1
|
Castiglioni VG, Ramalho JJ, Kroll JR, Stucchi R, van Beuzekom H, Schmidt R, Altelaar M, Boxem M. Identification and characterization of Crumbs polarity complex proteins in Caenorhabditis elegans. J Biol Chem 2022; 298:101786. [PMID: 35247383 PMCID: PMC9006659 DOI: 10.1016/j.jbc.2022.101786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
Crumbs proteins are evolutionarily conserved transmembrane proteins with essential roles in promoting the formation of the apical domain in epithelial cells. The short intracellular tail of Crumbs proteins are known to interact with several proteins, including the scaffolding protein PALS1 (protein associated with LIN7, Stardust in Drosophila). PALS1 in turn binds to a second scaffolding protein PATJ (PALS1-associated tight junction protein) to form the core Crumbs/PALS1/PATJ complex. While essential roles in epithelial organization have been shown for Crumbs proteins in Drosophila and mammalian systems, the three Caenorhabditis elegans crumbs genes are dispensable for epithelial polarization and development. Here, we investigated the presence and function of PALS1 and PATJ orthologs in C. elegans. We identified MAGU-2 as the C. elegans ortholog of PALS1 and show that MAGU-2 interacts with all three Crumbs proteins and localizes to the apical membrane domain of intestinal epithelial cells in a Crumbs-dependent fashion. Similar to crumbs mutants, magu-2 deletion showed no epithelial polarity defects. We also identified MPZ-1 as a candidate ortholog of PATJ based on the physical interaction with MAGU-2 and sequence similarity with PATJ proteins. However, MPZ-1 is not broadly expressed in epithelial tissues and, therefore, not likely a core component of the C. elegans Crumbs complex. Finally, we show overexpression of the Crumbs proteins EAT-20 or CRB-3 can lead to apical membrane expansion in the intestine. Our results shed light on the composition of the C. elegans Crumbs complex and indicate that the role of Crumbs proteins in promoting apical domain formation is conserved.
Collapse
Affiliation(s)
- Victoria G Castiglioni
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - João J Ramalho
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Jason R Kroll
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Stucchi
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands; Division of Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Hanna van Beuzekom
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Ruben Schmidt
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Maarten Altelaar
- Division of Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mike Boxem
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Le TP, Chung S. Regulation of apical constriction via microtubule- and Rab11-dependent apical transport during tissue invagination. Mol Biol Cell 2021; 32:1033-1047. [PMID: 33788621 PMCID: PMC8101490 DOI: 10.1091/mbc.e21-01-0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The formation of an epithelial tube is a fundamental process for organogenesis. During Drosophila embryonic salivary gland (SG) invagination, Folded gastrulation (Fog)-dependent Rho-associated kinase (Rok) promotes contractile apical myosin formation to drive apical constriction. Microtubules (MTs) are also crucial for this process and are required for forming and maintaining apicomedial myosin. However, the underlying mechanism that coordinates actomyosin and MT networks still remains elusive. Here, we show that MT-dependent intracellular trafficking regulates apical constriction during SG invagination. Key components involved in protein trafficking, such as Rab11 and Nuclear fallout (Nuf), are apically enriched near the SG invagination pit in a MT-dependent manner. Disruption of the MT networks or knockdown of Rab11 impairs apicomedial myosin formation and apical constriction. We show that MTs and Rab11 are required for apical enrichment of the Fog ligand and the continuous distribution of the apical determinant protein Crumbs (Crb) and the key adherens junction protein E-Cadherin (E-Cad) along junctions. Targeted knockdown of crb or E-Cad in the SG disrupts apical myosin networks and results in apical constriction defects. Our data suggest a role of MT- and Rab11-dependent intracellular trafficking in regulating actomyosin networks and cell junctions to coordinate cell behaviors during tubular organ formation.
Collapse
Affiliation(s)
- Thao Phuong Le
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - SeYeon Chung
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
3
|
Loganathan R, Kim JH, Wells MB, Andrew DJ. Secrets of secretion-How studies of the Drosophila salivary gland have informed our understanding of the cellular networks underlying secretory organ form and function. Curr Top Dev Biol 2020; 143:1-36. [PMID: 33820619 DOI: 10.1016/bs.ctdb.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Secretory organs are critical for organismal survival. Yet, the transcriptional regulatory mechanisms governing their development and maintenance remain unclear for most model secretory organs. The Drosophila embryonic salivary gland (SG) remedies this deficiency as one of the few organs wherein direct connections from the expression of the early patterning genes to cell specification to organ architecture and functional specialization can be made. Few other models of secretion can be accorded this distinction. Studies from the past three decades have made enormous strides in parsing out the roles of distinct transcription factors (TFs) that direct major steps in furnishing this secretory organ. In the first step of specifying the salivary gland, the activity of the Hox factors Sex combs reduced, Extradenticle, and Homothorax activate expression of fork head (fkh), sage, and CrebA, which code for the major suite of TFs that carry forward the task of organ building and maintenance. Then, in the second key step of building the SG, the program for cell fate maintenance and morphogenesis is deployed. Fkh maintains the secretory cell fate by regulating its own expression and that of sage and CrebA. Fkh and Sage maintain secretory cell viability by actively blocking apoptotic cell death. Fkh, along with two other TFs, Hkb and Rib, also coordinates organ morphogenesis, transforming two plates of precursor cells on the embryo surface into elongated internalized epithelial tubes. Acquisition of functional specialization, the third key step, is mediated by CrebA and Fkh working in concert with Sage and yet another TF, Sens. CrebA directly upregulates expression of all of the components of the secretory machinery as well as other genes (e.g., Xbp1) necessary for managing the physiological stress that inexorably accompanies high secretory load. Secretory cargo specificity is controlled by Sage and Sens in collaboration with Fkh. Investigations have also uncovered roles for various signaling pathways, e.g., Dpp signaling, EGF signaling, GPCR signaling, and cytoskeletal signaling, and their interactions within the gene regulatory networks that specify, build, and specialize the SG. Collectively, studies of the SG have expanded our knowledge of secretory dynamics, cell polarity, and cytoskeletal mechanics in the context of organ development and function. Notably, the embryonic SG has made the singular contribution as a model system that revealed the core function of CrebA in scaling up secretory capacity, thus, serving as the pioneer system in which the conserved roles of the mammalian Creb3/3L-family orthologues were first discovered.
Collapse
Affiliation(s)
- Rajprasad Loganathan
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ji Hoon Kim
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael B Wells
- Idaho College of Osteopathic Medicine, Meridian, ID, United States
| | - Deborah J Andrew
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
4
|
Hebbar S, Schuhmann K, Shevchenko A, Knust E. Hydroxylated sphingolipid biosynthesis regulates photoreceptor apical domain morphogenesis. J Cell Biol 2020; 219:211460. [PMID: 33048164 PMCID: PMC7557679 DOI: 10.1083/jcb.201911100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 08/07/2020] [Accepted: 09/08/2020] [Indexed: 01/04/2023] Open
Abstract
Apical domains of epithelial cells often undergo dramatic changes during morphogenesis to form specialized structures, such as microvilli. Here, we addressed the role of lipids during morphogenesis of the rhabdomere, the microvilli-based photosensitive organelle of Drosophila photoreceptor cells. Shotgun lipidomics analysis performed on mutant alleles of the polarity regulator crumbs, exhibiting varying rhabdomeric growth defects, revealed a correlation between increased abundance of hydroxylated sphingolipids and abnormal rhabdomeric growth. This could be attributed to an up-regulation of fatty acid hydroxylase transcription. Indeed, direct genetic perturbation of the hydroxylated sphingolipid metabolism modulated rhabdomere growth in a crumbs mutant background. One of the pathways targeted by sphingolipid metabolism turned out to be the secretory route of newly synthesized Rhodopsin, a major rhabdomeric protein. In particular, altered biosynthesis of hydroxylated sphingolipids impaired apical trafficking via Rab11, and thus apical membrane growth. The intersection of lipid metabolic pathways with apical domain growth provides a new facet to our understanding of apical growth during morphogenesis.
Collapse
|
5
|
Raghuraman BK, Hebbar S, Kumar M, Moon H, Henry I, Knust E, Shevchenko A. Absolute Quantification of Proteins in the Eye of Drosophila melanogaster. Proteomics 2020; 20:e1900049. [PMID: 32663363 DOI: 10.1002/pmic.201900049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/29/2020] [Indexed: 01/26/2023]
Abstract
Absolute (molar) quantification of proteins determines their molar ratios in complexes, networks, and metabolic pathways. MS Western workflow is employed to determine molar abundances of proteins potentially critical for morphogenesis and phototransduction (PT) in eyes of Drosophila melanogaster using a single chimeric 264 kDa protein standard that covers, in total, 197 peptides from 43 proteins. The majority of proteins are independently quantified with two to four proteotypic peptides with the coefficient of variation of less than 15%, better than 1000-fold dynamic range and sub-femtomole sensitivity. Here, the molar abundance of proteins of the PT machinery and of the rhabdomere, the photosensitive organelle, is determined in eyes of wild-type flies as well as in crumbs (crb) mutant eyes, which exhibit perturbed rhabdomere morphogenesis.
Collapse
Affiliation(s)
- Bharath Kumar Raghuraman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Sarita Hebbar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Mukesh Kumar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - HongKee Moon
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany.,Centre for Systems Biology Dresden, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Ian Henry
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany.,Centre for Systems Biology Dresden, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| |
Collapse
|
6
|
Plygawko AT, Kan S, Campbell K. Epithelial-mesenchymal plasticity: emerging parallels between tissue morphogenesis and cancer metastasis. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200087. [PMID: 32829692 PMCID: PMC7482222 DOI: 10.1098/rstb.2020.0087] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Many cells possess epithelial–mesenchymal plasticity (EMP), which allows them to shift reversibly between adherent, static and more detached, migratory states. These changes in cell behaviour are driven by the programmes of epithelial–mesenchymal transition (EMT) and mesenchymal–epithelial transition (MET), both of which play vital roles during normal development and tissue homeostasis. However, the aberrant activation of these processes can also drive distinct stages of cancer progression, including tumour invasiveness, cell dissemination and metastatic colonization and outgrowth. This review examines emerging common themes underlying EMP during tissue morphogenesis and malignant progression, such as the context dependence of EMT transcription factors, a central role for partial EMTs and the nonlinear relationship between EMT and MET. This article is part of a discussion meeting issue ‘Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Andrew T Plygawko
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Shohei Kan
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Kyra Campbell
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
7
|
Jossin Y. Molecular mechanisms of cell polarity in a range of model systems and in migrating neurons. Mol Cell Neurosci 2020; 106:103503. [PMID: 32485296 DOI: 10.1016/j.mcn.2020.103503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 05/23/2020] [Indexed: 01/09/2023] Open
Abstract
Cell polarity is defined as the asymmetric distribution of cellular components along an axis. Most cells, from the simplest single-cell organisms to highly specialized mammalian cells, are polarized and use similar mechanisms to generate and maintain polarity. Cell polarity is important for cells to migrate, form tissues, and coordinate activities. During development of the mammalian cerebral cortex, cell polarity is essential for neurogenesis and for the migration of newborn but as-yet undifferentiated neurons. These oriented migrations include both the radial migration of excitatory projection neurons and the tangential migration of inhibitory interneurons. In this review, I will first describe the development of the cerebral cortex, as revealed at the cellular level. I will then define the core molecular mechanisms - the Par/Crb/Scrib polarity complexes, small GTPases, the actin and microtubule cytoskeletons, and phosphoinositides/PI3K signaling - that are required for asymmetric cell division, apico-basal and front-rear polarity in model systems, including C elegans zygote, Drosophila embryos and cultured mammalian cells. As I go through each core mechanism I will explain what is known about its importance in radial and tangential migration in the developing mammalian cerebral cortex.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
8
|
Lattner J, Leng W, Knust E, Brankatschk M, Flores-Benitez D. Crumbs organizes the transport machinery by regulating apical levels of PI(4,5)P 2 in Drosophila. eLife 2019; 8:e50900. [PMID: 31697234 PMCID: PMC6881148 DOI: 10.7554/elife.50900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
An efficient vectorial intracellular transport machinery depends on a well-established apico-basal polarity and is a prerequisite for the function of secretory epithelia. Despite extensive knowledge on individual trafficking pathways, little is known about the mechanisms coordinating their temporal and spatial regulation. Here, we report that the polarity protein Crumbs is essential for apical plasma membrane phospholipid-homeostasis and efficient apical secretion. Through recruiting βHeavy-Spectrin and MyosinV to the apical membrane, Crumbs maintains the Rab6-, Rab11- and Rab30-dependent trafficking and regulates the lipid phosphatases Pten and Ocrl. Crumbs knock-down results in increased apical levels of PI(4,5)P2 and formation of a novel, Moesin- and PI(4,5)P2-enriched apical membrane sac containing microvilli-like structures. Our results identify Crumbs as an essential hub required to maintain the organization of the apical membrane and the physiological activity of the larval salivary gland.
Collapse
Affiliation(s)
- Johanna Lattner
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Weihua Leng
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Elisabeth Knust
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Marko Brankatschk
- The Biotechnological Center of the TU Dresden (BIOTEC)DresdenGermany
| | - David Flores-Benitez
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| |
Collapse
|
9
|
Association of crumbs homolog-2 with mTORC1 in developing podocyte. PLoS One 2018; 13:e0202400. [PMID: 30125302 PMCID: PMC6101391 DOI: 10.1371/journal.pone.0202400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 08/02/2018] [Indexed: 02/06/2023] Open
Abstract
The evidence that gene mutations in the polarity determinant Crumbs homologs-2 (CRB2) cause congenital nephrotic syndrome suggests the functional importance of this gene product in podocyte development. Because another isoform, CRB3, was reported to repress the mechanistic/mammalian target of the rapamycin complex 1 (mTORC1) pathway, we examined the role of CRB2 function in developing podocytes in relation to mTORC1. In HEK-293 and MDCK cells constitutively expressing CRB2, we found that the protein localized to the apicolateral side of the cell plasma membrane and that this plasma membrane assembly required N-glycosylation. Confocal microscopy of the neonate mouse kidney revealed that both the tyrosine-phosphorylated form and non-phosphorylated form of CRB2 commence at the S-shaped body stage at the apicolateral side of podocyte precursor cells and move to foot processes in a capillary tuft pattern. The pattern of phosphorylated mTOR in developing podocytes was similar to that of CRB2 tyrosine phosphorylation. Additionally, the lack of a tyrosine phosphorylation site on CRB2 led to the reduced sensitivity of mTORC1 activation in response to energy starvation. CRB2 may play an important role in the mechanistic pathway of developing podocytes through tyrosine phosphorylation by associating with mTORC1 activation.
Collapse
|
10
|
Saito Y, Desai RR, Muthuswamy SK. Reinterpreting polarity and cancer: The changing landscape from tumor suppression to tumor promotion. Biochim Biophys Acta Rev Cancer 2018; 1869:103-116. [DOI: 10.1016/j.bbcan.2017.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
|
11
|
Das S, Knust E. A dual role of the extracellular domain of Drosophila Crumbs for morphogenesis of the embryonic neuroectoderm. Biol Open 2018; 7:7/1/bio031435. [PMID: 29374056 PMCID: PMC5829512 DOI: 10.1242/bio.031435] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Epithelia are highly polarised tissues and several highly conserved polarity protein complexes serve to establish and maintain polarity. The transmembrane protein Crumbs (Crb), the central component of the Crb protein complex, is required, among others, for the maintenance of polarity in most epithelia in the Drosophila embryo. However, different epithelia exhibit different phenotypic severity upon loss of crb. Using a transgenomic approach allowed us to more accurately define the role of crb in different epithelia. In particular, we provide evidence that the loss of epithelial tissue integrity in the ventral epidermis of crb mutant embryos is due to impaired actomyosin activity and an excess number of neuroblasts. We demonstrate that the intracellular domain of Crb could only partially rescue this phenotype, while it is able to completely restore tissue integrity in other epithelia. Based on these results we suggest a dual role of the extracellular domain of Crb in the ventral neuroectoderm. First, it is required for apical enrichment of the Crb protein, which in turn regulates actomyosin activity and thereby ensures tissue integrity; and second, the extracellular domain of Crb stabilises the Notch receptor and thereby ensures proper Notch signalling and specification of the correct number of neuroblasts. Summary: Using a transgenomic approach we determine specific roles of the intra- and extracellular domain of the Crumbs protein for the maintenance of apico-basal epithelial polarity and epithelial morphogenesis in Drosophila embryos.
Collapse
Affiliation(s)
- Shradha Das
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
12
|
Wen W, Zhang M. Protein Complex Assemblies in Epithelial Cell Polarity and Asymmetric Cell Division. J Mol Biol 2017; 430:3504-3520. [PMID: 28963071 DOI: 10.1016/j.jmb.2017.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/24/2022]
Abstract
Asymmetric local concentration of protein complexes on distinct membrane regions is a fundamental property in numerous biological processes and is a hallmark of cell polarity. Evolutionarily conserved core polarity proteins form specific and dynamic networks to regulate the establishment and maintenance of cell polarity, as well as distinct polarity-driven cellular events. This review focuses on the molecular and structural basis governing regulated formation of several sets of core cell polarity regulatory complexes, as well as their functions in epithelial cell polarization and asymmetric cell division.
Collapse
Affiliation(s)
- Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, PR China.
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
13
|
Von Stetina SE, Liang J, Marnellos G, Mango SE. Temporal regulation of epithelium formation mediated by FoxA, MKLP1, MgcRacGAP, and PAR-6. Mol Biol Cell 2017; 28:2042-2065. [PMID: 28539408 PMCID: PMC5509419 DOI: 10.1091/mbc.e16-09-0644] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
During embryo morphogenesis, minor epithelia are generated after, and then form bridges between, major epithelia (e.g., epidermis and gut). In Caenorhabditis elegans, this delay is regulated by four proteins that control production and localization of polarity proteins: the pioneer factor PHA-4/FoxA, kinesin ZEN-4/MKLP1, its partner CYK-4/MgcRacGAP, and PAR-6. To establish the animal body plan, embryos link the external epidermis to the internal digestive tract. In Caenorhabditis elegans, this linkage is achieved by the arcade cells, which form an epithelial bridge between the foregut and epidermis, but little is known about how development of these three epithelia is coordinated temporally. The arcade cell epithelium is generated after the epidermis and digestive tract epithelia have matured, ensuring that both organs can withstand the mechanical stress of embryo elongation; mistiming of epithelium formation leads to defects in morphogenesis. Using a combination of genetic, bioinformatic, and imaging approaches, we find that temporal regulation of the arcade cell epithelium is mediated by the pioneer transcription factor and master regulator PHA-4/FoxA, followed by the cytoskeletal regulator and kinesin ZEN-4/MKLP1 and the polarity protein PAR-6. We show that PHA-4 directly activates mRNA expression of a broad cohort of epithelial genes, including junctional factor dlg-1. Accumulation of DLG-1 protein is delayed by ZEN-4, acting in concert with its binding partner CYK-4/MgcRacGAP. Our structure–function analysis suggests that nuclear and kinesin functions are dispensable, whereas binding to CYK-4 is essential, for ZEN-4 function in polarity. Finally, PAR-6 is necessary to localize polarity proteins such as DLG-1 within adherens junctions and at the apical surface, thereby generating arcade cell polarity. Our results reveal that the timing of a landmark event during embryonic morphogenesis is mediated by the concerted action of four proteins that delay the formation of an epithelial bridge until the appropriate time. In addition, we find that mammalian FoxA associates with many epithelial genes, suggesting that direct regulation of epithelial identity may be a conserved feature of FoxA factors and a contributor to FoxA function in development and cancer.
Collapse
Affiliation(s)
- Stephen E Von Stetina
- Department of Molecular and Cellular Biology, Harvard University, Cambridge; MA 02138
| | - Jennifer Liang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge; MA 02138
| | - Georgios Marnellos
- Informatics and Scientific Applications, Science Division, Faculty of Arts and Sciences, Harvard University, Cambridge; MA 02138
| | - Susan E Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge; MA 02138
| |
Collapse
|
14
|
Pellikka M, Tepass U. Unique cell biological profiles of retinal disease-causing missense mutations in the polarity protein Crumbs. J Cell Sci 2017; 130:2147-2158. [PMID: 28515229 DOI: 10.1242/jcs.197178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 05/11/2017] [Indexed: 01/09/2023] Open
Abstract
Mutations in human crumbs 1 (CRB1) are a major cause of retinal diseases that lead to blindness. CRB1 is a transmembrane protein found in the inner segment of photoreceptor cells (PRCs) and the apical membrane of Müller glia. The function of the extracellular region of CRB1 is poorly understood, although more than 80 disease-causing missense mutations have been mapped to it. We have recreated four of these mutations, affecting different extracellular domains, in Drosophila Crumbs (Crb). Crb regulates epithelial polarity and growth, and contributes to PRC differentiation and survival. The mutant Crb isoforms showed a remarkable diversity in protein abundance, subcellular distribution and ability to rescue the lack of endogenous Crb, elicit a gain-of-function phenotype or promote PRC degeneration. Interestingly, although expression of mutant isoforms led to a substantial rescue of the developmental defects seen in crb mutants, they accelerated PRC degeneration compared to that seen in retinas that lacked Crb, indicating that the function of Crb in cellular differentiation and cell survival depends on distinct molecular pathways. Several Crb mutant proteins accumulated abnormally in the rhabdomere and affected rhodopsin trafficking, suggesting that abnormal rhodopsin physiology contributes to Crb/CRB1-associated retinal degeneration.
Collapse
Affiliation(s)
- Milena Pellikka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| |
Collapse
|
15
|
Spannl S, Kumichel A, Hebbar S, Kapp K, Gonzalez-Gaitan M, Winkler S, Blawid R, Jessberger G, Knust E. The Crumbs_C isoform of Drosophila shows tissue- and stage-specific expression and prevents light-dependent retinal degeneration. Biol Open 2017; 6:165-175. [PMID: 28202468 PMCID: PMC5312091 DOI: 10.1242/bio.020040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Drosophila Crumbs (Crb) is a key regulator of epithelial polarity and fulfils a plethora of other functions, such as growth regulation, morphogenesis of photoreceptor cells and prevention of retinal degeneration. This raises the question how a single gene regulates such diverse functions, which in mammals are controlled by three different paralogs. Here, we show that in Drosophila different Crb protein isoforms are differentially expressed as a result of alternative splicing. All isoforms are transmembrane proteins that differ by just one EGF-like repeat in their extracellular portion. Unlike Crb_A, which is expressed in most embryonic epithelia from early stages onward, Crb_C is expressed later and only in a subset of embryonic epithelia. Flies specifically lacking Crb_C are homozygous viable and fertile. Strikingly, these flies undergo light-dependent photoreceptor degeneration despite the fact that the other isoforms are expressed and properly localised at the stalk membrane. This allele now provides an ideal possibility to further unravel the molecular mechanisms by which Drosophila crb protects photoreceptor cells from the detrimental consequences of light-induced cell stress. Summary: Loss of Crb_C, one protein isoform encoded by Drosophila crumbs, results in light-dependent retinal degeneration, but does not affect any of the other crumbs-specific functions.
Collapse
Affiliation(s)
- Stephanie Spannl
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Alexandra Kumichel
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Sarita Hebbar
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Katja Kapp
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Marcos Gonzalez-Gaitan
- Department of Biochemistry, Sciences II, University of Geneva, 30 Quai Ernest-Ansermet, Geneva 4 1211, Switzerland
| | - Sylke Winkler
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Rosana Blawid
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Gregor Jessberger
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| |
Collapse
|
16
|
Gautam NK, Verma P, Tapadia MG. Drosophila Malpighian Tubules: A Model for Understanding Kidney Development, Function, and Disease. Results Probl Cell Differ 2017; 60:3-25. [PMID: 28409340 DOI: 10.1007/978-3-319-51436-9_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Malpighian tubules of insects are structurally simple but functionally important organs, and their integrity is important for the normal excretory process. They are functional analogs of human kidneys which are important physiological organs as they maintain water and electrolyte balance in the blood and simultaneously help the body to get rid of waste and toxic products after various metabolic activities. In addition, it receives early indications of insults to the body such as immune challenge and other toxic components and is essential for sustaining life. According to National Vital Statistics Reports 2016, renal dysfunction has been ranked as the ninth most abundant cause of death in the USA. This chapter provides detailed descriptions of Drosophila Malpighian tubule development, physiology, immune function and also presents evidences that Malpighian tubules can be used as a model organ system to address the fundamental questions in developmental and functional disorders of the kidney.
Collapse
Affiliation(s)
- Naveen Kumar Gautam
- Embryotoxicology Laboratory, Environmental Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Puja Verma
- Department of Zoology, Cytogenetics Laboratory, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Madhu G Tapadia
- Department of Zoology, Cytogenetics Laboratory, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
17
|
Gao Y, Xiao X, Lui WY, Lee WM, Mruk D, Cheng CY. Cell polarity proteins and spermatogenesis. Semin Cell Dev Biol 2016; 59:62-70. [PMID: 27292315 DOI: 10.1016/j.semcdb.2016.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 02/09/2023]
Abstract
When the cross-section of a seminiferous tubule from an adult rat testes is examined microscopically, Sertoli cells and germ cells in the seminiferous epithelium are notably polarized cells. For instance, Sertoli cell nuclei are found near the basement membrane. On the other hand, tight junction (TJ), basal ectoplasmic specialization (basal ES, a testis-specific actin-rich anchoring junction), gap junction (GJ) and desmosome that constitute the blood-testis barrier (BTB) are also located near the basement membrane. The BTB, in turn, divides the epithelium into the basal and the adluminal (apical) compartments. Within the epithelium, undifferentiated spermatogonia and preleptotene spermatocytes restrictively reside in the basal compartment whereas spermatocytes and post-meiotic spermatids reside in the adluminal compartment. Furthermore, the heads of elongating/elongated spermatids point toward the basement membrane with their elongating tails toward the tubule lumen. However, the involvement of polarity proteins in this unique cellular organization, in particular the underlying molecular mechanism(s) by which polarity proteins confer cellular polarity in the seminiferous epithelium is virtually unknown until recent years. Herein, we discuss latest findings regarding the role of different polarity protein complexes or modules and how these protein complexes are working in concert to modulate Sertoli cell and spermatid polarity. These findings also illustrate polarity proteins exert their effects through the actin-based cytoskeleton mediated by actin binding and regulatory proteins, which in turn modulate adhesion protein complexes at the cell-cell interface since TJ, basal ES and GJ utilize F-actin for attachment. We also propose a hypothetical model which illustrates the antagonistic effects of these polarity proteins. This in turn provides a unique mechanism to modulate junction remodeling in the testis to support germ cell transport across the epithelium in particular the BTB during the epithelial cycle of spermatogenesis.
Collapse
Affiliation(s)
- Ying Gao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY 10065, United States
| | - Xiang Xiao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY 10065, United States; Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Wing-Yee Lui
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Will M Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Dolores Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY 10065, United States
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY 10065, United States.
| |
Collapse
|
18
|
Flores-Benitez D, Knust E. Crumbs is an essential regulator of cytoskeletal dynamics and cell-cell adhesion during dorsal closure in Drosophila. eLife 2015; 4. [PMID: 26544546 PMCID: PMC4718732 DOI: 10.7554/elife.07398] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 11/06/2015] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved Crumbs protein is required for epithelial polarity and morphogenesis. Here we identify a novel role of Crumbs as a negative regulator of actomyosin dynamics during dorsal closure in the Drosophila embryo. Embryos carrying a mutation in the FERM (protein 4.1/ezrin/radixin/moesin) domain-binding motif of Crumbs die due to an overactive actomyosin network associated with disrupted adherens junctions. This phenotype is restricted to the amnioserosa and does not affect other embryonic epithelia. This function of Crumbs requires DMoesin, the Rho1-GTPase, class-I p21-activated kinases and the Arp2/3 complex. Data presented here point to a critical role of Crumbs in regulating actomyosin dynamics, cell junctions and morphogenesis. DOI:http://dx.doi.org/10.7554/eLife.07398.001 A layer of epithelial cells covers the body surface of animals. Epithelial cells have a property known as polarity; this means that they have two different poles, one of which is in contact with the environment. Midway through embryonic development, the Drosophila embryo is covered by two kinds of epithelial sheets; the epidermis on the front, the belly and the sides of the embryo, and the amnioserosa on the back. In the second half of embryonic development, the amnioserosa is brought into the embryo in a process called dorsal closure, while the epidermis expands around the back of the embryo to encompass it. One of the major activities driving dorsal closure is the contraction of amnioserosa cells. This contraction depends on the highly dynamic activity of the protein network that helps give cells their shape, known as the actomyosin cytoskeleton. One major question in the field is how changes in the actomyosin cytoskeleton are controlled as tissues take shape (a process known as “morphogenesis”) and how the integrity of epithelial tissues is maintained during these processes. A key regulator of epidermal and amnioserosa polarity is an evolutionarily conserved protein called Crumbs. The epithelial tissues of mutant embryos that do not produce Crumbs lose polarity and integrity, and the embryos fail to develop properly. Flores-Benitez and Knust have now studied the role of Crumbs in the morphogenesis of the amnioserosa during dorsal closure. This revealed that fly embryos that produce a mutant Crumbs protein that cannot interact with a protein called Moesin (which links the cell membrane and the actomyosin cytoskeleton) are unable to complete dorsal closure. Detailed analyses showed that this failure of dorsal closure is due to the over-activity of the actomyosin cytoskeleton in the amnioserosa. This results in increased and uncoordinated contractions of the cells, and is accompanied by defects in cell-cell adhesion that ultimately cause the amnioserosa to lose integrity. Flores-Benitez and Knust’s genetic analyses further showed that several different signalling systems participate in this process. Flores-Benitez and Knust’s results reveal an unexpected role of Crumbs in coordinating polarity, actomyosin activity and cell-cell adhesion. Further work is now needed to understand the molecular mechanisms and interactions that enable Crumbs to coordinate these processes; in particular, to unravel how Crumbs influences the periodic contractions that drive changes in cell shape. It will also be important to investigate whether Crumbs is involved in similar mechanisms that operate in other developmental events in which actomyosin oscillations have been linked to tissue morphogenesis. DOI:http://dx.doi.org/10.7554/eLife.07398.002
Collapse
Affiliation(s)
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
19
|
Cox CM, Mandell EK, Stewart L, Lu R, Johnson DL, McCarter SD, Tavares A, Runyan R, Ghosh S, Wilson JM. Endosomal regulation of contact inhibition through the AMOT:YAP pathway. Mol Biol Cell 2015; 26:2673-84. [PMID: 25995376 PMCID: PMC4501364 DOI: 10.1091/mbc.e15-04-0224] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/11/2015] [Indexed: 11/15/2022] Open
Abstract
It was shown previously that endotubin, an integral membrane protein of endosomes, regulates the trafficking of tight junction proteins between endosomes and the tight junctions. Here it is shown that endotubin regulates YAP localization on endosomes through its interaction with AMOT and thus may play a role in contact inhibition. Contact-mediated inhibition of cell proliferation is an essential part of organ growth control; the transcription coactivator Yes-associated protein (YAP) plays a pivotal role in this process. In addition to phosphorylation-dependent regulation of YAP, the integral membrane protein angiomotin (AMOT) and AMOT family members control YAP through direct binding. Here we report that regulation of YAP activity occurs at the endosomal membrane through a dynamic interaction of AMOT with an endosomal integral membrane protein, endotubin (EDTB). EDTB interacts with both AMOT and occludin and preferentially associates with occludin in confluent cells but with AMOT family members in subconfluent cells. EDTB competes with YAP for binding to AMOT proteins in subconfluent cells. Overexpression of the cytoplasmic domain or full-length EDTB induces translocation of YAP to the nucleus, an overgrowth phenotype, and growth in soft agar. This increase in proliferation is dependent upon YAP activity and is complemented by overexpression of p130-AMOT. Furthermore, overexpression of EDTB inhibits the AMOT:YAP interaction. EDTB and AMOT have a greater association in subconfluent cells compared with confluent cells, and this association is regulated at the endosomal membrane. These data provide a link between the trafficking of tight junction proteins through endosomes and contact-inhibition-regulated cell growth.
Collapse
Affiliation(s)
- Christopher M Cox
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724
| | - Edward K Mandell
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511
| | - Lorraine Stewart
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724
| | - Ruifeng Lu
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724
| | - Debra L Johnson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724
| | - Sarah D McCarter
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724
| | - Andre Tavares
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Ray Runyan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724
| | - Sourav Ghosh
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511
| | - Jean M Wilson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
20
|
Lin WH, Asmann YW, Anastasiadis PZ. Expression of polarity genes in human cancer. Cancer Inform 2015; 14:15-28. [PMID: 25991909 PMCID: PMC4390136 DOI: 10.4137/cin.s18964] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 01/01/2023] Open
Abstract
Polarity protein complexes are crucial for epithelial apical–basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function.
Collapse
Affiliation(s)
- Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
21
|
Wei Z, Li Y, Ye F, Zhang M. Structural basis for the phosphorylation-regulated interaction between the cytoplasmic tail of cell polarity protein crumbs and the actin-binding protein moesin. J Biol Chem 2015; 290:11384-92. [PMID: 25792740 DOI: 10.1074/jbc.m115.643791] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Indexed: 11/06/2022] Open
Abstract
The type I transmembrane protein crumbs (Crb) plays critical roles in the establishment and maintenance of cell polarities in diverse tissues. As such, mutations of Crb can cause different forms of cancers. The cell intrinsic role of Crb in cell polarity is governed by its conserved, 37-residue cytoplasmic tail (Crb-CT) via binding to moesin and protein associated with Lin7-1 (PALS1). However, the detailed mechanism governing the Crb·moesin interaction and the balance of Crb in binding to moesin and PALS1 are not well understood. Here we report the 1.5 Å resolution crystal structure of the moesin protein 4.1/ezrin/radixin/moesin (FERM)·Crb-CT complex, revealing that both the canonical FERM binding motif and the postsynaptic density protein-95/Disc large-1/Zonula occludens-1 (PDZ) binding motif of Crb contribute to the Crb·moesin interaction. We further demonstrate that phosphorylation of Crb-CT by atypical protein kinase C (aPKC) disrupts the Crb·moesin association but has no impact on the Crb·PALS1 interaction. The above results indicate that, upon the establishment of the apical-basal polarity in epithelia, apical-localized aPKC can actively prevent the Crb·moesin complex formation and thereby shift Crb to form complex with PALS1 at apical junctions. Therefore, Crb may serve as an aPKC-mediated sensor in coordinating contact-dependent cell growth inhibition in epithelial tissues.
Collapse
Affiliation(s)
- Zhiyi Wei
- From the Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, and Department of Biology, South University of Science and Technology of China, Shenzhen 518055, China
| | - Youjun Li
- From the Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Fei Ye
- From the Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, and
| | - Mingjie Zhang
- From the Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, and
| |
Collapse
|
22
|
Structure of Crumbs tail in complex with the PALS1 PDZ-SH3-GK tandem reveals a highly specific assembly mechanism for the apical Crumbs complex. Proc Natl Acad Sci U S A 2014; 111:17444-9. [PMID: 25385611 DOI: 10.1073/pnas.1416515111] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Crumbs (Crb) complex, formed by Crb, PALS1, and PATJ, is evolutionarily conserved in metazoans and acts as a master cell-growth and -polarity regulator at the apical membranes in polarized epithelia. Crb intracellular functions, including its direct binding to PALS1, are mediated by Crb's highly conserved 37-residue cytoplasmic tail. However, the mechanistic basis governing the highly specific Crb-PALS1 complex formation is unclear, as reported interaction between the Crb tail (Crb-CT) and PALS1 PSD-95/DLG/ZO-1 (PDZ) domain is weak and promiscuous. Here we have discovered that the PDZ-Src homolgy 3 (SH3)-Guanylate kinase (GK) tandem of PALS1 binds to Crb-CT with a dissociation constant of 70 nM, which is ∼ 100-fold stronger than the PALS1 PDZ-Crb-CT interaction. The crystal structure of the PALS1 PDZ-SH3-GK-Crb-CT complex reveals that PDZ-SH3-GK forms a structural supramodule with all three domains contributing to the tight binding to Crb. Mutations disrupting the tertiary interactions of the PDZ-SH3-GK supramodule weaken the PALS1-Crb interaction and compromise PALS1-mediated polarity establishment in Madin-Darby canine kidney (MDCK) cysts. We further show that specific target binding of other members of membrane-associated guanylate kinases (MAGUKs) (e.g., CASK binding to neurexin) also requires the presence of their PDZ-SH3-GK tandems.
Collapse
|
23
|
Eaton S, Martin-Belmonte F. Cargo sorting in the endocytic pathway: a key regulator of cell polarity and tissue dynamics. Cold Spring Harb Perspect Biol 2014; 6:a016899. [PMID: 25125399 DOI: 10.1101/cshperspect.a016899] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The establishment and maintenance of polarized plasma membrane domains is essential for cellular function and proper development of organisms. Epithelial cells polarize along two fundamental axes, the apicobasal and the planar, both depending on finely regulated protein trafficking mechanisms. Newly synthesized proteins destined for either surface domain are processed along the biosynthetic pathway and segregated into distinct subsets of transport carriers emanating from the trans-Golgi network or endosomes. This exocytic trafficking has been identified as essential for proper epithelial polarization. Accumulating evidence now reveals that endocytosis and endocytic recycling play an equally important role in epithelial polarization and the appropriate localization of key polarity proteins. Here, we review recent work in metazoan systems illuminating the connections between endocytosis, postendocytic trafficking, and cell polarity, both apicobasal and planar, in the formation of differentiated epithelial cells, and how these processes regulate tissue dynamics.
Collapse
Affiliation(s)
- Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Fernando Martin-Belmonte
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| |
Collapse
|
24
|
Yeom E, Hong ST, Choi KW. Crumbs interacts with Xpd for nuclear division control in Drosophila. Oncogene 2014; 34:2777-89. [PMID: 25065591 DOI: 10.1038/onc.2014.202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/09/2014] [Accepted: 05/23/2014] [Indexed: 01/03/2023]
Abstract
Crumbs (Crb) family proteins are crucial for cell polarity. Recent studies indicate that they are also involved in growth regulation and cancer. However, it is not well-understood how Crb participates in mitotic processes. Here, we report that Drosophila Crb is critically involved in nuclear division by interacting with Xeroderma pigmentosum D (XPD). A novel gene named galla-1 was identified from a genetic screen for crb modifiers. Galla-1 protein shows homology to MIP18, a subunit of the mitotic spindle-associated MMS19-XPD complex. Loss-of-function galla-1 mutants show abnormal chromosome segregation, defective centrosome positions and branched spindles during nuclear division in early embryos. Embryos with loss-of-function or overexpression of crb show similar mitotic defects and genetic interaction with galla-1. Both Galla-1 and Crb proteins show overlapping localization with spindle microtubules during nuclear division. Galla-1 physically interacts with the intracellular domain of Crb. Interestingly, Galla-1 shows little binding to the Drosophila homolog of XPD, but a related protein Galla-2 binds both Crb and Xpd. Loss-of-function galla-2 mutants show similar mitotic defects as galla-1 and strong genetic interaction with crb. Xpd can form a physical complex with Crb. In imaginal disc, Crb overexpression causes tissue overgrowth as well as DNA damages marked by H2Av phosphorylation. These phenotypes are suppressed by reduction of Xpd. Taken together, this study identifies a novel Crb-Galla-Xpd complex and its function for proper chromosome segregation during nuclear division, implicating a potential link between Crb and Xpd-related genome instability.
Collapse
Affiliation(s)
- E Yeom
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - S-T Hong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - K-W Choi
- 1] Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea [2] Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
25
|
Ngok SP, Lin WH, Anastasiadis PZ. Establishment of epithelial polarity--GEF who's minding the GAP? J Cell Sci 2014; 127:3205-15. [PMID: 24994932 DOI: 10.1242/jcs.153197] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell polarization is a fundamental process that underlies epithelial morphogenesis, cell motility, cell division and organogenesis. Loss of polarity predisposes tissues to developmental disorders and contributes to cancer progression. The formation and establishment of epithelial cell polarity is mediated by the cooperation of polarity protein complexes, namely the Crumbs, partitioning defective (Par) and Scribble complexes, with Rho family GTPases, including RhoA, Rac1 and Cdc42. The activation of different GTPases triggers distinct downstream signaling pathways to modulate protein-protein interactions and cytoskeletal remodeling. The spatio-temporal activation and inactivation of these small GTPases is tightly controlled by a complex interconnected network of different regulatory proteins, including guanine-nucleotide-exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). In this Commentary, we focus on current understanding on how polarity complexes interact with GEFs and GAPs to control the precise location and activation of Rho GTPases (Crumbs for RhoA, Par for Rac1, and Scribble for Cdc42) to promote apical-basal polarization in mammalian epithelial cells. The mutual exclusion of GTPase activities, especially that of RhoA and Rac1, which is well established, provides a mechanism through which polarity complexes that act through distinct Rho GTPases function as cellular rheostats to fine-tune specific downstream pathways to differentiate and preserve the apical and basolateral domains. This article is part of a Minifocus on Establishing polarity.
Collapse
Affiliation(s)
- Siu P Ngok
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Panos Z Anastasiadis
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
26
|
Apical localisation of crumbs in the boundary cells of the Drosophila hindgut is independent of its canonical interaction partner stardust. PLoS One 2014; 9:e94038. [PMID: 24710316 PMCID: PMC3977972 DOI: 10.1371/journal.pone.0094038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/10/2014] [Indexed: 11/19/2022] Open
Abstract
The transmembrane protein Crumbs/Crb is a key regulator of apico-basal epithelial cell polarity, both in Drosophila and in vertebrates. In most cases studied so far, the apical localisation of Drosophila Crumbs depends on the interaction of its C-terminal amino acids with the scaffolding protein Stardust. Consequently, embryos lacking either Crumbs or Stardust develop a very similar phenotype, characterised by the loss of epithelial tissue integrity and cell polarity in many epithelia. An exception is the hindgut, which is not affected by the loss of either gene. The hindgut is a single layered epithelial tube composed of two cell populations, the boundary cells and the principal cells. Here we show that Crumbs localisation in the principal cells depends on Stardust, similarly to other embryonic epithelia. In contrast, localisation of Crumbs in the boundary cells does not require Stardust and is independent of its PDZ domain- and FERM-domain binding motifs. In line with this, the considerable upregulation of Crumbs in boundary cells is not followed by a corresponding upregulation of its canonical binding partners. Our data are the first to suggest a mechanism controlling apical Crumbs localisation, which is independent of its conserved FERM- and PDZ-domain binding motifs.
Collapse
|
27
|
Gurudev N, Yuan M, Knust E. chaoptin, prominin, eyes shut and crumbs form a genetic network controlling the apical compartment of Drosophila photoreceptor cells. Biol Open 2014; 3:332-41. [PMID: 24705015 PMCID: PMC4021355 DOI: 10.1242/bio.20147310] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The apical surface of epithelial cells is often highly specialised to fulfil cell type-specific functions. Many epithelial cells expand their apical surface by forming microvilli, actin-based, finger-like membrane protrusions. The apical surface of Drosophila photoreceptor cells (PRCs) forms tightly packed microvilli, which are organised into the photosensitive rhabdomeres. As previously shown, the GPI-anchored adhesion protein Chaoptin is required for the stability of the microvilli, whereas the transmembrane protein Crumbs is essential for proper rhabdomere morphogenesis. Here we show that chaoptin synergises with crumbs to ensure optimal rhabdomere width. In addition, reduction of crumbs ameliorates morphogenetic defects observed in PRCs mutant for prominin and eyes shut, known antagonists of chaoptin. These results suggest that these four genes provide a balance of adhesion and anti-adhesion to maintain microvilli development and maintenance. Similar to crumbs mutant PRCs, PRCs devoid of prominin or eyes shut undergo light-dependent retinal degeneration. Given the observation that human orthologues of crumbs, prominin and eyes shut result in progressive retinal degeneration and blindness, the Drosophila eye is ideally suited to unravel the genetic and cellular mechanisms that ensure morphogenesis of PRCs and their maintenance under light-mediated stress.
Collapse
Affiliation(s)
- Nagananda Gurudev
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | - Michaela Yuan
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| |
Collapse
|
28
|
Abstract
Establishing and maintaining epithelial polarity is crucial during development and for adult tissue homeostasis. A complex network of evolutionarily conserved proteins regulates this compartmentalization. One such protein is Crumbs, a type I transmembrane protein initially shown to be an important apical determinant in Drosophila. We discuss recent studies that have advanced our understanding of the function and regulation of Crumbs. New findings obtained in flies and fish, reporting homotypic interactions of the extracellular domain and retromer-mediated recycling, shed light on the regulation of Crumbs levels and activity. These results - obtained in different organisms, tissues and developmental stages - point to more complex functions and regulation than previously assumed.
Collapse
Affiliation(s)
- Shirin Meher Pocha
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.
| | | |
Collapse
|
29
|
Sticking together the Crumbs - an unexpected function for an old friend. Nat Rev Mol Cell Biol 2013; 14:307-14. [PMID: 23609509 DOI: 10.1038/nrm3568] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell polarity and cell-cell junctions have pivotal roles in organizing cells into tissues and in mediating cell-cell communication. The transmembrane protein Crumbs has a well-established role in the maintenance of epithelial polarity, and it can also regulate signalling via the Notch and Hippo pathways to influence tissue growth. The functions of Crumbs in epithelial polarity and Hippo-mediated growth depend on its short intracellular domain. Recent evidence now points to a conserved and fundamental role for the extracellular domain of Crumbs in mediating homophilic Crumbs-Crumbs interactions at cell-cell junctions.
Collapse
|
30
|
Fosmid-based structure-function analysis reveals functionally distinct domains in the cytoplasmic domain of Drosophila crumbs. G3-GENES GENOMES GENETICS 2013; 3:153-65. [PMID: 23390593 PMCID: PMC3564977 DOI: 10.1534/g3.112.005074] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/27/2012] [Indexed: 12/18/2022]
Abstract
The evolutionarily conserved transmembrane protein Crumbs is required for epithelial polarity and morphogenesis in the embryo, control of tissue size in imaginal discs and morphogenesis of photoreceptor cells, and prevents light-dependent retinal degeneration. The small cytoplasmic domain contains two highly conserved regions, a FERM (i.e., protein 4.1/ezrin/radixin/moesin)-binding and a PDZ (i.e., postsynaptic density/discs large/ZO-1)-binding domain. Using a fosmid-based transgenomic approach, we analyzed the role of the two domains during invagination of the tracheae and the salivary glands in the Drosophila embryo. We provide data to show that the PDZ-binding domain is essential for the maintenance of cell polarity in both tissues. In contrast, in embryos expressing a Crumbs protein with an exchange of a conserved Tyrosine residue in the FERM-binding domain to an Alanine, both tissues are internalized, despite some initial defects in apical constriction, phospho-Moesin recruitment, and coordinated invagination movements. However, at later stages these embryos fail to undergo dorsal closure, germ band retraction, and head involution. In addition, frequent defects in tracheal fusion were observed. These results suggest stage and/or tissue specific binding partners. We discuss the power of this fosmid-based system for detailed structure-function analyses in comparison to the UAS/Gal4 system.
Collapse
|
31
|
Pocha SM, Wassmer T. A novel role for retromer in the control of epithelial cell polarity. Commun Integr Biol 2012; 4:749-51. [PMID: 22446545 DOI: 10.4161/cib.17658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The establishment and maintenance of epithelial cell polarity is essential throughout the development and adult life of all multicellular organisms. A key player in maintaining epithelial polarity is Crumbs (Crb), an evolutionarily conserved type-I transmembrane protein initially identified in Drosophila. Correct Crb levels and apical localization are imperative for its function. However, as is the case for many polarized proteins, the mechanisms of its trafficking and strict apical localization are poorly understood. To address these questions, we developed a liposome-based assay to identify trafficking coats and interaction partners of Crb in a native-like environment. Thereby, we demonstrated that Crb is a cargo for Retromer, a trafficking complex required for transport from endosomes to the trans-Golgi-network. The functional importance of this interaction was revealed by studies in Drosophila epithelia, which established Retromer as a novel regulator of epithelial cell polarity and verified the vast potential of this technique.
Collapse
|
32
|
Tepass U. The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu Rev Cell Dev Biol 2012; 28:655-85. [PMID: 22881460 DOI: 10.1146/annurev-cellbio-092910-154033] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial tissue formation and function requires the apical-basal polarization of individual epithelial cells. Apical polarity regulators (APRs) are an evolutionarily conserved group of key factors that govern polarity and several other aspects of epithelial differentiation. APRs compose a diverse set of molecules including a transmembrane protein (Crumbs), a serine/threonine kinase (aPKC), a lipid phosphatase (PTEN), a small GTPase (Cdc42), FERM domain proteins (Moesin, Yurt), and several adaptor or scaffolding proteins (Bazooka/Par3, Par6, Stardust, Patj). These proteins form a dynamic cooperative network that is engaged in negative-feedback regulation with basolateral polarity factors to set up the epithelial apical-basal axis. APRs support the formation of the apical junctional complex and the segregation of the junctional domain from the apical membrane. It is becoming increasingly clear that APRs interact with the cytoskeleton and vesicle trafficking machinery, regulate morphogenesis, and modulate epithelial cell growth and survival. Not surprisingly, APRs have multiple fundamental links to human diseases such as cancer and blindness.
Collapse
Affiliation(s)
- Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
33
|
Cho SH, Kim JY, Simons DL, Song JY, Le JH, Swindell EC, Jamrich M, Wu SM, Kim S. Genetic ablation of Pals1 in retinal progenitor cells models the retinal pathology of Leber congenital amaurosis. Hum Mol Genet 2012; 21:2663-76. [PMID: 22398208 PMCID: PMC3363335 DOI: 10.1093/hmg/dds091] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/09/2012] [Accepted: 02/29/2012] [Indexed: 12/14/2022] Open
Abstract
Mutation of the polarity gene Crumbs homolog 1 (CRB1) is responsible for >10% of Leber congenital amaurosis (LCA) cases worldwide; LCA is characterized by early-onset degenerative retinal dystrophy. The role of CRB1 in LCA8 pathogenesis remains elusive since Crb1 mouse mutants, including a null allele, have failed to mimic the early-onset of LCA, most likely due to functional compensation by closely related genes encoding Crb2 and Crb3. Crb proteins form an evolutionarily conserved, apical polarity complex with the scaffolding protein associated with lin-seven 1 (Pals1), also known as MAGUK p55 subfamily member 5 (MPP5). Pals1 and Crbs are functionally inter-dependent in establishing and maintaining epithelial polarity. Pals1 is a single gene in the mouse and human genomes; therefore, we ablated Pals1 to establish a mouse genetic model mimicking human LCA. In our study, the deletion of Pals1 leads to the disruption of the apical localization of Crb proteins in retinal progenitors and the adult retina, validating their mutual interaction. Remarkably, the Pals1 mutant mouse exhibits the critical features of LCA such as early visual impairment as assessed by electroretinogram, disorganization of lamination and apical junctions and retinal degeneration. Our data uncover the indispensible role of Pals1 in retinal development, likely involving the maintenance of retinal polarity and survival of retinal neurons, thus providing the basis for the pathologic mechanisms of LCA8.
Collapse
Affiliation(s)
- Seo-Hee Cho
- Pediatric Research Center, Department of Pediatrics, University of Texas Health Science Center, Houston TX 77030, USA
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jin Young Kim
- Pediatric Research Center, Department of Pediatrics, University of Texas Health Science Center, Houston TX 77030, USA
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | - Ji Yun Song
- Pediatric Research Center, Department of Pediatrics, University of Texas Health Science Center, Houston TX 77030, USA
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Julie H. Le
- Pediatric Research Center, Department of Pediatrics, University of Texas Health Science Center, Houston TX 77030, USA
| | - Eric C. Swindell
- Pediatric Research Center, Department of Pediatrics, University of Texas Health Science Center, Houston TX 77030, USA
| | - Milan Jamrich
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA and
| | | | - Seonhee Kim
- Pediatric Research Center, Department of Pediatrics, University of Texas Health Science Center, Houston TX 77030, USA
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
34
|
Mishra M, Rentsch M, Knust E. Crumbs regulates polarity and prevents light-induced degeneration of the simple eyes of Drosophila, the ocelli. Eur J Cell Biol 2012; 91:706-16. [PMID: 22608020 DOI: 10.1016/j.ejcb.2012.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 11/27/2022] Open
Abstract
The evolutionary conserved transmembrane protein Crumbs (Crb) regulates morphogenesis of photoreceptor cells in the compound eye of Drosophila and prevents light-dependent retinal degeneration. Here we examine the role of Crb in the ocelli, the simple eyes of Drosophila. We show that Crb is expressed in ocellar photoreceptor cells, where it defines a stalk membrane apical to the adherens junctions, similar as in photoreceptor cells of the compound eyes. Loss of function of crb disrupts polarity of ocellar photoreceptor cells, and results in mislocalisation of adherens junction proteins. This phenotype is more severe than that observed in mutant photoreceptor cells of the compound eye, and resembles more that of embryonic epithelia lacking crb. Similar as in compound eyes, crb protects ocellar photoreceptors from light induced degeneration, a function that depends on the extracellular portion of the Crb protein. Our data demonstrate that the function of crb in photoreceptor development and homeostasis is conserved in compound eyes and ocelli and underscores the evolutionarily relationship between these visual sense organs of Drosophila. The data will be discussed with respect to the difference in apico-basal organisation of these two cell types.
Collapse
Affiliation(s)
- Monalisa Mishra
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | | | | |
Collapse
|
35
|
Pocha SM, Shevchenko A, Knust E. Crumbs regulates rhodopsin transport by interacting with and stabilizing myosin V. ACTA ACUST UNITED AC 2011; 195:827-38. [PMID: 22105348 PMCID: PMC3257572 DOI: 10.1083/jcb.201105144] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the absence of Crumbs, myosin V is degraded, resulting in defective rhodopsin 1 transport to the rhabdomere and subsequent photoreceptor degeneration. The evolutionarily conserved Crumbs (Crb) complex is crucial for photoreceptor morphogenesis and homeostasis. Loss of Crb results in light-dependent retinal degeneration, which is prevented by feeding mutant flies carotenoid-deficient medium. This suggests a defect in rhodopsin 1 (Rh1) processing, transport, and/or signaling, causing degeneration; however, the molecular mechanism of this remained elusive. In this paper, we show that myosin V (MyoV) coimmunoprecipitated with the Crb complex and that loss of crb led to severe reduction in MyoV levels, which could be rescued by proteasomal inhibition. Loss of MyoV in crb mutant photoreceptors was accompanied by defective transport of the MyoV cargo Rh1 to the light-sensing organelle, the rhabdomere. This resulted in an age-dependent accumulation of Rh1 in the photoreceptor cell (PRC) body, a well-documented trigger of degeneration. We conclude that Crb protects against degeneration by interacting with and stabilizing MyoV, thereby ensuring correct Rh1 trafficking. Our data provide, for the first time, a molecular mechanism for the light-dependent degeneration of PRCs observed in crb mutant retinas.
Collapse
Affiliation(s)
- Shirin Meher Pocha
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | | | | |
Collapse
|
36
|
Maruyama R, Andrew DJ. Drosophila as a model for epithelial tube formation. Dev Dyn 2011; 241:119-35. [PMID: 22083894 DOI: 10.1002/dvdy.22775] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2011] [Indexed: 12/17/2022] Open
Abstract
Epithelial tubular organs are essential for life in higher organisms and include the pancreas and other secretory organs that function as biological factories for the synthesis and delivery of secreted enzymes, hormones, and nutrients essential for tissue homeostasis and viability. The lungs, which are necessary for gas exchange, vocalization, and maintaining blood pH, are organized as highly branched tubular epithelia. Tubular organs include arteries, veins, and lymphatics, high-speed passageways for delivery and uptake of nutrients, liquids, gases, and immune cells. The kidneys and components of the reproductive system are also epithelial tubes. Both the heart and central nervous system of many vertebrates begin as epithelial tubes. Thus, it is not surprising that defects in tube formation and maintenance underlie many human diseases. Accordingly, a thorough understanding how tubes form and are maintained is essential to developing better diagnostics and therapeutics. Among the best-characterized tubular organs are the Drosophila salivary gland and trachea, organs whose relative simplicity have allowed for in depth analysis of gene function, yielding key mechanistic insight into tube initiation, remodeling and maintenance. Here, we review our current understanding of salivary gland and trachea formation - highlighting recent discoveries into how these organs attain their final form and function.
Collapse
Affiliation(s)
- Rika Maruyama
- The Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, Maryland 21205-2196, USA
| | | |
Collapse
|
37
|
Krahn MP, Bückers J, Kastrup L, Wodarz A. Formation of a Bazooka-Stardust complex is essential for plasma membrane polarity in epithelia. ACTA ACUST UNITED AC 2010; 190:751-60. [PMID: 20819933 PMCID: PMC2935580 DOI: 10.1083/jcb.201006029] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recruitment of the Crumbs–Stardust polarity complex depends on interactions between Bazooka and the Stardust PDZ domain and is regulated by aPKC-mediated phosphorylation. Apical–basal polarity in Drosophila melanogaster epithelia depends on several evolutionarily conserved proteins that have been assigned to two distinct protein complexes: the Bazooka (Baz)–PAR-6 (partitioning defective 6)–atypical protein kinase C (aPKC) complex and the Crumbs (Crb)–Stardust (Sdt) complex. These proteins operate in a functional hierarchy, in which Baz is required for the proper subcellular localization of all other proteins. We investigated how these proteins interact and how this interaction is regulated. We show that Baz recruits Sdt to the plasma membrane by direct interaction between the Postsynaptic density 95/Discs large/Zonula occludens 1 (PDZ) domain of Sdt and a region of Baz that contains a phosphorylation site for aPKC. Phosphorylation of Baz causes the dissociation of the Baz–Sdt complex. Overexpression of a nonphosphorylatable version of Baz blocks the dissociation of Sdt from Baz, causing phenotypes very similar to those of crb and sdt mutations. Our findings provide a molecular mechanism for the phosphorylation-dependent interaction between the Baz–PAR-3 and Crb complexes during the establishment of epithelial polarity.
Collapse
Affiliation(s)
- Michael P Krahn
- Abteilung Stammzellbiologie, Forschungszentrum der Deutschen Forschungsgemeinschaft für Molekularphysiologie des Gehirns (CMPB), Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|
38
|
Robinson BS, Huang J, Hong Y, Moberg KH. Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein Expanded. Curr Biol 2010; 20:582-90. [PMID: 20362445 PMCID: PMC2855393 DOI: 10.1016/j.cub.2010.03.019] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/11/2010] [Accepted: 03/11/2010] [Indexed: 01/15/2023]
Abstract
BACKGROUND Altered expression of apicobasal polarity factors is associated with cancer in vertebrates and tissue overgrowth in invertebrates, yet the mechanisms by which these factors affect growth-regulatory pathways are not well defined. We have tested the basis of an overgrowth phenotype driven by the Drosophila protein Crumbs (Crb), which nucleates an apical membrane complex that functionally interacts with the Par6/Par3/aPKC and Scrib/Dlg/Lgl apicobasal polarity complexes. RESULTS We find that Crb-driven growth is dependent upon the Salvador/Warts/Hippo (SWH) pathway and its transcriptional effector Yorkie (Yki). Expression of the Crb intracellular domain elevates Yki activity, and this correlates in tissues and cultured cells with loss of Expanded (Ex), an apically localized SWH component that inhibits Yki. Reciprocally, loss of crb elevates Ex levels, although this excess Ex does not concentrate to its normal location at apical junctions. The Ex-regulatory domain of Crb maps to the juxtamembrane FERM-binding motif (JM), a cytoskeletal interaction domain distinct from the PDZ-binding motif (PBM) through which Crb binds polarity factors. Expression of Crb-JM drives Yki activity and organ growth with little effect on tissue architecture, while Crb-PBM reciprocally produces tissue architectural defects without significant effect on Yki activity. CONCLUSIONS These studies identify Crb as a novel SWH regulator via JM-dependent effects on Ex levels and localization and suggest that discrete domains within Crb may allow it to integrate junctional polarity signals with a conserved growth pathway.
Collapse
Affiliation(s)
- Brian S. Robinson
- Department of Cell Biology, Emory University School of Medicine Atlanta, GA
| | - Juang Huang
- Department of Cell Biology and Physiology, University of Pittsburgh Medical School, Pittsburgh, PA
| | - Yang Hong
- Department of Cell Biology and Physiology, University of Pittsburgh Medical School, Pittsburgh, PA
| | - Kenneth H. Moberg
- Department of Cell Biology, Emory University School of Medicine Atlanta, GA
| |
Collapse
|
39
|
Richardson ECN, Pichaud F. Crumbs is required to achieve proper organ size control during Drosophila head development. Development 2010; 137:641-50. [PMID: 20110329 DOI: 10.1242/dev.041913] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Crumbs (Crb) is a conserved apical polarity determinant required for zonula adherens specification and remodelling during Drosophila development. Interestingly, crb function in maintaining apicobasal polarity appears largely dispensable in primary epithelia such as the imaginal discs. Here, we show that crb function is not required for maintaining epithelial integrity during the morphogenesis of the Drosophila head and eye. However, although crb mutant heads are properly developed, they are also significantly larger than their wild-type counterparts. We demonstrate that in the eye, this is caused by an increase in cell proliferation that can be attributed to an increase in ligand-dependent Notch (N) signalling. Moreover, we show that in crb mutant cells, ectopic N activity correlates with an increase in N and Delta endocytosis. These data indicate a role for Crb in modulating endocytosis at the apical epithelial plasma membrane, which we demonstrate is independent of Crb function in apicobasal polarity. Overall, our work reveals a novel function for Crb in limiting ligand-dependent transactivation of the N receptor at the epithelial cell membrane.
Collapse
Affiliation(s)
- Emily C N Richardson
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, London, UK
| | | |
Collapse
|
40
|
Campbell K, Knust E, Skaer H. Crumbs stabilises epithelial polarity during tissue remodelling. J Cell Sci 2009; 122:2604-12. [PMID: 19567473 DOI: 10.1242/jcs.047183] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The apicobasal polarity of epithelia depends on the integrated activity of apical and basolateral proteins, and is essential for tissue integrity and body homeostasis. Yet these tissues are frequently on the move as they are sculpted by active morphogenetic cell rearrangements. How does cell polarity survive these stresses? We analyse this question in the renal tubules of Drosophila, a tissue that undergoes dramatic morphogenetic change as it develops. Here we show that, whereas the Bazooka and Scribble protein groups are required for the establishment of tubule cell polarity, the key apical determinant, Crumbs, is required for cell polarity in the tubules only from the time when morphogenetic movements start. Strikingly, if these movements are stalled, polarity persists in the absence of Crumbs. Similar rescue of the ectodermal phenotype of the crumbs mutant when germ-band extension is reduced suggests that Crumbs has a specific, conserved function in stabilising cell polarity during tissue remodelling rather than in its initial stabilisation. We also identify a requirement for the exocyst component Exo84 during tissue morphogenesis, which suggests that Crumbs-dependent stability of epithelial polarity is correlated with a requirement for membrane recycling and targeted vesicle delivery.
Collapse
Affiliation(s)
- Kyra Campbell
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | | |
Collapse
|
41
|
Ebarasi L, He L, Hultenby K, Takemoto M, Betsholtz C, Tryggvason K, Majumdar A. A reverse genetic screen in the zebrafish identifies crb2b as a regulator of the glomerular filtration barrier. Dev Biol 2009; 334:1-9. [PMID: 19393641 DOI: 10.1016/j.ydbio.2009.04.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 03/26/2009] [Accepted: 04/16/2009] [Indexed: 01/20/2023]
Abstract
The glomerular filtration barrier is necessary for the selective passage of low molecular weight waste products and the retention of blood plasma proteins. Damage to the filter results in proteinuria. The filtration barrier is the major pathogenic site in almost all glomerular diseases and its study is therefore of clinical significance. We have taken advantage of the zebrafish pronephros as a system for studying glomerular filtration. In order to identify new regulators of filtration barrier assembly, we have performed a reverse genetic screen in the zebrafish testing a group of genes which are enriched in their expression within the mammalian glomerulus. In this novel screen, we have coupled gene knockdown using morpholinos with a physiological glomerular dye filtration assay to test for selective glomerular permeability in living zebrafish larvae. Screening 20 genes resulted in the identification of ralgps1, rapgef2, rabgef1, and crb2b. The crumbs (crb) genes encode a family of evolutionarily conserved proteins important for apical-basal polarity within epithelia. The crb2b gene is expressed in zebrafish podocytes. Electron microscopic analysis of crb2b morphants reveals a gross disorganization of podocyte foot process architecture and loss of slit diaphragms while overall polarity is maintained. Nephrin, a major component of the slit diaphragm, is apically mis-localized in podocytes from crb2b morphants suggesting that crb2b is required for the proper protein trafficking of Nephrin. This report is the first to show a role for crb function in podocyte differentiation. Furthermore, these results suggest a novel link between epithelial polarization and the maintenance of a functional filtration barrier.
Collapse
Affiliation(s)
- Lwaki Ebarasi
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 2, Plan 4 B1, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
42
|
Andrew DJ, Baker BS. Expression of the Drosophila secreted cuticle protein 73 (dsc73) requires Shavenbaby. Dev Dyn 2008; 237:1198-206. [PMID: 18351665 DOI: 10.1002/dvdy.21512] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Low stringency genomic library screens with genomic fragments from the sex determination gene doublesex identified the Drosophila secreted cuticle protein 73 (dsc73) gene, which encodes an 852-residue protein with an N-terminal signal sequence. In embryos, dsc73 RNA and protein are expressed to high levels in the epidermal cells that secrete the larval cuticle as well as in other cuticle-secreting tissues such as the trachea and salivary duct. Embryonic expression of dsc73 requires Shavenbaby, a transcription factor regulating cuticle formation. Double-labeling experiments with alphaCrb and alphaSAS reveal that, as with chitin and other known cuticle proteins, Dsc73 is secreted apically. Zygotic loss of dsc73 results in larval lethality but loss does not result in overt patterning defects or overt morphological defects in the embryonic tissues in which it is expressed. Thus, dsc73 encodes a novel secreted protein, and it is conserved within the Drosophila group. dsc73 may serve as a useful embryonic marker for cuticular patterning.
Collapse
Affiliation(s)
- Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
43
|
Assémat E, Bazellières E, Pallesi-Pocachard E, Le Bivic A, Massey-Harroche D. Polarity complex proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:614-30. [PMID: 18005931 DOI: 10.1016/j.bbamem.2007.08.029] [Citation(s) in RCA: 330] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Revised: 08/21/2007] [Accepted: 08/27/2007] [Indexed: 12/24/2022]
Abstract
The formation of functional epithelial tissues involves the coordinated action of several protein complexes, which together produce a cell polarity axis and develop cell-cell junctions. During the last decade, the notion of polarity complexes emerged as the result of genetic studies in which a set of genes was discovered first in Caenorhabditis elegans and then in Drosophila melanogaster. In epithelial cells, these complexes are responsible for the development of the apico-basal axis and for the construction and maintenance of apical junctions. In this review, we focus on apical polarity complexes, namely the PAR3/PAR6/aPKC complex and the CRUMBS/PALS1/PATJ complex, which are conserved between species and along with a lateral complex, the SCRIBBLE/DLG/LGL complex, are crucial to the formation of apical junctions such as tight junctions in mammalian epithelial cells. The exact mechanisms underlying their tight junction construction and maintenance activities are poorly understood, and it is proposed to focus in this review on establishing how these apical polarity complexes might regulate epithelial cell morphogenesis and functions. In particular, we will present the latest findings on how these complexes regulate epithelial homeostasis.
Collapse
Affiliation(s)
- Emeline Assémat
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR 6216 et Université de la Méditerranée, Parc Scientifique et Technologique de Luminy, Case 907, 13288 Marseille Cedex 09, France
| | | | | | | | | |
Collapse
|
44
|
Emmerich J, Meyer CA, de la Cruz AFA, Edgar BA, Lehner CF. Cyclin D does not provide essential Cdk4-independent functions in Drosophila. Genetics 2005; 168:867-75. [PMID: 15514060 PMCID: PMC1448836 DOI: 10.1534/genetics.104.027417] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The three mammalian D-type cyclins are thought to promote progression through the G1 phase of the cell cycle as regulatory subunits of cyclin-dependent kinase 4 and 6. In addition, they have been proposed to control the activity of various transcription factors without a partner kinase. Here we describe phenotypic consequences of null mutations in Cyclin D, the single D-type cyclin gene in Drosophila. As previously observed with null mutations in the single Drosophila Cdk4 gene, these mutations do not primarily affect progression through the G1 phase. Moreover, the apparently indistinguishable phenotypes of double (CycD and Cdk4) and single mutants (CycD or Cdk4) argue against major independent functions of Cyclin D and Cdk4. The reduced cellular and organismal growth rates observed in both mutants indicate that Cyclin D-Cdk4 acts as a growth driver.
Collapse
Affiliation(s)
- Jan Emmerich
- Bayreuther Zentrum für Molekulare Biowissenschaften, Department of Genetics, University of Bayreuth, 95440 Bayreuth, Germany
| | | | | | | | | |
Collapse
|
45
|
Lemmers C, Médina E, Lane-Guermonprez L, Arsanto JP, Le Bivic A. Rôle des protéines Crumbs dans le contrôle de la morphogenèse des cellules épithéliales et des photorécepteurs. Med Sci (Paris) 2004; 20:663-7. [PMID: 15329816 DOI: 10.1051/medsci/2004206-7663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Degeneration of retina can have many causes and among the genes involved, CRB1 has been shown to be associated with Retinitis pigmentosa (RP) group 12 and Leber congenital amaurosis (LCA), two dramatic pathologies in young patients. CRB1 belongs to a family of genes conserved from Caenorhabditis elegans to human. In Drosophila melanogaster, for example, crb is essential both for the formation of the adherens junctions in epithelial cells of ectodermal origin during gastrulation and for the morphogenesis of photoreceptors in the eye. Crumbs is a transmembrane protein with a short cytoplasmic domain that interacts with scaffold proteins, Stardust and Discs lost, and with the apical cytoskeleton made of moesin and betaheavy-spectrin. The extracellular domain of Crumbs is essential for its function in photoreceptors but so far there are no known proteins interacting with it. In human, there are three known crb homologues, CRB1, 2 and 3, and CRB1 is expressed in the retina and localizes to the adherens junctions of the rods. Based on the model drawn from Drosophila, CRB1 could be involved in maintaining the morphology of rods to ensure a normal function of the retina. This is supported by the fact that the homologues of the known partners of Crumbs are also conserved in human and expressed in the retina. Understanding the precise molecular mechanism by which CRB1 acts will help to find new therapies for patients suffering from RP12 and LCA.
Collapse
Affiliation(s)
- Céline Lemmers
- UMR 6156, Laboratoire de neurogenèse et morphogenèse au cours du développement et chez l'adulte (NMDA), IBDM, Campus de Luminy, Case 907. 13288 Marseille Cedex 09. France
| | | | | | | | | |
Collapse
|
46
|
Bradley PL, Myat MM, Comeaux CA, Andrew DJ. Posterior migration of the salivary gland requires an intact visceral mesoderm and integrin function. Dev Biol 2003; 257:249-62. [PMID: 12729556 DOI: 10.1016/s0012-1606(03)00103-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The final overall shape of an organ and its position within the developing embryo arise as a consequence of both its intrinsic properties and its interactions with surrounding tissues. Here, we focus on the role of directed cell migration in shaping and positioning the Drosophila salivary gland. We demonstrate that the salivary gland turns and migrates along the visceral mesoderm to become properly oriented with respect to the overall embryo. We show that salivary gland posterior migration requires the activities of genes that position the visceral mesoderm precursors, such as heartless, thickveins, and tinman, but does not require a differentiated visceral mesoderm. We also demonstrate a role for integrin function in salivary gland migration. Although the mutations affecting salivary gland motility and directional migration cause defects in the final positioning of the salivary gland, most do not affect the length or diameter of the salivary gland tube. These findings suggest that salivary tube dimensions may be an intrinsic property of salivary gland cells.
Collapse
Affiliation(s)
- Pamela L Bradley
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
47
|
Tanentzapf G, Tepass U. Interactions between the crumbs, lethal giant larvae and bazooka pathways in epithelial polarization. Nat Cell Biol 2003; 5:46-52. [PMID: 12510193 DOI: 10.1038/ncb896] [Citation(s) in RCA: 306] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2002] [Revised: 08/14/2002] [Accepted: 11/15/2002] [Indexed: 11/08/2022]
Abstract
Several protein complexes that are involved in epithelial apicobasal polarity have been identified. However, the mechanism by which these complexes interact to form an integrated polarized cell morphology remains unclear. Crumbs (Crb) and Lethal giant larvae (Lgl) are components of distinct complexes that regulate epithelial polarization in Drosophila melanogaster, but may not interact directly as they localize to the apical and basolateral membrane, respectively. Nevertheless, a genetic screen identifies marked functional interactions between crb and lgl. These interactions extend to other genes within the crb (stardust, sdt) and lgl (discs large, dlg; scribble, scrib) pathways. Our findings suggest that the crb and lgl pathways function competitively to define apical and basolateral surfaces. They also suggest that in the absence of lgl pathway activity, the crb pathway is not required to maintain epithelial polarity. Moreover, we show that crb and lgl cooperate in zonula adherens formation early in development. At later stages, epithelial cells in these mutants acquire normal polarity, indicating the presence of compensatory mechanisms. We find that bazooka (baz) functions redundantly with crb/sdt to support apical polarity at mid- to late-embryogenesis. Despite regaining cell polarity, however, epithelial cells in crb and lgl pathway mutants fail to re-establish normal overall tissue architecture, indicating that the timely acquisition of polarized cell structure is essential for normal tissue organization.
Collapse
Affiliation(s)
- Guy Tanentzapf
- Department of Zoology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | | |
Collapse
|
48
|
Johnson K, Grawe F, Grzeschik N, Knust E. Drosophila crumbs is required to inhibit light-induced photoreceptor degeneration. Curr Biol 2002; 12:1675-80. [PMID: 12361571 DOI: 10.1016/s0960-9822(02)01180-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mutations in the human transmembrane protein CRB1 are associated with severe forms of retinal dystrophy, retinitis pigmentosa 12 (RP12), and Leber's congenital amaurosis (LCA). The Drosophila homolog, crumbs, is required for polarity and adhesion in embryonic epithelia and for correct formation of adherens junctions and proper morphogenesis of photoreceptor cells. Here, we show that mutations in Drosophila crumbs result in progressive, light-induced retinal degeneration. Degeneration is prevented by expression of p35, an inhibitor of apoptosis, or by reduction of rhodopsin levels through a vitamin A-deficient diet. In the dark, rhabdomeres survive but exhibit morphogenetic defects. We demonstrate that it is the extracellular portion of the Crumbs protein that is essential to suppress light-induced programmed cell death, while proper morphogenesis depends on the intracellular part. We conclude that human and Drosophila Crumbs proteins are functionally conserved to prevent light-dependent photoreceptor degeneration. This experimental system is now ideally suited to study the genetic and molecular basis of RP12- and LCA-related retinal degeneration.
Collapse
Affiliation(s)
- Kevin Johnson
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | | | | | | |
Collapse
|
49
|
Médina E, Williams J, Klipfell E, Zarnescu D, Thomas CM, Le Bivic A. Crumbs interacts with moesin and beta(Heavy)-spectrin in the apical membrane skeleton of Drosophila. J Cell Biol 2002; 158:941-51. [PMID: 12213838 PMCID: PMC2173152 DOI: 10.1083/jcb.200203080] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The apical transmembrane protein Crumbs is necessary for both cell polarization and the assembly of the zonula adherens (ZA) in Drosophila epithelia. The apical spectrin-based membrane skeleton (SBMS) is a protein network that is essential for epithelial morphogenesis and ZA integrity, and exhibits close colocalization with Crumbs and the ZA in fly epithelia. These observations suggest that Crumbs may stabilize the ZA by recruiting the SBMS to the junctional region. Consistent with this hypothesis, we report that Crumbs is necessary for the organization of the apical SBMS in embryos and Schneider 2 cells, whereas the localization of Crumbs is not affected in karst mutants that eliminate the apical SBMS. Our data indicate that it is specifically the 4.1 protein/ezrin/radixin/moesin (FERM) domain binding consensus, and in particular, an arginine at position 7 in the cytoplasmic tail of Crumbs that is essential to efficiently recruit both the apical SBMS and the FERM domain protein, DMoesin. Crumbs, Discs lost, betaHeavy-spectrin, and DMoesin are all coimmunoprecipitated from embryos, confirming the existence of a multimolecular complex. We propose that Crumbs stabilizes the apical SBMS via DMoesin and actin, leading to reinforcement of the ZA and effectively coupling epithelial morphogenesis and cell polarity.
Collapse
Affiliation(s)
- Emmanuelle Médina
- Laboratoire de Neurogenèse et Morphogenèse dans le Développement et l'Adulte, Institut de Biologie du Développement de Marseille, Université de la Méditerranée, 13288 Marseille, cedex 09, France
| | - Janice Williams
- Departments of Biology and of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Elizabeth Klipfell
- Departments of Biology and of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Daniela Zarnescu
- Departments of Biology and of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Claire M. Thomas
- Departments of Biology and of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - André Le Bivic
- Laboratoire de Neurogenèse et Morphogenèse dans le Développement et l'Adulte, Institut de Biologie du Développement de Marseille, Université de la Méditerranée, 13288 Marseille, cedex 09, France
| |
Collapse
|
50
|
Lemmers C, Médina E, Delgrossi MH, Michel D, Arsanto JP, Le Bivic A. hINADl/PATJ, a homolog of discs lost, interacts with crumbs and localizes to tight junctions in human epithelial cells. J Biol Chem 2002; 277:25408-15. [PMID: 11964389 DOI: 10.1074/jbc.m202196200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
dCrumbs is an apical organizer crucial for the maintenance of epithelial polarity in Drosophila (1). It is known that dCrumbs interacts with Discs lost (Dlt), a protein with four PDZ (PSD95/Discs Large/ZO-1) domains (2), and Stardust (Sdt), a protein of the MAGUK (membrane-associated guanylate kinase) family (3, 4). We have searched for potential homologs of Dlt in human epithelial cells and characterized one of them in intestinal epithelial cells. Human INAD-like (hINADl) contains 8 PDZ domains, is concentrated in tight junctions, and is also found at the apical plasma membrane. Overexpression of hINADl disrupted the tight junctions localization of ZO-1 and 3. We also identified a partial cDNA coding the transmembrane and cytoplasmic domains of a new human crumbs (CRB3) expressed in Caco-2 cells. This CRB3 was able to interact through its C-terminal end with the N-terminal domain of hINADl. Taken together, the data indicate that hINADl is likely to represent a Dlt homolog in mammalian epithelial cells and might be involved in regulating the integrity of tight junctions. We thus propose to rename hINADl PATJ for protein associated to tight junctions.
Collapse
Affiliation(s)
- Céline Lemmers
- Laboratoire de Neurogenèse et Morphogenèse du Développement à l'Adulte (NMDA, Unité Mixte de Recherche 6165), Institut de Biologie du Développement de Marseille, Faculté des Sciences de Luminy, Université de la Méditerranée, France
| | | | | | | | | | | |
Collapse
|