence that dyslipidaemia may contribute to development and progression of renal disease. For instance, hyperlipidaemia in apolipoprotein E-deficient (apoE(-/-)) mice is associated with glomerular inflammation, mesangial expansion and foam cell formation. ApoA-1 mimetic peptides are potent antioxidant and anti-inflammatory compounds which are highly effective in ameliorating atherosclerosis and inflammation in experimental animals. Given the central role of oxidative stress and inflammation in progression of renal disease, we hypothesized that apoA-1 mimetic peptide, D-4F, may attenuate renal lesions in apoE(-/-) mice. METHODS Twenty-five-month-old female apoE(-/-) mice were treated with D-4F (300 µg/mL in drinking water) or placebo for 6 weeks. Kidneys were harvested and examined for histological and biochemical characteristics. RESULTS Compared with the control mice, apoE(-/-) mice showed significant proteinuria, tubulo-interstitial inflammation, mesangial expansion, foam cell formation and up-regulation of oxidative [NAD(P)H oxidase subunits] and inflammatory [NF-κB, MCP-1, PAI-1 and COX-2] pathways. D-4F administration lowered proteinuria, improved renal histology and reversed up-regulation of inflammatory and oxidative pathways with only minimal changes in plasma lipid levels. CONCLUSIONS The apoE(-/-) mice develop proteinuria and glomerular and tubulo-interstitial injury which are associated with up-regulation of oxidative and inflammatory mediators in the kidney and are ameliorated by the administration of apoA-1 mimetic peptide. These observations point to the role of oxidative stress and inflammation in the pathogenesis of renal disease in hyperlipidaemic animals and perhaps humans.
Collapse
Affiliation(s)
- Nosratola D Vaziri
- Division of Nephrology and Hypertension, University of California, Irvine, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kim HJ, Vaziri ND. Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am J Physiol Renal Physiol 2010; 298:F662-71. [DOI: 10.1152/ajprenal.00421.2009] [Citation(s) in RCA: 372] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and inflammation are constant features and major mediators of progression of chronic kidney disease (CKD). Nuclear factor erythroid-2-related factor-2 (Nrf2) confers protection against tissue injury by orchestrating antioxidant and detoxification responses to oxidative and electrophilic stress. While sources of oxidative stress and inflammation in the remnant kidney have been extensively characterized, the effect of CKD on Nrf2 activation and expression of its downstream gene products is unknown and was investigated. Subgroups of male Sprague-Dawley rats were subjected to 5/6 nephrectomy or sham operation and observed for 6 or 12 wk. Kidneys were then harvested, and Nrf2 activity and its downstream target gene products (antioxidant and phase II enzymes) were assessed. In addition, key factors involved in promoting inflammation and oxidative stress were studied. In confirmation of earlier studies, rats with chronic renal failure exhibited increased lipid peroxidation, glutathione depletion, NF-κB activation, mononuclear cell infiltration, and upregulation of monocyte chemoattractant protein-1, NAD(P)H oxidase, cyclooxygenase-2, and 12-lipoxygenase in the remnant kidney pointing to oxidative stress and inflammation. Despite severe oxidative stress and inflammation, remnant kidney tissue Nrf2 activity (nuclear translocation) was mildly reduced at 6 wk and markedly reduced at 12 wk, whereas the Nrf2 repressor Keap1 was upregulated and the products of Nrf2 target genes [catalase, superoxide dismutase, glutathione peroxidase, heme oxygenase-1, NAD(P)H quinone oxidoreductase, and glutamate-cysteine ligase] were reduced or unchanged at 6 wk and significantly diminished at 12 wk. Thus oxidative stress and inflammation in the remnant kidney are compounded by conspicuous impairment of Nrf2 activation and consequent downregulation of the antioxidant enzymes.
Collapse
Affiliation(s)
- Hyun Ju Kim
- Division of Nephrology and Hypertension, University of California, Irvine, California
| | - Nosratola D. Vaziri
- Division of Nephrology and Hypertension, University of California, Irvine, California
| |
Collapse
|
30
|
Yokozawa T, Park CH, Noh JS, Tanaka T, Cho EJ. Novel action of 7-O-galloyl-d-sedoheptulose isolated from Corni Fructus as a hypertriglyceridaemic agent. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.05.0015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
Objectives
We investigated the lipid-lowering activity of 7-O-galloyl-d-sedoheptulose, an active component of Corni Fructus, and related mechanisms.
Methods
Rats were fed a high-fructose diet for 6 days, followed by treatment with 7-O-galloyl-d-sedoheptulose, 5, 10 or 20 mg/kg per day, or fenofibrate (positive control).
Key findings
The high-fructose diet induced an increase in body weight, hypertriglyceridaemia, hyperglycaemia and hypertension. Administration of 7-O-galloyl-d-sedoheptulose significantly reduced the levels of triglyceride in the serum and liver (being more effective than fenofibrate) but did not lead to changes in liver weight or hepatic function, whereas fenofibrate increased the liver weight markedly. The preventive effect of 7-O-galloyl-d-sedoheptulose against the accumulation of triglyceride and cholesterol was related to the up-regulation of peroxisome proliferator-activated receptor α expression.
Conclusions
The present study supports the role of 7-O-galloyl-d-sedoheptulose as a promising agent against hypertriglyceridaemia without hepatic side-effects.
Collapse
Affiliation(s)
- Takako Yokozawa
- Institute of Natural Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Chan Hum Park
- Institute of Natural Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Jeong Sook Noh
- Institute of Natural Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Takashi Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan, South Korea
| |
Collapse
|
31
|
Ilbey YO, Ozbek E, Simsek A, Cekmen M, Somay A, Tasci AI. Effects of pomegranate juice on hyperoxaluria-induced oxidative stress in the rat kidneys. Ren Fail 2010; 31:522-31. [PMID: 19839830 DOI: 10.1080/08860220902963871] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
To evaluate the role of the inducible nitric oxide synthase (iNOS), selective nuclear factor-kB (NF-kB), and p38-mitogene-activated protein kinase (p38-MAPK) on hyperoxaluria-induced oxidative stress and stone formation in rat kidneys. The rats were divided into five groups: group 1, control group; group 2: ethylene glycol (EG) group; group 3: EG + pomegranate juice (PJ)-low group; group 4: EG + PJ-middle group; group 5: EG + PJ-high group. Rats were sacrificed on 7, 15, and 45 days. The iNOS expression, p65-NF-kB and p38-MAPK activity, and oxidative stress markers were evaluated in the kidney. Crystal depositions were evident on day 7, and mild and severe crystallization were observed on day 15 and 45 in EG group, respectively. There was limited or no crystal formation in rats in both middle- and high-dose PJ groups when compared to low-dose PJ group. Crystal depositions, iNOS, p38-MAPK and p65-NF-kB activity, and oxidative stress markers were found to be decreased by middle- and high-dose PJ treatment. PJ was found to have inhibitory effects on renal tubular cell injury and oxidative stress caused by oxalate crystals by reducing ROS, iNOS, p38-MAPK, and NF-kB expression.
Collapse
Affiliation(s)
- Yusuf Ozlem Ilbey
- Department of Urology, Bezm-i Alem Valide Sultan Vakif Gureba Research and Education Hospital, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
32
|
Kim HJ, Yuan J, Norris K, Vaziri ND. High-calorie diet partially ameliorates dysregulation of intrarenal lipid metabolism in remnant kidney. J Nutr Biochem 2009; 21:999-1007. [PMID: 19954950 DOI: 10.1016/j.jnutbio.2009.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Accepted: 08/20/2009] [Indexed: 01/01/2023]
Abstract
Chronic renal failure (CRF) is associated with malnutrition and renal tissue accumulation of lipids, which can contribute to progression of renal disease. This study was designed to explore the effect of a high-calorie diet on pathways involved in lipid metabolism in the remnant kidney of rats with CRF. 5/6 nephrectomized rats were randomized to receive a regular diet (3.0 kcal/g) or a high-calorie diet (4.5 kcal/g) for 12 weeks. Renal lipid contents and abundance of molecules involved in cholesterol and fatty acid metabolism were studied. The CRF group consuming a regular diet exhibited growth retardation; azotemia; proteinuria; glomerulosclerosis; tubulointerstitial injury; heavy lipid accumulation in the remnant kidney; up-regulation of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), ATP-binding cassette transporter-1 (ABCA1), liver X receptor (LXR) α/β, carbohydrate-responsive element binding protein (ChREBP) and acyl-CoA carboxylase (ACC); and down-regulation of peroxisome proliferator-activated receptor-α (PPAR-α), carnitine palmitoyltransferase-1 (CPT1) and liver-type fatty acid binding protein (L-FABP). The high-calorie diet restored growth; reduced the severity of tubulointerstitial injury, proteinuria and azotemia; partially lowered renal tissue lipid contents; attenuated the up-regulation of mediators of lipid influx (LOX-1), lipid efflux (LXR-α/β and ABCA1) and fatty acid biosynthesis (ChREBP and ACC); and reversed the down-regulation of factors involved in fatty acid oxidation (PPAR-α, CPT1 and L-FABP). In conclusion, a high-calorie diet restores growth, improves renal function and structure, and lowers lipid burden in the remnant kidney. The latter is associated with and most likely due to reduction in lipid influx and enhancement of fatty acid oxidation.
Collapse
Affiliation(s)
- Hyun Ju Kim
- Division of Nephrology and Hypertension, University of California, Irvine, Orange, CA 92868, USA
| | | | | | | |
Collapse
|
33
|
The protective role of amla (Emblica officinalis Gaertn.) against fructose-induced metabolic syndrome in a rat model. Br J Nutr 2009; 103:502-12. [DOI: 10.1017/s0007114509991978] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We investigated the effects of amla (Emblica officinalis Gaertn.) on fructose-induced metabolic syndrome using a rat model. Male Wistar rats were fed a high-fructose (65 %) diet or standard chow for 1 week, and treated with an ethyl acetate (EtOAc) extract of amla, a polyphenol-rich fraction, at 10 or 20 mg/kg body weight per d, or vehicle, for 2 weeks. Serum glucose, TAG, total cholesterol and blood pressure levels of the high-fructose diet-fed rats were increased compared with those of the normal rats (P < 0·001). However, the EtOAc extract of amla ameliorated the high fructose-induced metabolic syndrome, including hypertriacylglycerolaemia and hypercholesterolaemia. Also, the elevated levels of hepatic TAG and total cholesterol in rats given the high-fructose diet were significantly reduced by 33·8 and 24·6 %, respectively (P < 0·001), on the administration of the EtOAc extract of amla at the dose of 20 mg/kg with the regulation of sterol regulatory element-binding protein (SREBP)-1 expression. The protein levels of PPARα and SREBP-2 were not affected by the feeding of the high-fructose diet or EtOAc extract of amla. In addition, oral administration of the amla extract at the dose of 20 mg/kg significantly inhibited the increased serum and hepatic mitochondrial thiobarbituric acid-reactive substance levels (21·1 and 43·1 %, respectively; P < 0·001). Furthermore, the amla extract inhibited the increase of cyclo-oxygenase-2 with the regulation of NF-κB and bcl-2 proteins in the liver, while the elevated expression level of bax was significantly decreased by 8·5 and 10·2 % at the doses of 10 and 20 mg/kg body weight per d, respectively. These findings suggest that fructose-induced metabolic syndrome is attenuated by the polyphenol-rich fraction of amla.
Collapse
|
34
|
Wu JG, Wu JZ, Sun LN, Han T, Du J, Ye Q, Zhang H, Zhang YG. Ameliorative effects of arctiin from Arctium lappa on experimental glomerulonephritis in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2009; 16:1033-1041. [PMID: 19524415 DOI: 10.1016/j.phymed.2009.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/06/2009] [Accepted: 04/24/2009] [Indexed: 05/27/2023]
Abstract
Membranous glomerulonephritis (MGN) remains the most common cause of adult-onset nephrotic syndrome in the world and up to 40% of untreated patients will progress to end-stage renal disease. Although the treatment of MGN with immunosuppressants or steroid hormones can attenuate the deterioration of renal function, numerous treatment-related complications have also been established. In this study, the ameliorative effects of arctiin, a natural compound isolated from the fruits of Arctium lappa, on rat glomerulonephritis induced by cationic bovine serum albumin (cBSA) were determined. After oral administration of arctiin (30, 60, 120 mg/kgd) for three weeks, the levels of serum creatinine (Scr) and blood urea nitrogen (BUN) and 24-h urine protein content markedly decreased, while endogenous creatinine clearance rate (ECcr) significantly increased. The parameters of renal lesion, hypercellularity, infiltration of polymorphonuclear leukocyte (PMN), fibrinoid necrosis, focal and segmental proliferation and interstitial infiltration, were reversed. In addition, we observed that arctiin evidently reduced the levels of malondialdehyde (MDA) and pro-inflammatory cytokines including interleukin-6 (IL-6) and tumor necrosis factor (TNF-alpha), suppressed nuclear factor-kappaB p65 (NF-kappaB) DNA binding activity, and enhanced superoxide dismutase (SOD) activity. These findings suggest that the ameliorative effects of arctiin on glomerulonephritis is carried out mainly by suppression of NF-kappaB activation and nuclear translocation and the decreases in the levels of these pro-inflammatory cytokines, while SOD is involved in the inhibitory pathway of NF-kappaB activation. Arctiin has favorable potency for the development of an inhibitory agent of NF-kappaB and further application to clinical treatment of glomerulonephritis, though clinical studies are required.
Collapse
Affiliation(s)
- Jian-Guo Wu
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Cho KH, Kim HJ, Kamanna VS, Vaziri ND. Niacin improves renal lipid metabolism and slows progression in chronic kidney disease. Biochim Biophys Acta Gen Subj 2009; 1800:6-15. [PMID: 19878707 DOI: 10.1016/j.bbagen.2009.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 09/01/2009] [Accepted: 10/21/2009] [Indexed: 01/04/2023]
Abstract
BACKGROUND Mounting evidence points to lipid accumulation in the diseased kidney and its contribution to progression of nephropathy. We recently found heavy lipid accumulation and marked dysregulation of lipid metabolism in the remnant kidneys of rats with chronic renal failure (CRF). Present study sought to determine efficacy of niacin supplementation on renal tissue lipid metabolism in CRF. METHODS Kidney function, lipid content, and expression of molecules involved in cholesterol and fatty acid metabolism were determined in untreated CRF (5/6 nephrectomized), niacin-treated CRF (50 mg/kg/day in drinking water for 12 weeks) and control rats. RESULTS CRF resulted in hypertension, proteinuria, renal tissue lipid accumulation, up-regulation of scavenger receptor A1 (SR-A1), acyl-CoA cholesterol acyltransferase-1 (ACAT1), carbohydrate-responsive element binding protein (ChREBP), fatty acid synthase (FAS), acyl-CoA carboxylase (ACC), liver X receptor (LXR), ATP binding cassette (ABC) A-1, ABCG-1, and SR-B1 and down-regulation of sterol responsive element binding protein-1 (SREBP-1), SREBP-2, HMG-CoA reductase, PPAR-alpha, fatty acid binding protein (L-FABP), and CPT1A. Niacin therapy attenuated hypertension, proteinuria, and tubulo-interstitial injury, reduced renal tissue lipids, CD36, ChREBP, LXR, ABCA-1, ABCG-1, and SR-B1 abundance and raised PPAR-alpha and L-FABP. CONCLUSIONS AND GENERAL SIGNIFICANCE Niacin administration improves renal tissue lipid metabolism and renal function and structure in experimental CRF.
Collapse
Affiliation(s)
- Kyu-hyang Cho
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, CA, USA
| | | | | | | |
Collapse
|
36
|
Kim HJ, Moradi H, Yuan J, Norris K, Vaziri ND. Renal mass reduction results in accumulation of lipids and dysregulation of lipid regulatory proteins in the remnant kidney. Am J Physiol Renal Physiol 2009; 296:F1297-306. [PMID: 19357177 DOI: 10.1152/ajprenal.90761.2008] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A significant reduction of renal mass results in proteinuria, glomerulosclerosis, and tubulointerstitial injury, culminating in end-stage chronic renal failure (CRF). The accumulation of lipids in the kidney can cause renal disease. Uptake of oxidized lipoproteins via scavenger receptors, reabsorption of filtered protein-bound lipids via the megalin-cubilin complex, and increased glucose load per nephron can promote lipid accumulation in glomerular, tubular, and interstitial cells in CRF. Cellular lipid homeostasis is regulated by lipid influx, synthesis, catabolism, and efflux. We examined lipid-regulatory factors in the remnant kidney of rats 11 wk after nephrectomy (CRF) or sham operation. CRF resulted in azotemia, proteinuria, lipid accumulation in the kidney, upregulation of megalin, cubilin, mediators of lipid influx (scavenger receptor class A and lectin-like oxidized receptor-1), lipid efflux (liver X receptor alpha/beta and ATP-binding cassette transporter), and fatty acid biosynthesis (carbohydrate-response element binding protein, fatty acid synthase, and acetyl-CoA carboxylase). However, factors involved in cholesterol biosynthesis (sterol regulatory element binding protein, 3-hydroxy-3-methylglutaryl coenzyme A reductase, SCAP, Insig-1, and Insig-2) and fatty acid oxidation (peroxisome proliferator-activated receptor, acyl-CoA oxidase, and liver-type fatty acid binding protein) were reduced in the remnant kidney. Thus CRF results in heavy lipid accumulation in the remnant kidney, which is mediated by upregulation of pathways involved in tubular reabsorption of filtered protein-bound lipids, influx of oxidized lipoproteins and synthesis of fatty acids, and downregulation of pathways involved in fatty acid catabolism.
Collapse
Affiliation(s)
- Hyun Ju Kim
- Division of Nephrology and Hypertension, University of California, 101 The City Dr., Bldg. 53, Rm. 125, Rt. 81, Orange, CA 92868, USA
| | | | | | | | | |
Collapse
|
37
|
Sipos G, Sipos P, Altdorfer K, Pongor É, Fehér E. Correlation and Immunolocalization of Substance P Nerve Fibers and Activated Immune Cells in Human Chronic Gastritis. Anat Rec (Hoboken) 2008; 291:1140-8. [DOI: 10.1002/ar.20737] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Yokozawa T, Kim HJ, Cho EJ. Gravinol ameliorates high-fructose-induced metabolic syndrome through regulation of lipid metabolism and proinflammatory state in rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:5026-5032. [PMID: 18540612 DOI: 10.1021/jf800213f] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Using a rat model with fructose-induced metabolic syndrome, the effect of gravinol was investigated. Male Wistar rats were fed a 65% fructose diet and administered 10 or 20 mg of gravinol/kg of body weight/day for 2 weeks. High-level fructose feeding led to hyperglycemia, hyperlipidemia, hypertri-glyceridemia, and hypertension. On the other hand, the administration of gravinol significantly lowered serum glucose and total cholesterol levels. The tail arterial blood pressure was significantly elevated with the high-fructose diet. However, rats given gravinol showed a lower blood pressure as compared with fructose-fed control rats. In addition, the triglyceride (TG) levels in serum and lipoprotein fraction were dose-dependently reduced in rats fed gravinol. The decreases of hepatic TG and total cholesterol by gravinol were responsible for the down-regulation of hepatic sterol regulatory element binding protein (SREBP)-1. However, gravinol did not affect the protein levels of hepatic peroxisome proliferator-activated receptor-alpha and SREBP-2. Moreover, gravinol administration in the fructose-fed rats markedly reduced the glycosylated protein and thiobarbituric acid-reactive substance levels in the serum and hepatic mitochondria, and it inhibited the increase of the cyclooxygenase-2 protein level as a result of the down-regulation of nuclear factor kappa B (NF-kappaB). Furthermore, the decrease of anti-apoptotic bcl-2 protein levels and the increase of pro-apoptotic bax protein levels by the high-fructose diet were reversed by gravinol. These findings suggest that fructose-induced metabolic syndrome is attenuated by gravinol administration, which is associated with the reduction of serum lipids and protection against the proinflammatory state induced by oxidative stress.
Collapse
Affiliation(s)
- Takako Yokozawa
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | |
Collapse
|
39
|
Sullivan JC. Sex and the renin-angiotensin system: inequality between the sexes in response to RAS stimulation and inhibition. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1220-6. [PMID: 18287217 DOI: 10.1152/ajpregu.00864.2007] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The purpose of this review is to examine sex differences in response to stimulation and inhibition of the renin-angiotensin system (RAS). The RAS plays a prominent role in the development of chronic renal disease, and there are known sex differences not only in the expression level of components of the RAS but also in how males and females respond to perturbations of the RAS. In men, renal injury increases in parallel with increased activation of the RAS, while in women, increases in ANG II do not necessarily translate into increases in renal injury. Moreover, both epidemiological and experimental studies have noted sex differences in the therapeutic benefits following angiotensin-converting enzyme inhibitor and angiotensin receptor blocker treatment. Despite these differences, RAS inhibitors are the most commonly prescribed drugs for the treatment of chronic renal disease, irrespective of sex. This review will examine how males and females respond to stimulation and inhibition of the RAS, with a focus on renal disease.
Collapse
Affiliation(s)
- Jennifer C Sullivan
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA.
| |
Collapse
|
40
|
Yokozawa T, Kim HJ, Yamabe N, Okamoto T, Cho EJ. The protective role of Kangen-karyu against fructose-induced metabolic syndrome in a rat model. J Pharm Pharmacol 2008; 59:1271-8. [PMID: 17883899 DOI: 10.1211/jpp.59.9.0012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The protective effect of Kangen-karyu extract and its mechanisms against fructose-induced metabolic syndrome have been investigated using a rat model. Male Wistar rats were fed a high fructose (65%) diet or standard chow for one week, and for two subsequent weeks were treated with 50 or 100 mg kg(-1) body weight/day Kangen-karyu extract or vehicle. Serum glucose, glycosylated protein, triglyceride (TG), total cholesterol, and blood pressure levels of high-fructose-fed rats were increased compared with those of normal rats. However, Kangen-karyu extract ameliorated the high-fructose-induced metabolic syndrome including hyperglycaemia and hypertriglyceridaemia. In addition, the increase of hepatic TG content in rats given the high fructose diet was significantly inhibited with the regulation of sterol regulatory element-binding protein (SREBP)-1 expression by Kangen-karyu extract. On the other hand, peroxisome proliferator-activated receptor alpha and SREBP-2 protein levels were not affected by the feeding of the high fructose diet or Kangen-karyu extract. Moreover, Kangen-karyu extract administration to high-fructose-fed rats markedly reduced the thiobarbituric acid-reactive substance levels in serum, hepatic homogenate, and mitochondria. Furthermore, it inhibited the increase of cyclooxygenase (COX)-2 with the regulation of nuclear factorkappa B (NF-kappaB) and bcl-2 proteins in the liver, suggesting that the protective potential of Kangenkaryu extract against metabolic syndrome would be attributed to the regulation of COX-2, NF-kappaB, and bcl-2 signalling pathways. This study indicated that Kangen-karyu extract significantly improved high-fructose-induced metabolic syndrome such as hyperglycaemia, hyperlipidaemia, and hypertension through the reductions of TG and cholesterol contents with the regulation of hepatic SREBP-1 protein and the NF-kappaB signalling pathway.
Collapse
Affiliation(s)
- Takako Yokozawa
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | |
Collapse
|
41
|
Oettinger CW, D'souza MJ, Akhavein N, Peer GT, Taylor FB, Kinasewitz GT. Pro-inflammatory cytokine inhibition in the primate using microencapsulated antisense oligomers to NF-kappaB. J Microencapsul 2007; 24:337-48. [PMID: 17497387 DOI: 10.1080/02652040601162525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PRIMARY OBJECTIVE Antisense oligomers to NF-kappaB (ASO) were incorporated into albumin microspheres to determine if microcapsules containing ASO inhibit pro-inflammatory cytokines to a greater extent than comparable doses of ASO in solution. Phagocytosis of microcapsules and intracellular release of ASO in macrophages was evaluated. RESEARCH DESIGN Comparable doses of microencapsulated ASO and ASO in solution were evaluated in non-human primates. METHODS Blood was sampled and stimulated with Escherichia coli endotoxin ex vivo. TNF, IL-1 and IL-6 concentrations were compared for 72 hrs. The intracellular concentration of ASO was measured in macrophages in vitro to evaluate the difference in intracellular penetration of microencapsulated ASO. RESULTS Microencapsulated ASO produced significantly greater cytokine inhibition at all time points compared to ASO in solution. There were no side effects to ASO in the baboons. Intracellular ASO concentration was 10 fold greater in macrophages using microencapsulation. CONCLUSIONS Microencapsulated ASO to NF-kappaB is more effective than ASO in solution in pro-inflammatory cytokine inhibition in non-human primates.
Collapse
Affiliation(s)
- Carl W Oettinger
- College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Yokozawa T, Kim HY, Kim HJ, Tanaka T, Sugino H, Okubo T, Chu DC, Juneja LR. Amla (Emblica officinalis Gaertn.) attenuates age-related renal dysfunction by oxidative stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:7744-52. [PMID: 17715896 DOI: 10.1021/jf072105s] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
To investigate the effects of amla on renal dysfunction involved in oxidative stress during the aging process, we employed young (2 months old) and aged (13 months old) male rats and administered SunAmla (Taiyo Kagaku Co., Ltd., Japan) or an ethyl acetate (EtOAc) extract of amla, a polyphenol-rich fraction, at a dose of 40 or 10 mg/kg body weight/day for 100 days. The administration of SunAmla or EtOAc extract of amla reduced the elevated levels of serum creatinine and urea nitrogen in the aged rats. In addition, the tail arterial blood pressure was markedly elevated in aged control rats as compared with young rats, while the systolic blood pressure was significantly decreased by the administration of SunAmla or EtOAc extract of amla. Furthermore, the oral administration of SunAmla or EtOAc extract of amla significantly reduced thiobarbituric acid-reactive substance levels of serum, renal homogenate, and mitochondria in aged rats, suggesting that amla would ameliorate oxidative stress under aging. The increases of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expression in the aorta of aging rats were also significantly suppressed by SunAmla extract or EtOAc extract of amla, respectively. Moreover, the elevated expression level of bax, a proapoptotic protein, was significantly decreased after oral administration of SunAmla or EtOAc extract of amla. However, the level of bcl-2, an antiapoptotic protein, did not show any difference among the groups. The expressions of renal nuclear factor-kappaB (NF-kappaB), inhibitory kappaB in cytoplasm, iNOS, and COX-2 protein levels were also increased with aging. However, SunAmla or EtOAc extract of amla reduced the iNOS and COX-2 expression levels by inhibiting NF-kappaB activation in the aged rats. These results indicate that amla would be a very useful antioxidant for the prevention of age-related renal disease.
Collapse
Affiliation(s)
- Takako Yokozawa
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yokozawa T, Kim HY, Kim HJ, Okubo T, Chu DC, Juneja LR. Amla (Emblica officinalisGaertn.) prevents dyslipidaemia and oxidative stress in the ageing process. Br J Nutr 2007; 97:1187-95. [PMID: 17506915 DOI: 10.1017/s0007114507691971] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amla (Emblica officinalisGaertn.) is widely used in Indian medicine for the treatment of various diseases. We have investigated the effects of amla on the lipid metabolism and protein expression involved in oxidative stress during the ageing process. SunAmla or ethyl acetate extract of amla, a polyphenol-rich fraction, was administered at a dose of 40 or 10 mg/kg body weight per d for 100 d to young rats aged 2 months and aged rats aged 10 months. The lipid levels, such as cholesterol and TAG, in serum and liver were markedly elevated in aged control rats, while they were significantly decreased by the administration of amla. The PPARα is known to regulate the transcription of genes involved in lipid and cholesterol metabolism. The PPARα protein level in liver was reduced in aged control rats. However, the oral administration of amla significantly increased the hepatic PPARα protein level. In addition, oral administration of amla significantly inhibited the serum and hepatic mitochondrial thiobarbituric acid-reactive substance levels in aged rats. Moreover, the elevated expression level of bax was significantly decreased after the oral administration of amla, while the level of bcl-2 led to a significant increase. Furthermore, the expressions of hepatic NF-κB, inducible NO synthase (iNOS), and cyclo-oxygenase-2 (COX-2) protein levels were also increased with ageing. However, amla extract reduced the iNOS and COX-2 expression levels by inhibiting NF-κB activation in aged rats. These results indicate that amla may prevent age-related hyperlipidaemia through attenuating oxidative stress in the ageing process.
Collapse
Affiliation(s)
- Takako Yokozawa
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Tugcu V, Ozbek E, Tasci AI, Kemahli E, Somay A, Bas M, Karaca C, Altug T, Cekmen MB, Ozdogan HK. Selective nuclear factor κ-B inhibitors, pyrolidium dithiocarbamate and sulfasalazine, prevent the nephrotoxicity induced by gentamicin. BJU Int 2006; 98:680-6. [PMID: 16925772 DOI: 10.1111/j.1464-410x.2006.06321.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the effect of selective nuclear factor kappa-B (NFkappa-B) inhibitors, pyrolidium dithiocarbamate (PD) and sulfasalazine (SZ) on renal tubular necrosis and inducible nitric oxide synthase (iNOS) and NFkappa-B expression induced by gentamicin in rats. MATERIALS AND METHODS In all, 48 adult male Sprague-Dawley rats were divided into six equal groups; group 1, control; group 2, injected with gentamicin for 10 days (100 mg/kg/day, intraperitoneal, i.p.); group 3, injected with gentamicin plus PD (100 mg/kg/day, i.p.); group 4, injected with gentamicin plus SZ (75 mg/kg/day, i.p.); group 5, injected with gentamicin plus distilled water (vehicle for PD); and group 6, injected with gentamicin plus ammonium hydroxide (75 mg/day, 1 m, vehicle for SZ) for 10 days. At 24 h after the last injection, rats were killed and the renal cortex separated from the medulla. A small sample was fixed in formaldehyde solution for histological and immunohistochemical examination. Blood samples were also taken to assess the serum levels of urea, creatinine, Na(+), K(+) and gamma-glutamyl transpeptidase (GT). Crude extracts of the cortex were used to determine reduced glutathione (GSH-Px), NO and malondialdehyde (MDA). Immunohistochemically, iNOS and the active subunit of NFkappaB, P65, were evaluated using mouse monoclonal antibodies. RESULTS On haematoxylin and eosin staining, compared with the controls rats, gentamicin caused widespread tubular necrosis (grade 3 and 4) but in group 3 and 4 there was a marked reduction in the extent of tubular damage. Immunohistochemically there was more marked staining for iNOS and P65 expression in rats given gentamicin than in the control and group 3 and 4 (P < 0.001). In groups 3 and 4 iNOS and P65 expression were significantly less than in rats given only gentamicin. There was no significant difference in serum levels of Na(+), K(+), blood urea nitrogen and creatinine. Compared with control rats, gentamicin caused hyperproteinuria, a marked increase in levels of serum gamma-GT, MDA and NO, and a decrease in GSH-Px (P < 0.001). CONCLUSION These results indicate that gentamicin induces iNOS expression through activation of NFkappa-B (P65). It is possible to prevent gentamicin-induced nephrotoxicity using selective NFkappa-B inhibitors.
Collapse
Affiliation(s)
- Volkan Tugcu
- Department of Urology, Bakýrköy Dr. Sadi Konuk Research and Training Hospital, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fujihara CK, Antunes GR, Mattar AL, Malheiros DMAC, Vieira JM, Zatz R. Chronic inhibition of nuclear factor-kappaB attenuates renal injury in the 5/6 renal ablation model. Am J Physiol Renal Physiol 2006; 292:F92-9. [PMID: 16896182 DOI: 10.1152/ajprenal.00184.2006] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies indicated that the nuclear transcription factor, NF-kappaB, activates a number of proinflammatory genes in subjects with progressive nephropathies. We investigated whether NF-kappaB inhibition limits progressive renal injury in the 5/6 renal ablation model (Nx). Adult male Munich-Wistar rats were subdivided in four groups: S (n = 16), subjected to sham operation; S+PDTC (n = 18), sham-operated rats receiving the NF-kappaB inhibitor pyrrolidine-dithiocarbamate (PDTC; 60 mg x kg(-1) x day(-1)) in drinking water; Nx (n = 16), Nx rats receiving vehicle only; and Nx+PDTC (n = 19), Nx rats given PDTC as above. Thirty days after renal ablation, Nx rats exhibited systemic and glomerular hypertension. Only the former was attenuated by PDTC treatment. Sixty days after renal ablation, Nx rats exhibited marked hypertension, albuminuria and creatinine retention, as well as glomerulosclerosis and cortical interstitial expansion/inflammation. Immunohistochemical analysis of Nx rats showed renal interstitial infiltration by macrophages and by cells staining positively for ANG II and its receptor, AT(1). Glomerular and interstitial cells expressing the p65 subunit of the NF-kappaB system were also found. PDTC treatment attenuated renal injury and inflammation, as well as the density of cells staining positively for the p65 subunit. Activation of the NF-kappaB system plays an important role in the pathogenesis of renal injury in the Nx model. Inhibition of this system may represent a new strategy to prevent the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Clarice K Fujihara
- Renal Division, Department of Clinical Medicine, Faculty of Medical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
46
|
Orozco G, Sánchez E, Gómez LM, González-Gay MA, López-Nevot MA, Torres B, Ortego-Centeno N, Jiménez-Alonso J, de Ramón E, Sánchez Román J, Anaya JM, Sturfelt G, Gunnarsson I, Svennungsson E, Alarcón-Riquelme M, González-Escribano MF, Martín J. Study of the role of functional variants of SLC22A4, RUNX1 and SUMO4 in systemic lupus erythematosus. Ann Rheum Dis 2006; 65:791-5. [PMID: 16249223 PMCID: PMC1798171 DOI: 10.1136/ard.2005.044891] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2005] [Indexed: 11/03/2022]
Abstract
BACKGROUND Functional polymorphisms of the solute carrier family 22, member 4 (SLC22A4), runt related transcription factor 1 (RUNX1) and small ubiquitin-like modifier 4 (SUMO4) genes have been shown to be associated with several autoimmune diseases. OBJECTIVE To test the possible role of these variants in susceptibility to or severity of systemic lupus erythematosus (SLE), on the basis that common genetic bases are shared by autoimmune disorders. METHODS 597 SLE patients and 987 healthy controls of white Spanish origin were studied. Two additional cohorts of 228 SLE patients from Sweden and 122 SLE patients from Colombia were included. A case-control association study was carried out with six single nucleotide polymorphisms (SNP) spanning the SLC22A4 gene, one SNP in RUNX1 gene, and one additional SNP in SUM04 gene. RESULTS No significant differences were observed between SLE patients and healthy controls when comparing the distribution of the genotypes or alleles of any of the SLC22A4, RUNX1, or SUMO4 polymorphisms tested. Significant differences were found in the distribution of the SUMO4 genotypes and alleles among SLE patients with and without nephritis, but after multiple testing correction, the significance of the association was lost. The association of SUMO4 with nephritis could not be verified in two independent SLE cohorts from Sweden and Colombia. CONCLUSIONS These results suggest that the SLC22A4, RUNX1, and SUMO4 polymorphisms analysed do not play a role in the susceptibility to or severity of SLE.
Collapse
Affiliation(s)
- G Orozco
- Instituto de Parasitología y Biomedicina, CSIC, Granada, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sakurai H, Singhirunnusorn P, Shimotabira E, Chino A, Suzuki S, Koizumi K, Saiki I. TAK1-mediated transcriptional activation of CD28-responsive element and AP-1-binding site within the IL-2 promoter in Jurkat T cells. FEBS Lett 2005; 579:6641-6. [PMID: 16293250 DOI: 10.1016/j.febslet.2005.10.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 10/21/2005] [Accepted: 10/29/2005] [Indexed: 10/25/2022]
Abstract
We focused on the functional involvement of transforming growth factor-beta-activated kinase 1 (TAK1) in transcriptional regulation of interleukin-2 (IL-2) in T cells. Costimulation of Jurkat cells with 12-O-tetradecanoylphorbol-13-acetate and A23187 leads to a rapid phosphorylation of TAK1 and TAK1-binding protein 1 (TAB1), critical for TAK1 activation. A specific inhibitor of TAK1 blocked production of IL-2. In addition, overexpression of TAK1 and TAB1 induced secretion of IL-2. CD28-responsive element/activator protein-1-binding site (RE/AP) within the IL-2 promoter was a functional target for TAK1. The RE/AP-driven transcription was regulated by TAK1-mediated activation of the c-Jun NH2-terminal kinase, p38 and IkappaB kinase. These results indicate that TAK1 plays a critical role in T cell activation by controlling production of IL-2.
Collapse
Affiliation(s)
- Hiroaki Sakurai
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Meng Y, Kasai A, Hiramatsu N, Hayakawa K, Yamauchi K, Takeda M, Kawachi H, Shimizu F, Yao J, Kitamura M. Continuous, noninvasive monitoring of local microscopic inflammation using a genetically engineered cell-based biosensor. J Transl Med 2005; 85:1429-39. [PMID: 16127457 DOI: 10.1038/labinvest.3700341] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Using an inflammation-responsive regulatory element as a molecular sensor, we established a cell-based biosensor for continuous, noninvasive monitoring of local microscopic inflammation in vivo. Glomerular mesangial cells were stably transfected with a marker gene encoding secreted alkaline phosphatase (SEAP) under the control of the kappaB enhancer elements. The established cells secreted SEAP in vitro in response to proinflammatory cytokines as well as to soluble factors produced by inflamed glomeruli. To examine feasibility of using the established cells for in vivo monitoring of local microscopic inflammation, the sensor cells were transferred selectively into rat glomeruli via the renal circulation. After induction of acute glomerulonephritis, the serum level of SEAP was increased transiently in cell-transferred nephritic rats. The kinetics of serum SEAP was closely correlated with the natural course of the inflammation, and the increase in SEAP was attenuated by suppression of inflammation using an immunosuppressive drug, cyclophosphamide. Neither cell-transferred normal rats nor nephritic rats without cell transfer exhibited increase in the serum level of SEAP. When the sensor cells were transferred extrarenally, elevation of serum SEAP was not observed in nephritic rats, confirming that the locally settled sensor cells responded only to local inflammation. These results suggested that, without invasive procedures like tissue biopsies, continuous monitoring of microscopic inflammation is feasible in vivo via locally created, cell-based biosensors.
Collapse
Affiliation(s)
- Yiman Meng
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan and Organ Transplantation Unit, 1st Affiliated Hospital, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zheng L, Sinniah R, Hsu SIH. In situ glomerular expression of activated NF-kappaB in human lupus nephritis and other non-proliferative proteinuric glomerulopathy. Virchows Arch 2005; 448:172-83. [PMID: 16205945 DOI: 10.1007/s00428-005-0061-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 08/03/2005] [Indexed: 01/18/2023]
Abstract
Nuclear Factor-kappaB (NF-kappaB) has been suggested to play a role in the cellular and molecular mechanisms underlying glomerular injury. We investigated the potential role of NF-kappaB activation in the pathogenesis of glomerular injury in 31 patients with class III-V lupus nephritis (LN), 14 patients with non-proliferative proteinuric glomerulopathy and six normal controls. The expression of NF-kappaB subunits p65 and p50, and the NF-kappaB regulated proinflammatory mediators tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), interleukin-6 (IL-6) and intercellular adhesion molecule-1 (ICAM-1) as well as CD68 and synaptopodin was examined by Southwestern histochemistry (SWH) or immunohistochemistry. In contrast to non-proliferative glomerulopathy and normal controls, NF-kappaB activation (both p65 and p50) was enhanced in glomerular endothelial, mesangial cells or infiltrating cells in class IV LN, along with upregulation of TNF-alpha, IL-1beta, IL-6 and ICAM-1 expression. Glomerular endothelial and mesangial activation of NF-kappaB and mesangial ICAM-1 expression correlated with disease activity and the level of glomerular macrophage infiltration. Podocyte NF-kappaB overactivation (predominantly p65) paralleled podocyte expression of TNF-alpha and IL-1beta in patients with LN and non-proliferative glomerulopathy. Podocyte staining scores of NF-kappaB and p65 were positively correlated with the severity of proteinuria in LN and non-proliferative glomerulopathy. These results suggest a pathogenic role for NF-kappaB in glomerular injury by multiple mechanisms.
Collapse
Affiliation(s)
- Ling Zheng
- Department of Pathology, National University of Singapore, Singapore, Singapore
| | | | | |
Collapse
|
50
|
Lai PC, Smith J, Bhangal G, Chaudhry KA, Chaudhry AN, Keith JC, Tam FWK, Pusey CD, Cook HT. Interleukin-11 reduces renal injury and glomerular NF-kappa B activity in murine experimental glomerulonephritis. Nephron Clin Pract 2005; 101:e146-54. [PMID: 16131809 DOI: 10.1159/000087938] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 06/22/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS There is now considerable evidence implicating T cells and macrophages in glomerular injury in crescentic glomerulonephritis. Recently, it has been shown that interleukin-11 (IL-11) has an immune modulatory function through its effect on both macrophages and T cells. We, therefore, examined the therapeutic effect of IL-11 in a murine model of experimental glomerulonephritis. METHOD Accelerated nephrotoxic nephritis was induced in C57BL/6 mice. IL-11 at a dose of 0.5 mg/kg/day (n = 10) in vehicle was given daily subcutaneously from the day of sensitization until day 14 after initiation of glomerulonephritis. Control mice (n = 10) received injection of vehicle alone with the same schedule. RESULTS IL-11 treatment markedly decreased albuminuria (6.2 +/- 1.9 vs. 18.2 +/- 4.5 mg/day, p < 0.05), the number of glomerular macrophages (1.1 +/- 0.2 vs. 1.7 +/- 0.3 cells/glomerular cross-section, p < 0.05) and glomerular fibrin deposition (fibrin score 0.9 +/- 0.3 vs. 2 +/- 0.3, p < 0.05). There was no difference in the glomerular T cell numbers between the IL-11-treated and the vehicle group. Glomerular NF-kappaB activity was markedly suppressed by 75% in the treated group (p = 0.0015). CONCLUSION In this study, we provide the first in vivo evidence that IL-11 treatment decreases glomerular NF-kappaB activity and reduces renal injury in experimental glomerulonephritis.
Collapse
Affiliation(s)
- P C Lai
- Kidney Institute, Department of Nephrology, CGMH, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|