1
|
Kumar V, Tomar AK, Thapliyal A, Yadav S. Proteomics and Bioinformatics Investigations Link Overexpression of FGF8 and Associated Hub Genes to the Progression of Ovarian Cancer and Poor Prognosis. Biochem Res Int 2024; 2024:4288753. [PMID: 39309198 PMCID: PMC11415250 DOI: 10.1155/2024/4288753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/06/2024] [Accepted: 08/10/2024] [Indexed: 09/25/2024] Open
Abstract
Ovarian cancer's asymptomatic nature, high recurrence rate, and resistance to platinum-based chemotherapy highlight the need to find and characterize new diagnostic and therapeutic targets. While prior studies have linked aberrant expression of fibroblast growth factor 8 (FGF8) to various cancer types, its precise role has remained elusive. Recently, we observed that FGF8 silencing reduces the cancer-promoting properties of ovarian cancer cells, and thus, this study aimed to understand how FGF8 regulates the development of ovarian cancer. LC-MS/MS-based quantitative proteomics analysis identified 418 DEPs, and most of them were downregulated in FGF8-silenced ovarian cancer cells. Many of these DEPs are associated with cancer progression and unfavorable prognosis. To decipher the biological significance of DEPs, bioinformatics analyses encompassing gene ontology, pathway analysis, protein-protein interaction networks, and expression analysis of hub genes were carried out. Hub genes identified in the FGF8 protein network were upregulated in ovarian cancer compared to controls and were linked to poor prognosis. Subsequently, the expression of hub genes was correlated with patient survival and regulation of the tumor microenvironment. Conclusively, FGF8 and associated hub genes help in the progression of ovarian cancer, and their overexpression may lead to higher immune infiltration, poor prognosis, and poor survival.
Collapse
Affiliation(s)
- Vikrant Kumar
- Department of BiophysicsAll India Institute of Medical Sciences, New Delhi 11029, India
| | - Anil Kumar Tomar
- Department of BiophysicsAll India Institute of Medical Sciences, New Delhi 11029, India
| | - Ayushi Thapliyal
- Department of BiophysicsAll India Institute of Medical Sciences, New Delhi 11029, India
| | - Savita Yadav
- Department of BiophysicsAll India Institute of Medical Sciences, New Delhi 11029, India
| |
Collapse
|
2
|
Cooper EJ, Scholpp S. Transport and gradient formation of Wnt and Fgf in the early zebrafish gastrula. Curr Top Dev Biol 2023; 157:125-153. [PMID: 38556457 DOI: 10.1016/bs.ctdb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Within embryonic development, the occurrence of gastrulation is critical in the formation of multiple germ layers with many differentiative abilities. These cells are instructed through exposure to signalling molecules called morphogens. The secretion of morphogens from a source tissue creates a concentration gradient that allows distinct pattern formation in the receiving tissue. This review focuses on the morphogens Wnt and Fgf in zebrafish development. Wnt has been shown to have critical roles throughout gastrulation, including in anteroposterior patterning and neural posterisation. Fgf is also a vital signal, contributing to involution and mesodermal specification. Both morphogens have also been found to work in finely balanced synergy for processes such as neural induction. Thus, the signalling range of Wnts and Fgfs must be strictly controlled to target the correct target cells. Fgf and Wnts signal to local cells as well as to cells in the distance in a highly regulated way, requiring specific dissemination mechanisms that allow efficient and precise signalling over short and long distances. Multiple transportation mechanisms have been discovered to aid in producing a stable morphogen gradient, including short-range diffusion, filopodia-like extensions called cytonemes and extracellular vesicles, mainly exosomes. These mechanisms are specific to the morphogen that they transport and the intended signalling range. This review article discusses how spreading mechanisms in these two morphogenetic systems differ and the consequences on paracrine signalling, hence tissue patterning.
Collapse
Affiliation(s)
- Emma J Cooper
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Steffen Scholpp
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
3
|
Zhang W, Luo P, Liu X, Cheng R, Zhang S, Qian X, Liu F. Roles of Fibroblast Growth Factors in the Axon Guidance. Int J Mol Sci 2023; 24:10292. [PMID: 37373438 DOI: 10.3390/ijms241210292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Fibroblast growth factors (FGFs) have been widely studied by virtue of their ability to regulate many essential cellular activities, including proliferation, survival, migration, differentiation and metabolism. Recently, these molecules have emerged as the key components in forming the intricate connections within the nervous system. FGF and FGF receptor (FGFR) signaling pathways play important roles in axon guidance as axons navigate toward their synaptic targets. This review offers a current account of axonal navigation functions performed by FGFs, which operate as chemoattractants and/or chemorepellents in different circumstances. Meanwhile, detailed mechanisms behind the axon guidance process are elaborated, which are related to intracellular signaling integration and cytoskeleton dynamics.
Collapse
Affiliation(s)
- Weiyun Zhang
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
- Medical Experimental Teaching Center, School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Peiyi Luo
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Xiaohan Liu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ruoxi Cheng
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Shuxian Zhang
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Xiao Qian
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Fang Liu
- Department of Cell Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| |
Collapse
|
4
|
Poli E, Barbon V, Lucchetta S, Cattelan M, Santoro L, Zin A, Milano GM, Zanetti I, Bisogno G, Bonvini P. Immunoreactivity against fibroblast growth factor 8 in alveolar rhabdomyosarcoma patients and its involvement in tumor aggressiveness. Oncoimmunology 2022; 11:2096349. [PMID: 35813575 PMCID: PMC9262361 DOI: 10.1080/2162402x.2022.2096349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive pediatric soft tissue sarcoma characterized by a very poor prognosis when relapses occur after front-line therapy. Therefore, a major challenge for patients’ management remains the identification of markers associated with refractory and progressive disease. In this context, cancer autoantibodies are natural markers of disease onset and progression, useful to unveil novel therapeutic targets. Herein, we matched autoantibody profiling of alveolar RMS (ARMS) patients with genes under regulatory control of PAX3-FOXO1 transcription factor and revealed fibroblast growth factor 8 (FGF8) as a novel ARMS tumor antigen of diagnostic, prognostic, and therapeutic potential. We demonstrated that high levels of FGF8 autoantibodies distinguished ARMS patients from healthy subjects and represented an independent prognostic factor of better event-free survival. FGF8 was overexpressed in ARMS tumors compared to other types of pediatric soft tissue sarcomas, acting as a positive regulator of cell signaling. Indeed, FGF8 was capable of stimulating ARMS cells migration and expression of pro-angiogenic and metastasis-related factors, throughout MAPK signaling activation. Of note, FGF8 was found to increase in recurrent tumors, independently of PAX3-FOXO1 expression dynamics. Risk of recurrence correlated positively with FGF8 expression levels at diagnosis and reduced FGF8 autoantibodies titer, almost as if to suggest a failure of the immune response to control tumor growth in recurring patients. This study provides evidence about the crucial role of FGF8 in ARMS and the protective function of natural autoantibodies, giving new insights into ARMS biology and laying the foundations for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Elena Poli
- Department of Woman’s and Children’s Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Vanessa Barbon
- Department of Woman’s and Children’s Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Silvia Lucchetta
- Department of Woman’s and Children’s Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Manuela Cattelan
- Department of Statistical Sciences, University of Padua, Padua, Italy
| | - Luisa Santoro
- Department of Medicine, Surgical Pathology and Cytopathology Unit, University of Padua, Padua, Italy
| | - Angelica Zin
- Fondazione Città Della Speranza, Institute of Pediatric Research (IRP), Padua, Italy
| | - Giuseppe Maria Milano
- Department of Pediatric Hematology and Oncology and of Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens’ Hospital, Rome, Italy
| | - Ilaria Zanetti
- Department of Woman’s and Children’s Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Gianni Bisogno
- Department of Woman’s and Children’s Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Paolo Bonvini
- Fondazione Città Della Speranza, Institute of Pediatric Research (IRP), Padua, Italy
| |
Collapse
|
5
|
Purushothaman S, Lopez Aviña BB, Seifert AW. Sonic hedgehog is Essential for Proximal-Distal Outgrowth of the Limb Bud in Salamanders. Front Cell Dev Biol 2022; 10:797352. [PMID: 35433673 PMCID: PMC9010949 DOI: 10.3389/fcell.2022.797352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
The developing forelimb has been a foundational model to understand how specified progenitor cells integrate genetic information to produce the tetrapod limb bauplan. Although the reigning hypothesis is that all tetrapods develop limbs in a similar manner, recent work suggests that urodeles have evolved a derived mode of limb dvelopment. Here, we demonstrate through pharmacological and genetic inactivation of Sonic hedgehog (Shh) signaling in axolotls that Shh directs expansion and survival of limb progenitor cells in addition to patterning the limb across the proximodistal and antero-posterior axis. In contrast to inactivation of Shh in mouse or chick embryos where a humerus, radius, and single digit develop, Shh crispant axolotls completely lack forelimbs. In rescuing limb development by implanting SHH-N protein beads into the nascent limb field of Shh crispants, we show that the limb field is specified in the absence of Shh and that hedgehog pathway activation is required to initiate proximodistal outgrowth. When our results are examined alongside other derived aspects of salamander limb development and placed in a phylogenetic context, a new hypothesis emerges whereby the ability for cells at an amputation plane to activate morphogenesis and regenerate a limb may have evolved uniquely in urodeles.
Collapse
|
6
|
Hidalgo-Sánchez M, Andreu-Cervera A, Villa-Carballar S, Echevarria D. An Update on the Molecular Mechanism of the Vertebrate Isthmic Organizer Development in the Context of the Neuromeric Model. Front Neuroanat 2022; 16:826976. [PMID: 35401126 PMCID: PMC8987131 DOI: 10.3389/fnana.2022.826976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
A crucial event during the development of the central nervous system (CNS) is the early subdivision of the neural tube along its anterior-to-posterior axis to form neuromeres, morphogenetic units separated by transversal constrictions and programed for particular genetic cascades. The narrower portions observed in the developing neural tube are responsible for relevant cellular and molecular processes, such as clonal restrictions, expression of specific regulatory genes, and differential fate specification, as well as inductive activities. In this developmental context, the gradual formation of the midbrain-hindbrain (MH) constriction has been an excellent model to study the specification of two major subdivisions of the CNS containing the mesencephalic and isthmo-cerebellar primordia. This MH boundary is coincident with the common Otx2-(midbrain)/Gbx2-(hindbrain) expressing border. The early interactions between these two pre-specified areas confer positional identities and induce the generation of specific diffusible morphogenes at this interface, in particular FGF8 and WNT1. These signaling pathways are responsible for the gradual histogenetic specifications and cellular identity acquisitions with in the MH domain. This review is focused on the cellular and molecular mechanisms involved in the specification of the midbrain/hindbrain territory and the formation of the isthmic organizer. Emphasis will be placed on the chick/quail chimeric experiments leading to the acquisition of the first fate mapping and experimental data to, in this way, better understand pioneering morphological studies and innovative gain/loss-of-function analysis.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Matías Hidalgo-Sánchez Diego Echevarria
| | - Abraham Andreu-Cervera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Sergio Villa-Carballar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Diego Echevarria
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
- *Correspondence: Matías Hidalgo-Sánchez Diego Echevarria
| |
Collapse
|
7
|
Saruta J, To M, Sakaguchi W, Kondo Y, Tsukinoki K. Brain-derived neurotrophic factor is related to stress and chewing in saliva and salivary glands. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:43-49. [PMID: 31879531 PMCID: PMC6920199 DOI: 10.1016/j.jdsr.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/07/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Chewing is one of the most important orofacial functions. During this process, food is reduced in size, while saliva moistens the food and binds it into a bolus that can be easily swallowed. Characteristics of the oral system, including the number of teeth, bite force, and salivary flow, influence the masticatory process. In addition, salivary glands produce several cell growth factors and play an important role in human health. The nerve growth factor (NGF) family consists of NGF, brain-derived neurotrophic factor (BDNF), and neurotrophins-3 to 7. BDNF is a well-studied neurotrophin involved in the neurogenesis, differentiation, and maintenance of select peripheral and central neuronal cell populations during development and adulthood. However, there has been no detailed description of the expression of neurotrophins other than NGF in the salivary gland. We previously studied the effect of immobilization stress + chewing on BDNF secretion and its receptor, tyrosine receptor kinase B, in rat submandibular glands and found increased BDNF expression in duct cells under these conditions. In this review, we describe recent advances in understanding the role of stress and chewing-related BDNF in the saliva and salivary glands.
Collapse
Affiliation(s)
- Juri Saruta
- Department of Oral Science, Division of Salivary Gland and Health Medicine, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Masahiro To
- Department of Oral Science, Division of Salivary Gland and Health Medicine, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Wakako Sakaguchi
- Department of Oral Science, Division of Salivary Gland and Health Medicine, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Yusuke Kondo
- Department of Pathology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Keiichi Tsukinoki
- Department of Oral Science, Division of Salivary Gland and Health Medicine, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| |
Collapse
|
8
|
Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol 2020; 21:696-711. [PMID: 32901139 DOI: 10.1038/s41580-020-00279-w] [Citation(s) in RCA: 534] [Impact Index Per Article: 106.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/19/2022]
Abstract
Bone development occurs through a series of synchronous events that result in the formation of the body scaffold. The repair potential of bone and its surrounding microenvironment - including inflammatory, endothelial and Schwann cells - persists throughout adulthood, enabling restoration of tissue to its homeostatic functional state. The isolation of a single skeletal stem cell population through cell surface markers and the development of single-cell technologies are enabling precise elucidation of cellular activity and fate during bone repair by providing key insights into the mechanisms that maintain and regenerate bone during homeostasis and repair. Increased understanding of bone development, as well as normal and aberrant bone repair, has important therapeutic implications for the treatment of bone disease and ageing-related degeneration.
Collapse
Affiliation(s)
- Ankit Salhotra
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Harsh N Shah
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin Levi
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| | - Michael T Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA. .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Pieters T, Sanders E, Tian H, van Hengel J, van Roy F. Neural defects caused by total and Wnt1-Cre mediated ablation of p120ctn in mice. BMC DEVELOPMENTAL BIOLOGY 2020; 20:17. [PMID: 32741376 PMCID: PMC7398255 DOI: 10.1186/s12861-020-00222-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/20/2020] [Indexed: 03/11/2023]
Abstract
Background p120 catenin (p120ctn) is an important component in the cadherin-catenin cell adhesion complex because it stabilizes cadherin-mediated intercellular junctions. Outside these junctions, p120ctn is actively involved in the regulation of small GTPases of the Rho family, in actomyosin dynamics and in transcription regulation. We and others reported that loss of p120ctn in mouse embryos results in an embryonic lethal phenotype, but the exact developmental role of p120ctn during brain formation has not been reported. Results We combined floxed p120ctn mice with Del-Cre or Wnt1-Cre mice to deplete p120ctn from either all cells or specific brain and neural crest cells. Complete loss of p120ctn in mid-gestation embryos resulted in an aberrant morphology, including growth retardation, failure to switch from lordotic to fetal posture, and defective neural tube formation and neurogenesis. By expressing a wild-type p120ctn from the ROSA26 locus in p120ctn-null mouse embryonic stem cells, we could partially rescue neurogenesis. To further investigate the developmental role of p120ctn in neural tube formation, we generated conditional p120ctnfl/fl;Wnt1Cre knockout mice. p120ctn deletion in Wnt1-expressing cells resulted in neural tube closure defects (NTDs) and craniofacial abnormalities. These defects could not be correlated with misregulation of brain marker genes or cell proliferation. In contrast, we found that p120ctn is required for proper expression of the cell adhesion components N-cadherin, E-cadherin and β-catenin, and of actin-binding proteins cortactin and Shroom3 at the apical side of neural folds. This region is of critical importance for closure of neural folds. Surprisingly, the lateral side of mutant neural folds showed loss of p120ctn, but not of N-cadherin, β-catenin or cortactin. Conclusions These results indicate that p120ctn is required for neurogenesis and neurulation. Elimination of p120ctn in cells expressing Wnt1 affects neural tube closure by hampering correct formation of specific adhesion and actomyosin complexes at the apical side of neural folds. Collectively, our results demonstrate the crucial role of p120ctn during brain morphogenesis.
Collapse
Affiliation(s)
- Tim Pieters
- Molecular Cell Biology Unit, Center for Inflammation Research, VIB, Technologiepark 71, B-9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium.,Present address: Faculty of Medicine and Health Sciences, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Ellen Sanders
- Molecular Cell Biology Unit, Center for Inflammation Research, VIB, Technologiepark 71, B-9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium.,Present address: Faculty of Medicine and Health Sciences, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Huiyu Tian
- Molecular Cell Biology Unit, Center for Inflammation Research, VIB, Technologiepark 71, B-9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium.,Present address: Ministry of Education, College of Life Sciences, Shandong University, Jinan, People's Republic of China
| | - Jolanda van Hengel
- Molecular Cell Biology Unit, Center for Inflammation Research, VIB, Technologiepark 71, B-9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium.,Present address: Faculty of Medicine and Health Sciences, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Frans van Roy
- Molecular Cell Biology Unit, Center for Inflammation Research, VIB, Technologiepark 71, B-9052, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium.
| |
Collapse
|
10
|
Bosch PJ, Fuller LC, Weiner JA. An essential role for the nuclear protein Akirin2 in mouse limb interdigital tissue regression. Sci Rep 2018; 8:12240. [PMID: 30116001 PMCID: PMC6095873 DOI: 10.1038/s41598-018-30801-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023] Open
Abstract
The regulation of interdigital tissue regression requires the interplay of multiple spatiotemporally-controlled morphogen gradients to ensure proper limb formation and release of individual digits. Disruption to this process can lead to a number of limb abnormalities, including syndactyly. Akirins are highly conserved nuclear proteins that are known to interact with chromatin remodelling machinery at gene enhancers. In mammals, the analogue Akirin2 is essential for embryonic development and critical for a wide variety of roles in immune function, meiosis, myogenesis and brain development. Here we report a critical role for Akirin2 in the regulation of interdigital tissue regression in the mouse limb. Knockout of Akirin2 in limb epithelium leads to a loss of interdigital cell death and an increase in cell proliferation, resulting in retention of the interdigital web and soft-tissue syndactyly. This is associated with perdurance of Fgf8 expression in the ectoderm overlying the interdigital space. Our study supports a mechanism whereby Akirin2 is required for the downregulation of Fgf8 from the apical ectodermal ridge (AER) during limb development, and implies its requirement in signalling between interdigital mesenchymal cells and the AER.
Collapse
Affiliation(s)
- Peter J Bosch
- Department of Biology and Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Leah C Fuller
- Department of Biology and Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Joshua A Weiner
- Department of Biology and Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
11
|
Gao B, Ajima R, Yang W, Li C, Song H, Anderson MJ, Liu RR, Lewandoski MB, Yamaguchi TP, Yang Y. Coordinated directional outgrowth and pattern formation by integration of Wnt5a and Fgf signaling in planar cell polarity. Development 2018; 145:dev.163824. [PMID: 29615464 DOI: 10.1242/dev.163824] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/19/2018] [Indexed: 12/28/2022]
Abstract
Embryonic morphogenesis of a complex organism requires proper regulation of patterning and directional growth. Planar cell polarity (PCP) signaling is emerging as a crucial evolutionarily conserved mechanism whereby directional information is conveyed. PCP is thought to be established by global cues, and recent studies have revealed an instructive role of a Wnt signaling gradient in epithelial tissues of both invertebrates and vertebrates. However, it remains unclear whether Wnt/PCP signaling is regulated in a coordinated manner with embryonic patterning during morphogenesis. Here, in mouse developing limbs, we find that apical ectoderm ridge-derived Fgfs required for limb patterning regulate PCP along the proximal-distal axis in a Wnt5a-dependent manner. We demonstrate with genetic evidence that the Wnt5a gradient acts as a global cue that is instructive in establishing PCP in the limb mesenchyme, and that Wnt5a also plays a permissive role to allow Fgf signaling to orient PCP. Our results indicate that limb morphogenesis is regulated by coordination of directional growth and patterning through integration of Wnt5a and Fgf signaling.
Collapse
Affiliation(s)
- Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China .,Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Rieko Ajima
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Wei Yang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chunyu Li
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA.,Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Hai Song
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Matthew J Anderson
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Robert R Liu
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Mark B Lewandoski
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Terry P Yamaguchi
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Yingzi Yang
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA .,Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
12
|
Matsubara H, Saito D, Abe G, Yokoyama H, Suzuki T, Tamura K. Upstream regulation for initiation of restricted Shh expression in the chick limb bud. Dev Dyn 2017; 246:417-430. [PMID: 28205287 DOI: 10.1002/dvdy.24493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The organizing center, which serves as a morphogen source, has crucial functions in morphogenesis in animal development. The center is necessarily located in a certain restricted area in the morphogenetic field, and there are several ways in which an organizing center can be restricted. The organizing center for limb morphogenesis, the ZPA (zone of polarizing activity), specifically expresses the Shh gene and is restricted to the posterior region of the developing limb bud. RESULTS The pre-pattern along the limb anteroposterior axis, provided by anterior Gli3 expression and posterior Hand2 expression, seems insufficient for the initiation of Shh expression restricted to a narrow, small spot in the posterior limb field. Comparison of the spatiotemporal patterns of gene expression between Shh and some candidate genes (Fgf8, Hoxd10, Hoxd11, Tbx2, and Alx4) upstream of Shh expression suggested that a combination of these genes' expression provides the restricted initiation of Shh expression. CONCLUSIONS Taken together with results of functional assays, we propose a model in which positive and negative transcriptional regulatory networks accumulate their functions in the intersection area of their expression regions to provide a restricted spot for the ZPA, the source of morphogen, Shh. Developmental Dynamics 246:417-430, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Haruka Matsubara
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| | - Daisuke Saito
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| | - Gembu Abe
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| | - Hitoshi Yokoyama
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Takayuki Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Koji Tamura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
13
|
Harada H, Sato T, Nakamura H. Fgf8 signaling for development of the midbrain and hindbrain. Dev Growth Differ 2016; 58:437-45. [PMID: 27273073 DOI: 10.1111/dgd.12293] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 01/31/2023]
Abstract
In this paper, we review how midbrain and hindbrain are specified. Otx2 and Gbx2 are expressed from the early phase of development, and their expression abuts at the midbrain hindbrain boundary (MHB), where Fgf8 expression is induced, and functions as an organizing molecule for the midbrain and hindbrain. Fgf8 induces En1 and Pax2 expression at the region where Otx2 is expressed to specify midbrain. Fgf8 activates Ras-ERK pathway to specify hindbrain. Downstream of ERK, Pea3 specifies isthmus (rhombomere 0, r0), and Irx2 may specify r1, where the cerebellum is formed.
Collapse
Affiliation(s)
- Hidekiyo Harada
- Genetics and Development Division, Toronto Krembil Research Institute, Toronto, Ontario, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tatsuya Sato
- Department of Developmental Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Japan.,Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, 980-8578, Japan
| | - Harukazu Nakamura
- Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
14
|
Dowling A, Doroba C, Maier JA, Cohen L, VandeBerg J, Sears KE. Cellular and molecular drivers of differential organ growth: insights from the limbs of Monodelphis domestica. Dev Genes Evol 2016; 226:235-43. [PMID: 27194412 DOI: 10.1007/s00427-016-0549-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
Abstract
A fundamental question in biology is "how is growth differentially regulated during development to produce organs of particular sizes?" We used a new model system for the study of differential organ growth, the limbs of the opossum (Monodelphis domestica), to investigate the cellular and molecular basis of differential organ growth in mammals. Opossum forelimbs grow much faster than hindlimbs, making opossum limbs an exceptional system with which to study differential growth. We first used the great differences in opossum forelimb and hindlimb growth to identify cellular processes and molecular signals that underlie differential limb growth. We then used organ culture and pharmacological addition of FGF ligands and inhibitors to test the role of the Fgf/Mitogen-activated protein kinases (MAPK) signaling pathway in driving these cellular processes. We found that molecular signals from within the limb drive differences in cell proliferation that contribute to the differential growth of the forelimb and hindlimbs of opossums. We also found that alterations in the Fgf/MAPK pathway can generate differences in cell proliferation that mirror those observed between wild-type forelimb and hindlimbs of opossums and that manipulation of Fgf/MAPK signaling affects downstream focal adhesion-extracellular matrix (FA-ECM) and Wnt signaling in opossum limbs. Taken together, these findings suggest that evolutionary changes in the Fgf/MAPK pathway could help drive the observed differences in cell behaviors and growth in opossum forelimb and hindlimbs.
Collapse
Affiliation(s)
- Anna Dowling
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA
| | - Carolyn Doroba
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA
| | - Jennifer A Maier
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA
| | - Lorna Cohen
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA
| | - John VandeBerg
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Karen E Sears
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA.
- Institute for Genomic Biology, University of Illinois, 1206 W Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
15
|
Evolution of mammalian sound localization circuits: A developmental perspective. Prog Neurobiol 2016; 141:1-24. [PMID: 27032475 DOI: 10.1016/j.pneurobio.2016.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/27/2016] [Accepted: 02/27/2016] [Indexed: 01/06/2023]
Abstract
Localization of sound sources is a central aspect of auditory processing. A unique feature of mammals is the smooth, tonotopically organized extension of the hearing range to high frequencies (HF) above 10kHz, which likely induced positive selection for novel mechanisms of sound localization. How this change in the auditory periphery is accompanied by changes in the central auditory system is unresolved. I will argue that the major VGlut2(+) excitatory projection neurons of sound localization circuits (dorsal cochlear nucleus (DCN), lateral and medial superior olive (LSO and MSO)) represent serial homologs with modifications, thus being paramorphs. This assumption is based on common embryonic origin from an Atoh1(+)/Wnt1(+) cell lineage in the rhombic lip of r5, same cell birth, a fusiform cell morphology, shared genetic components such as Lhx2 and Lhx9 transcription factors, and similar projection patterns. Such a parsimonious evolutionary mechanism likely accelerated the emergence of neurons for sound localization in all three dimensions. Genetic analyses indicate that auditory nuclei in fish, birds, and mammals receive contributions from the same progenitor lineages. Anatomical and physiological differences and the independent evolution of tympanic ears in vertebrate groups, however, argue for convergent evolution of sound localization circuits in tetrapods (amphibians, reptiles, birds, and mammals). These disparate findings are discussed in the context of the genetic architecture of the developing hindbrain, which facilitates convergent evolution. Yet, it will be critical to decipher the gene regulatory networks underlying development of auditory neurons across vertebrates to explore the possibility of homologous neuronal populations.
Collapse
|
16
|
Liu R, Huang S, Lei Y, Zhang T, Wang K, Liu B, Nice EC, Xiang R, Xie K, Li J, Huang C. FGF8 promotes colorectal cancer growth and metastasis by activating YAP1. Oncotarget 2015; 6:935-52. [PMID: 25473897 PMCID: PMC4359266 DOI: 10.18632/oncotarget.2822] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/25/2014] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related death worldwide. The poor prognosis of CRC is mainly due to uncontrolled tumor growth and distant metastases. In this study, we found that the level of FGF8 was elevated in the great majority of CRC cases and high FGF8 expression was significantly correlated with lymph nodes metastasis and worse overall survival. Functional studies showed that FGF8 can induce a more aggressive phenotype displaying epithelial-to-mesenchymal transition (EMT) and enhanced invasion and growth in CRC cells. Consistent with this, FGF8 can also promote tumor growth and metastasis in mouse models. Bioinformatics and pathological analysis suggested that YAP1 is a potential downstream target of FGF8 in CRC cells. Molecular validation demonstrated that FGF8 fully induced nuclear localization of YAP1 and enhanced transcriptional outcomes such as the expression of CTGF and CYR61, while decreasing YAP1 expression impeded FGF-8–induced cell growth, EMT, migration and invasion, revealing that YAP1 is required for FGF8-mediated CRC growth and metastasis. Taken together, these results demonstrate that FGF8 contributes to the proliferative and metastatic capacity of CRC cells and may represent a novel candidate for intervention in tumor growth and metastasis formation.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Shan Huang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, P. R. China
| | - Tao Zhang
- The School of Biomedical Sciences, Chengdu Medical College, Chengdu, P. R. China
| | - Kui Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Bo Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin, P.R. China
| | - Ke Xie
- Department of Oncology, Sichuan Provincial People's Hospital, Chengdu, P. R. China
| | - Jingyi Li
- The School of Biomedical Sciences, Chengdu Medical College, Chengdu, P. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
17
|
Chen N, Ma J, Zhao Y, Wu M, Yang H, Gong W, Chao J, Li X. Expression of functional recombinant human fibroblast growth factor 8b and its protective effects on MPP⁺-lesioned PC12 cells. Appl Microbiol Biotechnol 2015; 100:625-35. [PMID: 26411459 DOI: 10.1007/s00253-015-7004-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/01/2015] [Accepted: 09/10/2015] [Indexed: 12/29/2022]
Abstract
Human fibroblast growth factor 8b (FGF8b) was expressed based on a baculovirus expression vector system (BEVS) and identified as having a protective effect on Parkinson's disease. Immunoblotting demonstrated that rhFGF8b proteins were recognized by a human anti-FGF8b antibody. The multiplicity of infection and timing of harvest had a significant effect on protein yield and protein quality. Our results indicated that the rhFGF8b was first detectable at 36 h postinfection and reached a maximum at 60 h. A multiplicity of infection (MOI) of 8 pfu/mL was suitable for harvest. The target protein was purified by heparin-affinity chromatography. In vitro methylthiazol tetrazolium (MTT) assays demonstrated that the purified rhFGF8b could significantly stimulate proliferation of NIH3T3 cells. Furthermore, to elucidate the effect of rhFGF8b on Parkinson's disease, we used FGF8b pretreatment on a cell model of Parkinson's disease. The results indicated that rhFGF8b prevented necrosis and apoptosis of 1-METHYL-4-phenyl pyridine (MPP(+)) treated PC12 cells. Moreover, the effect of FGF8b on messenger RNA (mRNA) levels of apoptosis and ERS genes was investigated to clarify the molecular mechanisms of FGF8b. The results suggest that FGF8b exerts neuroprotective effects by alleviating endoplasmic reticulum (ER) stress during PD. These results suggest that FGF8b may be a promising candidate therapeutic drug for neurodegenerative diseases related to ER stress.
Collapse
Affiliation(s)
- Nazi Chen
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jishen Ma
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yang Zhao
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Meiyu Wu
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huanhuan Yang
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weiyue Gong
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiang Chao
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
18
|
Lainoff AJ, Moustakas-Verho JE, Hu D, Kallonen A, Marcucio RS, Hlusko LJ. A comparative examination of odontogenic gene expression in both toothed and toothless amniotes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:255-69. [PMID: 25678399 DOI: 10.1002/jez.b.22594] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 08/20/2014] [Indexed: 11/11/2022]
Abstract
A well-known tenet of murine tooth development is that BMP4 and FGF8 antagonistically initiate odontogenesis, but whether this tenet is conserved across amniotes is largely unexplored. Moreover, changes in BMP4-signaling have previously been implicated in evolutionary tooth loss in Aves. Here we demonstrate that Bmp4, Msx1, and Msx2 expression is limited proximally in the red-eared slider turtle (Trachemys scripta) mandible at stages equivalent to those at which odontogenesis is initiated in mice, a similar finding to previously reported results in chicks. To address whether the limited domains in the turtle and the chicken indicate an evolutionary molecular parallelism, or whether the domains simply constitute an ancestral phenotype, we assessed gene expression in a toothed reptile (the American alligator, Alligator mississippiensis) and a toothed non-placental mammal (the gray short-tailed opossum, Monodelphis domestica). We demonstrate that the Bmp4 domain is limited proximally in M. domestica and that the Fgf8 domain is limited distally in A. mississippiensis just preceding odontogenesis. Additionally, we show that Msx1 and Msx2 expression patterns in these species differ from those found in mice. Our data suggest that a limited Bmp4 domain does not necessarily correlate with edentulism, and reveal that the initiation of odontogenesis in non-murine amniotes is more complex than previously imagined. Our data also suggest a partially conserved odontogenic program in T. scripta, as indicated by conserved Pitx2, Pax9, and Barx1 expression patterns and by the presence of a Shh-expressing palatal epithelium, which we hypothesize may represent potential dental rudiments based on the Testudinata fossil record.
Collapse
Affiliation(s)
- Alexis J Lainoff
- Department of Orthopaedic Surgery, University of California, San Francisco, California
| | | | | | | | | | | |
Collapse
|
19
|
Marzban H, Del Bigio MR, Alizadeh J, Ghavami S, Zachariah RM, Rastegar M. Cellular commitment in the developing cerebellum. Front Cell Neurosci 2015; 8:450. [PMID: 25628535 PMCID: PMC4290586 DOI: 10.3389/fncel.2014.00450] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/12/2014] [Indexed: 12/11/2022] Open
Abstract
The mammalian cerebellum is located in the posterior cranial fossa and is critical for motor coordination and non-motor functions including cognitive and emotional processes. The anatomical structure of cerebellum is distinct with a three-layered cortex. During development, neurogenesis and fate decisions of cerebellar primordium cells are orchestrated through tightly controlled molecular events involving multiple genetic pathways. In this review, we will highlight the anatomical structure of human and mouse cerebellum, the cellular composition of developing cerebellum, and the underlying gene expression programs involved in cell fate commitments in the cerebellum. A critical evaluation of the cell death literature suggests that apoptosis occurs in ~5% of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely play significant roles in cerebellar development, we provide a comprehensive discussion of their role in cerebellar development and organization. We also address the possible function of unfolded protein response in regulation of cerebellar neurogenesis. We discuss recent advancements in understanding the epigenetic signature of cerebellar compartments and possible connections between DNA methylation, microRNAs and cerebellar neurodegeneration. Finally, we discuss genetic diseases associated with cerebellar dysfunction and their role in the aging cerebellum.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| | - Marc R Del Bigio
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada ; Department of Pathology, University of Manitoba Winnipeg, MB, Canada
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| | - Robby M Zachariah
- Department of Biochemistry and Medical Genetics, University of Manitoba Winnipeg, MB, Canada ; Regenerative Medicine Program, University of Manitoba Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, University of Manitoba Winnipeg, MB, Canada ; Regenerative Medicine Program, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
20
|
Allodi I, Hedlund E. Directed midbrain and spinal cord neurogenesis from pluripotent stem cells to model development and disease in a dish. Front Neurosci 2014; 8:109. [PMID: 24904255 PMCID: PMC4033221 DOI: 10.3389/fnins.2014.00109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/28/2014] [Indexed: 12/29/2022] Open
Abstract
Induction of specific neuronal fates is restricted in time and space in the developing CNS through integration of extrinsic morphogen signals and intrinsic determinants. Morphogens impose regional characteristics on neural progenitors and establish distinct progenitor domains. Such domains are defined by unique expression patterns of fate determining transcription factors. These processes of neuronal fate specification can be recapitulated in vitro using pluripotent stem cells. In this review, we focus on the generation of dopamine neurons and motor neurons, which are induced at ventral positions of the neural tube through Sonic hedgehog (Shh) signaling, and defined at anteroposterior positions by fibroblast growth factor (Fgf) 8, Wnt1, and retinoic acid (RA). In vitro utilization of these morphogenic signals typically results in the generation of multiple neuronal cell types, which are defined at the intersection of these signals. If the purpose of in vitro neurogenesis is to generate one cell type only, further lineage restriction can be accomplished by forced expression of specific transcription factors in a permissive environment. Alternatively, cell-sorting strategies allow for selection of neuronal progenitors or mature neurons. However, modeling development, disease and prospective therapies in a dish could benefit from structured heterogeneity, where desired neurons are appropriately synaptically connected and thus better reflect the three-dimensional structure of that region. By modulating the extrinsic environment to direct sequential generation of neural progenitors within a domain, followed by self-organization and synaptic establishment, a reductionist model of that brain region could be created. Here we review recent advances in neuronal fate induction in vitro, with a focus on the interplay between cell intrinsic and extrinsic factors, and discuss the implications for studying development and disease in a dish.
Collapse
Affiliation(s)
- Ilary Allodi
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
21
|
Su N, Jin M, Chen L. Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models. Bone Res 2014; 2:14003. [PMID: 26273516 PMCID: PMC4472122 DOI: 10.1038/boneres.2014.3] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 01/06/2023] Open
Abstract
Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling plays essential roles in bone development and diseases. Missense mutations in FGFs and FGFRs in humans can cause various congenital bone diseases, including chondrodysplasia syndromes, craniosynostosis syndromes and syndromes with dysregulated phosphate metabolism. FGF/FGFR signaling is also an important pathway involved in the maintenance of adult bone homeostasis. Multiple kinds of mouse models, mimicking human skeleton diseases caused by missense mutations in FGFs and FGFRs, have been established by knock-in/out and transgenic technologies. These genetically modified mice provide good models for studying the role of FGF/FGFR signaling in skeleton development and homeostasis. In this review, we summarize the mouse models of FGF signaling-related skeleton diseases and recent progresses regarding the molecular mechanisms, underlying the role of FGFs/FGFRs in the regulation of bone development and homeostasis. This review also provides a perspective view on future works to explore the roles of FGF signaling in skeletal development and homeostasis.
Collapse
Affiliation(s)
- Nan Su
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing, 400042, China
| | - Min Jin
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing, 400042, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing, 400042, China
| |
Collapse
|
22
|
The indirect role of fibroblast growth factor-8 in defining neurogenic niches of the olfactory/GnRH systems. J Neurosci 2014; 33:19620-34. [PMID: 24336726 DOI: 10.1523/jneurosci.3238-13.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bone morphogenic protein-4 (BMP4) and fibroblast growth factor-8 (FGF8) are thought to have opposite roles in defining epithelial versus neurogenic fate in the developing olfactory/vomeronasal system. In particular, FGF8 has been implicated in specification of olfactory and gonadotropin releasing hormone-1 (GnRH) neurons, as well as in controlling olfactory stem cell survival. Using different knock-in mouse lines and Cre-lox-mediated lineage tracing, Fgf8 expression and cell lineage was analyzed in the developing nose in relation to the expression of Bmp4 and its antagonist Noggin (Nog). FGF8 is expressed by cells that acquire an epidermal, respiratory cell fate and not by stem cells that acquire neuronal olfactory or vomeronasal cell fate. Ectodermal and mesenchymal sources of BMP4 control the expression of BMP/TGFβ antagonist Nog, whereas mesenchymal sources of Nog define the neurogenic borders of the olfactory pit. Fgf8 hypomorph mouse models, Fgf8(neo/neo) and Fgf8(neo/null), displayed severe craniofacial defects together with overlapping defects in the olfactory pit including (1) lack of neuronal formation ventrally, where GnRH neurons normally form, and (2) altered expression of Bmp4 and Nog, with Nog ectopically expressed in the nasal mesenchyme and no longer defining the GnRH and vomeronasal neurogenic border. Together our data show that (1) FGF8 is not sufficient to induce ectodermal progenitors of the olfactory pit to acquire neural fate and (2) altered neurogenesis and lack of GnRH neuron specification after chronically reduced Fgf8 expression reflected dysgenesis of the nasal region and loss of a specific neurogenic permissive milieu that was defined by mesenchymal signals.
Collapse
|
23
|
Fongang B, Kudlicki A. The precise timeline of transcriptional regulation reveals causation in mouse somitogenesis network. BMC DEVELOPMENTAL BIOLOGY 2013; 13:42. [PMID: 24304493 PMCID: PMC4235037 DOI: 10.1186/1471-213x-13-42] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/15/2013] [Indexed: 11/23/2022]
Abstract
Background In vertebrate development, the segmental pattern of the body axis is established as somites, masses of mesoderm distributed along the two sides of the neural tube, are formed sequentially in the anterior-posterior axis. This mechanism depends on waves of gene expression associated with the Notch, Fgf and Wnt pathways. The underlying transcriptional regulation has been studied by whole-transcriptome mRNA profiling; however, interpretation of the results is limited by poor resolution, noisy data, small sample size and by the absence of a wall clock to assign exact time for recorded points. Results We present a method of Maximum Entropy deconvolution in both space and time and apply it to extract, from microarray timecourse data, the full spatiotemporal expression profiles of genes involved in mouse somitogenesis. For regulated genes, we have reconstructed the temporal profiles and determined the timing of expression peaks along the somite cycle to a single-minute resolution. Our results also indicate the presence of a new class of genes (including Raf1 and Hes7) with two peaks of activity in two distinct phases of the somite cycle. We demonstrate that the timeline of gene expression precisely reflects their functions in the biochemical pathways and the direction of causation in the regulatory networks. Conclusions By applying a novel framework for data analysis, we have shown a striking correspondence between gene expression times and their interactions and regulations during somitogenesis. These results prove the key role of finely tuned transcriptional regulation in the process. The presented method can be readily applied to studying somite formation in other datasets and species, and to other spatiotemporal processes.
Collapse
Affiliation(s)
| | - Andrzej Kudlicki
- Department of Biochemistry and Molecular Biology, Sealy Center for Molecular Medicine, Institute for Translational Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
24
|
Yang T, Bassuk AG, Fritzsch B. Prickle1 stunts limb growth through alteration of cell polarity and gene expression. Dev Dyn 2013; 242:1293-306. [PMID: 23913870 DOI: 10.1002/dvdy.24025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/25/2013] [Accepted: 07/21/2013] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Wnt/PCP signaling plays a critical role in multiple developmental processes, including limb development. Wnt5a, a ligand of the PCP pathway, signals through the Ror2/Vangl2 or the Vangl2/Ryk complex to regulate limb development along the proximal-distal axis in mice. Based on the interaction between Van Gogh and Prickle in Drosophila, we hypothesized the vertebrate Prickle1 has a similar function as Vangl2 in limb development. RESULTS We show Prickle1 is expressed in the skeletal condensates that will differentiate into chondrocytes and later form bones. Disrupted Prickle1 function in Prickle1(C251X/C251X) mouse mutants alters expression of genes such as Bmp4, Fgf8, Vangl2, and Wnt5a. These expression changes correlate with shorter and wider bones in the limbs and loss of one phalangeal segment in digits 2-5 of Prickle1C251X mutants. These growth defects along the proximal-distal axis are also associated with increased cell death in the growing digit tip, reduced cell death in the interdigital membrane, and disrupted chondrocyte polarity. CONCLUSIONS We suggest Prickle1 is part of the Wnt5a/PCP signaling, regulating cell polarity and affecting expression of multiple factors to stunt limb growth through altered patterns of gene expression, including the PCP genes Wnt5a and Vangl2.
Collapse
Affiliation(s)
- Tian Yang
- Department of Biology, University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
25
|
Martinez S, Andreu A, Mecklenburg N, Echevarria D. Cellular and molecular basis of cerebellar development. Front Neuroanat 2013; 7:18. [PMID: 23805080 PMCID: PMC3693072 DOI: 10.3389/fnana.2013.00018] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/03/2013] [Indexed: 01/14/2023] Open
Abstract
Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering, and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification, and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.
Collapse
Affiliation(s)
- Salvador Martinez
- Experimental Embryology Lab, Consejo Superior de Investigaciones Científicas, Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez Alicante, Spain
| | | | | | | |
Collapse
|
26
|
Cellular programming and reprogramming: sculpting cell fate for the production of dopamine neurons for cell therapy. Stem Cells Int 2012; 2012:412040. [PMID: 22988464 PMCID: PMC3441013 DOI: 10.1155/2012/412040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 07/05/2012] [Indexed: 12/14/2022] Open
Abstract
Pluripotent stem cells are regarded as a promising cell source to obtain human dopamine neurons in sufficient amounts and purity for cell replacement therapy. Importantly, the success of clinical applications depends on our ability to steer pluripotent stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate.
Collapse
|
27
|
Masuda H, Otsuka F, Matsumoto Y, Takano M, Miyoshi T, Inagaki K, Shien T, Taira N, Makino H, Doihara H. Functional interaction of fibroblast growth factor-8, bone morphogenetic protein and estrogen receptor in breast cancer cell proliferation. Mol Cell Endocrinol 2011; 343:7-17. [PMID: 21664418 DOI: 10.1016/j.mce.2011.05.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 05/27/2011] [Accepted: 05/27/2011] [Indexed: 01/24/2023]
Abstract
Estrogen is involved in the development and progression of breast cancer. Here we investigated the effect of fibroblast growth factor (FGF)-8 on breast cancer cell proliferation caused by estrogen using human breast cancer MCF-7 cells. MCF-7 cells express estrogen receptor (ER)α, ERβ, FGF receptors, and Smad signaling molecules. Estradiol stimulated MCF-7 cell proliferation in a concentration-responsive manner, whereas BSA-bound estradiol had a weak effect on MCF-7 cell mitosis compared with the effect of free estradiol. It is notable that estrogen-induced cell proliferation was enhanced in the presence of FGF-8 and that the combined effects were reversed in the presence of an FGF-receptor kinase inhibitor or an ER antagonist. It was also revealed that FGF-8 increased the expression levels of ERα, ERβ and aromatase mRNAs, while estradiol reduced the expression levels of ERs, aromatase and steroid sulfatase in MCF-7 cells. FGF-8-induced phosphorylation of FGF receptors was augmented by estradiol, which was reversed by an ER antagonist. FGF-8-induced activation of MAPKs and AKT signaling was also upregulated in the presence of estrogen. On the other hand, FGF-8 suppressed BMP-7 actions that are linked to mitotic inhibition by activating the cell cycle regulator cdc2. FGF-8 was revealed to inhibit BMP receptor actions including Id-1 promoter activity and Smad1/5/8 phosphorylation by suppressing expression of BMP type-II receptors and by increasing expression of inhibitory Smads. Collectively, the results indicate that FGF-8 acts to facilitate cell proliferation by upregulating endogenous estrogenic actions as well as by suppressing BMP receptor signaling in ER-expressing breast cancer cells.
Collapse
Affiliation(s)
- Hiroko Masuda
- Department of Cancer and Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Suda N, Hattori M, Kosaki K, Banshodani A, Kozai K, Tanimoto K, Moriyama K. Correlation between genotype and supernumerary tooth formation in cleidocranial dysplasia. Orthod Craniofac Res 2011; 13:197-202. [PMID: 21040462 DOI: 10.1111/j.1601-6343.2010.01495.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Cleidocranial dysplasia (CCD, MIM#119600), for which the responsible gene is RUNX2, is a genetic disorder characterized by hypoplasia or aplasia of the clavicles, patent fontanelles, and a short stature. Supernumerary teeth and delayed eruption and impaction of permanent teeth are frequently associated with CCD. Our previous study reported wide intrafamilial variation in supernumerary tooth formation associated with a mutation in the RUNT-domain of RUNX2, suggesting a low correlation between the genotype and supernumerary tooth formation. To further clarify this point, a more precise evaluation was performed. DESIGN Gene mutational analysis of nine Japanese individuals with CCD was performed. Dental and skeletal characteristics were examined based on patient examinations and radiographs. RESULTS Four different gene mutations, including one novel mutation in RUNX2 gene (NM_001024630), were identified. Among them, four individuals had the R225Q mutation, three siblings had the P224S mutation, and the other two individuals had different frame-shift mutations. Wide variations in supernumerary tooth formation were observed in individuals with identical gene mutations, and discordance was seen between monozygotic twins. Asymmetric supernumerary tooth formation was noted in five out of the nine individuals. CONCLUSION Individuals with identical gene mutations showed a wide variation in the supernumerary tooth formation. Not only the genotype but also environmental factors and a complex system including epigenetics and copy number variation might regulate supernumerary tooth formation in CCD.
Collapse
Affiliation(s)
- N Suda
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Fu J, Ivy Yu HM, Maruyama T, Mirando AJ, Hsu W. Gpr177/mouse Wntless is essential for Wnt-mediated craniofacial and brain development. Dev Dyn 2011; 240:365-71. [PMID: 21246653 DOI: 10.1002/dvdy.22541] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2010] [Indexed: 12/16/2022] Open
Abstract
We have previously demonstrated that Gpr177, the mouse orthologue of Drosophila Wls/Evi/Srt, is required for establishment of the anterior-posterior axis. The Gpr177 null phenotype is highly reminiscent to the loss of Wnt3, the earliest abnormality among all Wnt knockouts in mice. The expression of Gpr177 in various cell types and tissues lead us to hypothesize that reciprocal regulation of Wnt and Gpr177 is essential for the Wnt-dependent developmental and pathogenic processes. Here, we create a new mouse strain permitting conditional inactivation of Gpr177. The loss of Gpr177 in the Wnt1-expressing cells causes mid/hindbrain and craniofacial defects which are far more severe than the Wnt1 knockout, but resemble the double knockout of Wnt1 and Wnt3a as well as β-catenin deletion in the Wnt1-expressing cells. Our findings demonstrate the importance of Gpr177 in Wnt1-mediated development of the mouse embryo, suggesting an overlapping function of Wnt family members in the Wnt1-expressing cells.
Collapse
Affiliation(s)
- Jiang Fu
- Department of Biomedical Genetics, Center for Oral Biology, James Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | | | |
Collapse
|
30
|
Lui VWY, Yau DMS, Cheung CSF, Wong SCC, Chan AKC, Zhou Q, Wong EYL, Lau CPY, Lam EKY, Hui EP, Hong B, Hui CWC, Chan ASK, Ng PKS, Ng YK, Lo KW, Tsang CM, Tsui SKW, Tsao SW, Chan ATC. FGF8b oncogene mediates proliferation and invasion of Epstein–Barr virus-associated nasopharyngeal carcinoma cells: implication for viral-mediated FGF8b upregulation. Oncogene 2010; 30:1518-30. [DOI: 10.1038/onc.2010.529] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Miyoshi T, Otsuka F, Yamashita M, Inagaki K, Nakamura E, Tsukamoto N, Takeda M, Suzuki J, Makino H. Functional relationship between fibroblast growth factor-8 and bone morphogenetic proteins in regulating steroidogenesis by rat granulosa cells. Mol Cell Endocrinol 2010; 325:84-92. [PMID: 20434519 DOI: 10.1016/j.mce.2010.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/08/2010] [Accepted: 04/13/2010] [Indexed: 12/17/2022]
Abstract
Bone morphogenetic proteins (BMPs) have been recognized as crucial molecules in regulating ovarian physiology, with different BMPs having differential actions in FSH-induced estradiol production. To identify the roles of oocyte factors that modulate steroidogenesis controlled by BMPs, we here investigated the effects of FGF-8 in rat granulosa/oocyte co-cultures. FGF-8 potently suppressed FSH-induced estradiol production, but did not affect cAMP-induced estradiol produced by rat granulosa cells. FGF-8 had no effects on progesterone and cAMP production induced by FSH and forskolin. The inhibitory effects of FGF-8 on FSH-induced estradiol production were not altered by BMP-2, -4, -6 or -7. In the presence of FGF-8, BMPs suppressed FSH-induced progesterone by reducing cAMP, suggesting that FGF-8 and BMP independently regulate FSH receptor signaling. Notably, FGF-8-induced ERK and SAPK/JNK phosphorylation in granulosa cells, in which ERK activation was further enhanced by FSH and oocytes. Inhibition of ERK and SAPK/JNK reduced FSH-induced progesterone and cAMP levels, suggesting that the activation of these pathways enhances FSH-induced cAMP signaling. In addition, ERK inhibition upregulated FSH-induced estradiol synthesis, indicating that ERK pathway is also involved in suppressing aromatase activity in granulosa cells. Interestingly, FGF-8 enhanced BMP-induced Smad1/5/8 and Id-1-promoter activities with decreased expression of Smad6/7. Since the SAPK/JNK inhibitor inhibited FGF-8 effects in upregulating Id-1 transcription, SAPK/JNK appears to be involved in the mechanism by which FGF-8 enhances BMP-Smad signaling. Furthermore, in the presence of oocytes, the inhibition of endogenous FGF receptor signaling suppressed FSH- and forskolin-induced progesterone and cAMP, showing that endogenous FGF system is involved in activation of FSH-induced cAMP-PKA signaling via ERK and SAPK/JNK. Thus, the oocyte factor, FGF-8, not only suppresses FSH-induced estradiol production by activating ERK, but also enhances BMP-Smad signaling in granulosa cells. This interaction between FGF-8 and BMPs may play a key role in regulating steroidogenesis through oocyte-granulosa cell communication.
Collapse
Affiliation(s)
- Tomoko Miyoshi
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mitsiadis TA, Graf D, Luder H, Gridley T, Bluteau G. BMPs and FGFs target Notch signalling via jagged 2 to regulate tooth morphogenesis and cytodifferentiation. Development 2010; 137:3025-35. [PMID: 20685737 DOI: 10.1242/dev.049528] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Notch signalling pathway is an evolutionarily conserved intercellular signalling mechanism that is essential for cell fate specification and proper embryonic development. We have analysed the expression, regulation and function of the jagged 2 (Jag2) gene, which encodes a ligand for the Notch family of receptors, in developing mouse teeth. Jag2 is expressed in epithelial cells that give rise to the enamel-producing ameloblasts from the earliest stages of tooth development. Tissue recombination experiments showed that its expression in epithelium is regulated by mesenchyme-derived signals. In dental explants cultured in vitro, the local application of fibroblast growth factors upregulated Jag2 expression, whereas bone morphogenetic proteins provoked the opposite effect. Mice homozygous for a deletion in the Notch-interaction domain of Jag2 presented a variety of severe dental abnormalities. In molars, the crown morphology was misshapen, with additional cusps being formed. This was due to alterations in the enamel knot, an epithelial signalling structure involved in molar crown morphogenesis, in which Bmp4 expression and apoptosis were altered. In incisors, cytodifferentiation and enamel matrix deposition were inhibited. The expression of Tbx1 in ameloblast progenitors, which is a hallmark for ameloblast differentiation and enamel formation, was dramatically reduced in Jag2(-/-) teeth. Together, these results demonstrate that Notch signalling mediated by Jag2 is indispensable for normal tooth development.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Institute of Oral Biology, ZZMK, Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
33
|
Lin JM, Callon KE, Lin JS, Watson M, Empson V, Tong PC, Grey A, Naot D, Green CR, Reid IR, Cornish J. Actions of fibroblast growth factor-8 in bone cells in vitro. Am J Physiol Endocrinol Metab 2009; 297:E142-50. [PMID: 19383871 DOI: 10.1152/ajpendo.90743.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fibroblast growth factors (FGFs) are a group of at least 25 structurally related peptides that are involved in many biological processes. Some FGFs are active in bone, including FGF-1, FGF-2, and FGF-18, and recent evidence indicates that FGF-8 is osteogenic, particularly in mesenchymal stem cells. In the current study, we found that FGF-8 was expressed in rat primary osteoblasts and in osteoblastic UMR-106 and MC3T3-E1 cells. Both FGF-8a and FGF-8b potently stimulated the proliferation of osteoblastic cells, whereas they inhibited the formation of mineralized bone nodules in long-term cultures of osteoblasts and reduced the levels of osteoblast differentiation markers, osteocalcin, and bone sialoprotein. FGF-8a induced the phosphorylation of p42/p44 mitogen-activated protein kinase (MAPK) in osteoblastic cells; however, its mitogenic actions were not blocked by either the MAPK kinase (MEK) inhibitor U-0126 or the PI 3-kinase (PI3K) inhibitor LY-294002. Interestingly, FGF-8a, unlike FGF-8b and other members of the family, inhibited osteoclastogenesis in mouse bone marrow cultures, and this was via a receptor activator of NF-kappaB ligand (RANKL)/osteoprotegerin (OPG)-independent manner. However, FGF-8a did not affect osteoclastogenesis in RAW 264.7 cells (a macrophage cell line devoid of stromal cells) exogenously stimulated by RANKL, nor did it affect mature osteoclast function as assessed in rat calvarial organ cultures and isolated mature osteoclasts. In summary, we have demonstrated that FGF-8 is active in bone cells, stimulating osteoblast proliferation in a MAPK-independent pathway and inhibiting osteoclastogenesis via a RANKL/OPG-independent mechanism. These data suggest that FGF-8 may have a physiological role in bone acting in an autocrine/paracrine manner.
Collapse
Affiliation(s)
- Jian-Ming Lin
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Alam AHMK, Suzuki H, Tsukahara T. Expression analysis of Fgf8a &Fgf8b in early stage of P19 cells during neural differentiation. Cell Biol Int 2009; 33:1032-7. [PMID: 19555770 DOI: 10.1016/j.cellbi.2009.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/15/2009] [Accepted: 06/03/2009] [Indexed: 01/07/2023]
Abstract
Fgf8 is a member of the fibroblast growth factor (FGF) family that plays an important role in early neural development. Cellular aggregation and retinoic acid (RA) are needed for mouse embryonic carcinoma (EC) P19 cell neural differentiation. We have examined the Fgf8 gene in P19 cells during neural differentiation and identified 2 alternatively spliced Fgf8 isoforms, Fgf8a and Fgf8b, among the 8 known splicing isoforms in mammals. The expression of Fgf8a and Fgf8b mRNAs transiently and rapidly increased in the early stage of P19 cells during RA-induced neural differentiation, followed by a decline in expression. The relative amount of Fgf8b was clearly higher than that of Fgf8a at different time-points measured within 24h after RA treatment. Increased Fgf8b mRNA expression was cellular-aggregation dependent. The results demonstrated that cellular-aggregation-induced Fgf8b, but not Fgf8a, may play a pivotal role in early neural differentiation of P19 cells.
Collapse
Affiliation(s)
- A H M Khurshid Alam
- School of Materials Science, Japan Advanced Institute of Science and Technology, Japan
| | | | | |
Collapse
|
35
|
Yamauchi K, Mizushima S, Tamada A, Yamamoto N, Takashima S, Murakami F. FGF8 signaling regulates growth of midbrain dopaminergic axons by inducing semaphorin 3F. J Neurosci 2009; 29:4044-55. [PMID: 19339600 PMCID: PMC6665371 DOI: 10.1523/jneurosci.4794-08.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/28/2009] [Accepted: 02/11/2009] [Indexed: 11/21/2022] Open
Abstract
Accumulating evidence indicates that signaling centers controlling the dorsoventral (DV) polarization of the neural tube, the roof plate and the floor plate, play crucial roles in axon guidance along the DV axis. However, the role of signaling centers regulating the rostrocaudal (RC) polarization of the neural tube in axon guidance along the RC axis remains unknown. Here, we show that a signaling center located at the midbrain-hindbrain boundary (MHB) regulates the rostrally directed growth of axons from midbrain dopaminergic neurons (mDANs). We found that beads soaked with fibroblast growth factor 8 (FGF8), a signaling molecule that mediates patterning activities of the MHB, repelled mDAN axons that extended through the diencephalon. This repulsion may be mediated by semaphorin 3F (sema3F) because (1) FGF8-soaked beads induced an increase in expression of sema3F, (2) sema3F expression in the midbrain was essentially abolished by the application of an FGF receptor tyrosine kinase inhibitor, and (3) mDAN axonal growth was also inhibited by sema3F. Furthermore, mDAN axons expressed a sema3F receptor, neuropilin-2 (nrp2), and the removal of nrp-2 by gene targeting caused caudal growth of mDAN axons. These results indicate that the MHB signaling center regulates the growth polarity of mDAN axons along the RC axis by inducing sema3F.
Collapse
Affiliation(s)
- Kenta Yamauchi
- Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Shigeki Mizushima
- Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Atsushi Tamada
- Division of Behavior and Neurobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan, and
| | - Nobuhiko Yamamoto
- Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Seiji Takashima
- Department of Molecular Cardiology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Fujio Murakami
- Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
- Division of Behavior and Neurobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan, and
| |
Collapse
|
36
|
Orme R, Fricker-Gates RA, Gates MA. Ontogeny of substantia nigra dopamine neurons. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:3-18. [PMID: 20411764 DOI: 10.1007/978-3-211-92660-4_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the ontogeny of A9 dopamine (DA) neurons is critical not only to determining basic developmental events that facilitate the emergence of the substantia nigra pars compacta (SNc) but also to the extraction and de novo generation of DA neurons as a potential cell therapy for Parkinson's disease. Recent research has identified a precise window for DA cell birth (differentiation) in the ventral mesencephalon (VM) as well as a number of factors that may facilitate this process. However, application of these factors in vitro has had limited success in specifying a dopaminergic cell fate from undifferentiated cells, suggesting that other cell/molecular signals may as yet remain undiscovered. To resolve this, current work seeks to identify particularly potent and novel DA neuron differentiation factors within the developing VM specifically at the moment of ontogeny. Through such (past and present) studies, a catalog of proteins that play a pivotal role in the generation of nigral DA neurons during normal CNS development has begun to emerge. In the future, it will be crucial to continue to evaluate the critical developmental window where DA neuron ontogeny occurs, not only to facilitate our potential to protect these cells from degeneration in the adult brain but also to mimic the developmental environment in a way that enhances our ability to generate these cells anew either in vitro or in vivo. Here we review our present understanding of factors that are thought to be involved in the emergence of the A9 dopamine neuron group from the ventral mesencephalon.
Collapse
Affiliation(s)
- R Orme
- School of Life Sciences, Keele University, Keele Staffordshire, UK
| | | | | |
Collapse
|
37
|
Jovelin R, He X, Amores A, Yan YL, Shi R, Qin B, Roe B, Cresko WA, Postlethwait JH. Duplication and divergence of fgf8 functions in teleost development and evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 308:730-43. [PMID: 17708537 DOI: 10.1002/jez.b.21193] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fibroblast growth factors play critical roles in many aspects of embryo patterning that are conserved across broad phylogenetic distances. To help understand the evolution of fibroblast growth factor functions, we identified members of the Fgf8/17/18-subfamily in the three-spine stickleback Gasterosteus aculeatus, and investigated their evolutionary relationships and expression patterns. We found that fgf17b is the ortholog of tetrapod Fgf17, whereas the teleost genes called fgf8 and fgf17a are duplicates of the tetrapod gene Fgf8, and thus should be called fgf8a and fgf8b. Phylogenetic analysis supports the view that the Fgf8/17/18-subfamily expanded during the ray-fin fish genome duplication. In situ hybridization experiments showed that stickleback fgf8 duplicates exhibited common and unique expression patterns, indicating that tissue specialization followed the gene duplication event. Moreover, direct comparison of stickleback and zebrafish embryonic expression patterns of fgf8 co-orthologs suggested lineage-specific independent subfunction partitioning and the acquisition or the loss of ortholog functions. In tetrapods, Fgf8 plays an important role in the apical ectodermal ridge of the developing pectoral appendage. Surprisingly, differences in the expression of fgf8a in the apical ectodermal ridge of the pectoral fin bud in zebrafish and stickleback, coupled with the role of fgf16 and fgf24 in teleost pectoral appendage show that different Fgf genes may play similar roles in limb development in various vertebrates.
Collapse
Affiliation(s)
- Richard Jovelin
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang YD, Chen Z, Song YQ, Liu C, Chen YP. Making a tooth: growth factors, transcription factors, and stem cells. Cell Res 2007; 15:301-16. [PMID: 15916718 DOI: 10.1038/sj.cr.7290299] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mammalian tooth development is largely dependent on sequential and reciprocal epithelial-mesenchymal interactions. These processes involve a series of inductive and permissive interactions that result in the determination, differentiation, and organization of odontogenic tissues. Multiple signaling molecules, including BMPs, FGFs, Shh, and Wnt proteins, have been implicated in mediating these tissue interactions. Transcription factors participate in epithelial-mesenchymal interactions via linking the signaling loops between tissue layers by responding to inductive signals and regulating the expression of other signaling molecules. Adult stem cells are highly plastic and multipotent. These cells including dental pulp stem cells and bone marrow stromal cells could be reprogrammed into odontogenic fate and participated in tooth formation. Recent progress in the studies of molecular basis of tooth development, adult stem cell biology, and regeneration will provide fundamental knowledge for the realization of human tooth regeneration in the near future.
Collapse
|
39
|
Abstract
Division of the telencephalic vesicle into hemispheres and specification of the cerebral cortex are key stages in forebrain development. We investigate the interplay in these processes of Sonic hedgehog (Shh), fibroblast growth factors (Fgfs), and the transcription factor Gli3, which in its repressor form (Gli3R) antagonizes Shh signaling and downregulates expression of several Fgf genes. Contrary to previous reports, Shh is not required for dorsal hemisphere separation. Mice lacking Shh develop a dorsal telencephalic midline, a cortical hem, and two cortical hemispheres. The hemispheres do not divide rostrally, probably because of reduced local Fgf gene expression, resulting from the loss of Shh inhibition of Gli3R. Removing one functional copy of Gli3 substantially rescues Fgf expression and rostral telencephalic morphology. In mice lacking Gli3 function, cortical development is arrested, and ventral gene expression invades the dorsal telencephalon. These defects are potentially explained by disinhibition of Shh activity. However, when both copies of Shh are removed from Gli3-null mice, dorsal telencephalic defects persist. One such defect is a large dorsal expansion of the expression of Fgf genes. Fgf15 expression, for example, expands from a discrete ventral domain throughout the dorsal telencephalon. We propose that Fgf signaling, known to ventralize the telencephalon in a Shh-independent manner, suppresses cortical fate in the absence of Gli3. Our findings point away from Shh involvement in dorsal telencephalic patterning and encourage additional exploration of Fgf signaling and Gli3 repression in corticogenesis.
Collapse
|
40
|
Metcalfe AD, Ferguson MW. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 2007; 4:413-37. [PMID: 17251138 PMCID: PMC2373411 DOI: 10.1098/rsif.2006.0179] [Citation(s) in RCA: 463] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 09/08/2006] [Indexed: 12/12/2022] Open
Abstract
Advanced therapies combating acute and chronic skin wounds are likely to be brought about using our knowledge of regenerative medicine coupled with appropriately tissue-engineered skin substitutes. At the present time, there are no models of an artificial skin that completely replicate normal uninjured skin. Natural biopolymers such as collagen and fibronectin have been investigated as potential sources of biomaterial to which cells can attach. The first generation of degradable polymers used in tissue engineering were adapted from other surgical uses and have drawbacks in terms of mechanical and degradation properties. This has led to the development of synthetic degradable gels primarily as a way to deliver cells and/or molecules in situ, the so-called smart matrix technology. Tissue or organ repair is usually accompanied by fibrotic reactions that result in the production of a scar. Certain mammalian tissues, however, have a capacity for complete regeneration without scarring; good examples include embryonic or foetal skin and the ear of the MRL/MpJ mouse. Investigations of these model systems reveal that in order to achieve such complete regeneration, the inflammatory response is altered such that the extent of fibrosis and scarring is diminished. From studies on the limited examples of mammalian regeneration, it may also be possible to exploit such models to further clarify the regenerative process. The challenge is to identify the factors and cytokines expressed during regeneration and incorporate them to create a smart matrix for use in a skin equivalent. Recent advances in the use of DNA microarray and proteomic technology are likely to aid the identification of such molecules. This, coupled with recent advances in non-viral gene delivery and stem cell technologies, may also contribute to novel approaches that would generate a skin replacement whose materials technology was based not only upon intelligent design, but also upon the molecules involved in the process of regeneration.
Collapse
Affiliation(s)
| | - Mark W.J Ferguson
- UK Centre for Tissue Engineering, Faculty of Life Sciences, University of Manchester3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
41
|
Sugiura K, Su YQ, Diaz FJ, Pangas SA, Sharma S, Wigglesworth K, O'Brien MJ, Matzuk MM, Shimasaki S, Eppig JJ. Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development 2007; 134:2593-603. [PMID: 17553902 DOI: 10.1242/dev.006882] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mammalian oocytes are deficient in their ability to carry out glycolysis. Therefore, the products of glycolysis that are necessary for oocyte development are provided to oocytes by companion cumulus cells. Mouse oocytes secrete paracrine factors that promote glycolysis in cumulus cells. The objective of this study was to identify paracrine factors secreted by oocytes that promote glycolysis and expression of mRNA encoding the glycolytic enzymes PFKP and LDHA. Candidates included growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15) and fibroblast growth factors (FGFs). Bmp15-/- and Gdf9+/- Bmp15-/- (double mutant, DM) cumulus cells exhibited reduced levels of both glycolysis and Pfkp and Ldha mRNA, and mutant oocytes were deficient in promoting glycolysis and expression of Pfkp and Ldha mRNA in cumulus cells of wild-type (WT) mice. Alone, neither recombinant BMP15, GDF9 nor FGF8 promoted glycolysis and expression of Pfkp and Ldha mRNA in WT cumulus cells. Co-treatment with BMP15 and FGF8 promoted glycolysis and increased expression of Pfkp and Ldha mRNA in WT cumulus cells to the same levels as WT oocytes; however, the combinations of BMP15/GDF9 or GDF9/FGF8 did not. Furthermore, SU5402, an FGF receptor-dependent protein kinase inhibitor, inhibited Pfkp and Ldha expression in cumulus cells promoted by paracrine oocyte factors. Therefore, oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells.
Collapse
Affiliation(s)
- Koji Sugiura
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Development of the central nervous system is coordinated by intercellular signalling centres established within the neural tube. The isthmic organizer (IsO), located between the midbrain and anterior hindbrain, is one such centre. Important signal molecules secreted by the IsO include members of the fibroblast growth factor and Wnt families. These signals are integrated with dorsally and ventrally derived signals to regulate development of the midbrain and rhombomere 1 of the hindbrain. The IsO is operational for a remarkably long period of time. Depending on the developmental stage, it controls a variety of processes such as cell survival, cell identity, neural precursor proliferation, neuronal differentiation and axon guidance. This review focuses on the fibroblast growth factor signalling, its novel molecular regulatory mechanisms and how this pathway regulates multiple aspects of cell behaviour in the developing midbrain and anterior hindbrain.
Collapse
Affiliation(s)
- Juha Partanen
- Institute of Biotechnology, University of Helsinki, Finland.
| |
Collapse
|
43
|
Depew MJ, Simpson CA. 21st century neontology and the comparative development of the vertebrate skull. Dev Dyn 2006; 235:1256-91. [PMID: 16598716 DOI: 10.1002/dvdy.20796] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Classic neontology (comparative embryology and anatomy), through the application of the concept of homology, has demonstrated that the development of the gnathostome (jawed vertebrate) skull is characterized both by a fidelity to the gnathostome bauplan and the exquisite elaboration of final structural design. Just as homology is an old concept amended for modern purposes, so are many of the questions regarding the development of the skull. With due deference to Geoffroy-St. Hilaire, Cuvier, Owen, Lankester et al., we are still asking: How are bauplan fidelity and elaboration of design maintained, coordinated, and modified to generate the amazing diversity seen in cranial morphologies? What establishes and maintains pattern in the skull? Are there universal developmental mechanisms underlying gnathostome autapomorphic structural traits? Can we detect and identify the etiologies of heterotopic (change in the topology of a developmental event), heterochronic (change in the timing of a developmental event), and heterofacient (change in the active capacetence, or the elaboration of capacity, of a developmental event) changes in craniofacial development within and between taxa? To address whether jaws are all made in a like manner (and if not, then how not), one needs a starting point for the sake of comparison. To this end, we present here a "hinge and caps" model that places the articulation, and subsequently the polarity and modularity, of the upper and lower jaws in the context of cranial neural crest competence to respond to positionally located epithelial signals. This model expands on an evolving model of polarity within the mandibular arch and seeks to explain a developmental patterning system that apparently keeps gnathostome jaws in functional registration yet tractable to potential changes in functional demands over time. It relies upon a system for the establishment of positional information where pattern and placement of the "hinge" is driven by factors common to the junction of the maxillary and mandibular branches of the first arch and of the "caps" by the signals emanating from the distal-most first arch midline and the lamboidal junction (where the maxillary branch meets the frontonasal processes). In this particular model, the functional registration of jaws is achieved by the integration of "hinge" and "caps" signaling, with the "caps" sharing at some critical level a developmental history that potentiates their own coordination. We examine the evidential foundation for this model in mice, examine the robustness with which it can be applied to other taxa, and examine potential proximate sources of the signaling centers. Lastly, as developmental biologists have long held that the anterior-most mesendoderm (anterior archenteron roof or prechordal plate) is in some way integral to the normal formation of the head, including the cranial skeletal midlines, we review evidence that the seminal patterning influences on the early anterior ectoderm extend well beyond the neural plate and are just as important to establishing pattern within the cephalic ectoderm, in particular for the "caps" that will yield medial signaling centers known to coordinate jaw development.
Collapse
Affiliation(s)
- Michael J Depew
- Department of Craniofacial Development, King's College London, Guy's Hospital, London Bridge, London, United Kingdom.
| | | |
Collapse
|
44
|
Louie CM, Gleeson JG. Genetic basis of Joubert syndrome and related disorders of cerebellar development. Hum Mol Genet 2006; 14 Spec No. 2:R235-42. [PMID: 16244321 DOI: 10.1093/hmg/ddi264] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Over three decades have passed since Marie Joubert described the original proband for Joubert syndrome, a rare neurological disorder featuring absence of the cerebellar vermis (i.e. midline). Efforts at deciphering the molecular basis for this disease have been complicated by the clinical and genetic heterogeneity as well as extensive phenotypic overlap with other syndromes. However, progress has been made in recent years with the mapping of three genetic loci and the identification of mutations in two genes, AHI1 and NPHP1. These genes encode proteins with some shared functional domains, but their role in brain development is unclear. Clues may come from studies of related syndromes, including Bardet-Biedl syndrome and nephronophthisis, for which all of the encoded proteins localize to primary cilia. The data suggest a tantalizing connection between intraflagellar transport in cilia and brain development.
Collapse
Affiliation(s)
- Carrie M Louie
- Biomedical Sciences Graduate Program, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0691, USA
| | | |
Collapse
|
45
|
Chambers D, Mason I. A high throughput messenger RNA differential display screen identifies discrete domains of gene expression and novel patterning processes along the developing neural tube. BMC DEVELOPMENTAL BIOLOGY 2006; 6:9. [PMID: 16504111 PMCID: PMC1397802 DOI: 10.1186/1471-213x-6-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 02/24/2006] [Indexed: 11/15/2022]
Abstract
BACKGROUND During early development the vertebrate neural tube is broadly organized into the forebrain, midbrain, hindbrain and spinal cord regions. Each of these embryonic zones is patterned by a combination of genetic pathways and the influences of local signaling centres. However, it is clear that much remains to be learned about the complete set of molecular cues that are employed to establish the identity and intrinsic neuronal diversity of these territories. In order to address this, we performed a high-resolution messenger RNA differential display screen to identify molecules whose expression is regionally restricted along the anteroposterior (AP) neuraxis during early chick development, with particular focus on the midbrain and hindbrain vesicles. RESULTS This approach identified 44 different genes, with both known and unknown functions, whose transcription is differentially regulated along the AP axis. The identity and ontological classification of these genes is presented. The wide variety of functional classes of transcripts isolated in this screen reflects the diverse spectrum of known influences operating across these embryonic regions. Of these 44 genes, several have been selected for detailed in situ hybridization analysis to validate the screen and accurately define the expression domains. Many of the identified cDNAs showed no identity to the current databases of known or predicted genes or ESTs. Others represent genes whose embryonic expression has not been previously reported. Expression studies confirmed the predictions of the primary differential display data. Moreover, the nature of identified genes, not previously associated with regionalisation of the brain, identifies novel potential mechanisms in that process. CONCLUSION This study provides an insight into some of the varied and novel molecular networks that operate during the regionalization of embryonic neural tissue and expands our knowledge of molecular repertoire used during development.
Collapse
Affiliation(s)
- David Chambers
- MRC Centre for Developmental Neurobiology, 4Floor New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK
- Wellcome Trust Functional Genomics Development Initiative, MRC Centre for Developmental Neurobiology, 4Floor New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Ivor Mason
- MRC Centre for Developmental Neurobiology, 4Floor New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
46
|
Inoue M, Kawakami M, Tatsumi K, Manabe T, Makinodan M, Matsuyoshi H, Kirita T, Wanaka A. Expression and regulation of the LIM homeodomain gene L3/Lhx8 suggests a role in upper lip development of the chick embryo. ACTA ACUST UNITED AC 2006; 211:247-53. [PMID: 16456677 DOI: 10.1007/s00429-006-0078-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2006] [Indexed: 10/25/2022]
Abstract
LIM-homeodomain (Lhx) genes constitute a gene family that plays critical roles in the control of pattern formation and cell type specification. We have identified a chicken L3/Lhx8 gene, which was widely expressed in the craniofacial region. Whole-mount in situ hybridization showed that L3/Lhx8 mRNA was expressed from stage 15--31 HH in overlapping domains of the maxillary process. Frozen sections revealed these signals in the mesenchyme underneath the epithelium. To determine whether the expression of L3/Lhx8 in the maxillary primordia required signals from the overlying oral epithelium, maxillary processes of stage 23 HH chick embryos were transplanted into the limb bud, in which the mesenchyme was grown in the presence or absence of oral epithelium. The maxillary mesenchyme with epithelium showed significant levels of L3/Lhx8 gene expression. In contrast, no expression of L3/Lhx8 was detected in the epithelium-free mesenchyme. To further explore signaling molecule(s) responsible for Lhx induction, a bead, soaked in either Fgf-8b or TGF-beta3, was implanted into an epithelium-free mesenchymal graft. Both TGF-beta3 and Fgf-8b beads induced expressions of L3/Lhx8 in epithelium-free mesenchymal grafts. Our data suggest that the L3/Lhx8 gene contributes to epithelial mesenchymal interaction in facial morphogenesis and that Fgf-8b and TGF-beta3 were, at least in part, responsible for the Lhx expression in the maxillary process.
Collapse
Affiliation(s)
- Masahide Inoue
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 634-8522, Kashihara Nara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Shimada N, Ishii T, Imada T, Takaba K, Sasaki Y, Maruyama-Takahashi K, Maekawa-Tokuda Y, Kusaka H, Akinaga S, Tanaka A, Shitara K. A neutralizing anti-fibroblast growth factor 8 monoclonal antibody shows potent antitumor activity against androgen-dependent mouse mammary tumors in vivo. Clin Cancer Res 2005; 11:3897-904. [PMID: 15897591 DOI: 10.1158/1078-0432.ccr-04-2358] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Fibroblast growth factor 8b (FGF8b) has been implicated in oncogenesis of sex hormone-related malignancies. A murine monoclonal anti-FGF8 antibody, KM1334, has been raised against a FGF8b-derived peptide and shown to neutralize FGF8b activity in an androgen-dependent mouse mammary cell line (SC-3) in vitro growth. The purpose of this study was to evaluate KM1334 as a therapeutic agent for FGF8-dependent cancer. EXPERIMENTAL DESIGN Specificity and neutralizing activity of KM1334 were examined in vitro. In vivo therapeutic studies were done in nude mice bearing SC-3 tumors s.c. RESULTS KM1334 recognized FGF8b and FGF8f specifically out of four human FGF8 isoforms and showed little binding to other members of FGF family. Neutralizing activity of KM1334 was confirmed by both blocking of FGF8b binding to its three receptors (FGFR2IIIc, FGFR3IIIc, and FGFR4) and FGF8b-induced phosphorylation of FGFR substrate 2alpha and extracellular signal-regulated kinase 1/2 in SC-3 cells. The in vitro inhibitory effect could be extended to in vivo tumor models, where KM1334 caused rapid regression of established SC-3 tumors in nude mice. This rapid regression of tumors after KM1334 treatment was explained by two independent mechanisms: (a) decreased DNA synthesis, as evidenced by a decrease in uptake of 5-bromo-2'-deoxyuridine, and (b) induction of apoptosis as shown by the terminal deoxynucleotidyl transferase-mediated nick end labeling assay. CONCLUSIONS KM1334 possesses strong blocking activity in vitro and antitumor activity in vivo and therefore may be an effective therapeutic candidate for the treatment of cancers that are dependent on FGF8b signaling for growth and survival.
Collapse
Affiliation(s)
- Naoki Shimada
- Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
O'Hara FP, Beck E, Barr LK, Wong LL, Kessler DS, Riddle RD. Zebrafish Lmx1b.1 and Lmx1b.2 are required for maintenance of the isthmic organizer. Development 2005; 132:3163-73. [PMID: 15944182 PMCID: PMC1361118 DOI: 10.1242/dev.01898] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mesencephalic and metencephalic region (MMR) of the vertebrate central nervous system develops in response to signals produced by the isthmic organizer (IsO). We have previously reported that the LIM homeobox transcription factor Lmx1b is expressed within the chick IsO, where it is sufficient to maintain expression of the secreted factor wnt1. In this paper, we show that zebrafish express two Lmx1b orthologs, lmx1b.1 and lmx1b.2, in the rostral IsO, and demonstrate that these genes are necessary for key aspects of MMR development. Simultaneous knockdown of Lmx1b.1 and Lmx1b.2 using morpholino antisense oligos results in a loss of wnt1, wnt3a, wnt10b, pax8 and fgf8 expression at the IsO, leading ultimately to programmed cell death and the loss of the isthmic constriction and cerebellum. Single morpholino knockdown of either Lmx1b.1 or Lmx1b.2 has no discernible effect on MMR development. Maintenance of lmx1b.1 and lmx1b.2 expression at the isthmus requires the function of no isthmus/pax2.1, as well as Fgf signaling. Transient misexpression of Lmx1b.1 or Lmx1b.2 during early MMR development induces ectopic wnt1 and fgf8 expression in the MMR, as well as throughout much of the embryo. We propose that Lmx1b.1- and Lmx1b.2-mediated regulation of wnt1, wnt3a, wnt10b, pax8 and fgf8 maintains cell survival in the isthmocerebellar region.
Collapse
Affiliation(s)
- F Patrick O'Hara
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
49
|
Kuraku S, Usuda R, Kuratani S. Comprehensive survey of carapacial ridge-specific genes in turtle implies co-option of some regulatory genes in carapace evolution. Evol Dev 2005; 7:3-17. [PMID: 15642085 DOI: 10.1111/j.1525-142x.2005.05002.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The turtle shell is an evolutionary novelty in which the developmental pattern of the ribs is radically modified. In contrast to those of other amniotes, turtle ribs grow laterally into the dorsal dermis to form a carapace. The lateral margin of carapacial primordium is called the carapacial ridge (CR), and is thought to play an essential role in carapace patterning. To reveal the developmental mechanisms underlying this structure, we systematically screened for genes expressed specifically in the CR of the Chinese soft-shelled turtle, Pelodiscus sinensis, using microbead-based differential cDNA analysis and real-time reverse transcription-polymerase chain reaction. We identified orthologs of Sp5, cellular retinoic acid-binding protein-I (CRABP-I), adenomatous polyposis coli down-regulated 1 (APCDD1), and lymphoid enhancer-binding factor-1 (LEF-1). Although these genes are conserved throughout the major vertebrate lineages, comparison of their expression patterns with those in chicken and mouse indicated that these genes have acquired de novo expression in the CR in the turtle lineage. In association with the expression of LEF-1, the nuclear localization of beta-catenin protein was detected in the CR ectoderm, suggesting that the canonical Wnt signaling triggers carapace development. These findings indicate that the acquisition of the turtle shell did not involve the creation of novel genes, but was based on the co-option of pre-existing genes.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Laboratory for Evolutionary Morphology, Center for Developmental Biology (CDB), RIKEN, Kobe 650-0047, Japan
| | | | | |
Collapse
|
50
|
Buratini J, Glapinski VF, Giometti IC, Teixeira AB, Costa IB, Avellar MCW, Barros CM, Price CA. Expression of fibroblast growth factor-8 and its cognate receptors, fibroblast growth factor receptor (FGFR)-3c and-4, in fetal bovine preantral follicles. Mol Reprod Dev 2005; 70:255-61. [PMID: 15625702 DOI: 10.1002/mrd.20205] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Paracrine cell signaling is thought to be important for ovarian follicle development, and a role for some members of the fibroblast growth factor (FGF) family have been suggested. In the present study, we tested the hypothesis that FGF-8 and its cognate receptors (FGFR-3c and FGFR-4) are expressed in bovine preantral follicles. Reverse transcription-polymerase chain reaction was used to amplify bovine FGF-8, FGFR-3c, and FGFR-4 from preantral follicle samples and a variety of fetal and adult tissues. All three genes were widely expressed in fetal tissues, with a restricted expression pattern in adult tissues. FGF-8 and FGFR-3c were expressed in secondary follicles in 70% of fetuses examined, whereas FGFR-4 expression was significantly less frequent (20%). FGFR-3c expression frequency was significantly lower in primordial compared to secondary follicles, and FGF-8 expression showed a similar trend. FGFR-4 was only observed when all follicle classes of an individual were expressing both FGF-8 and FGFR-3c. We conclude that FGF-8 and its receptors are expressed in preantral follicles in a developmentally regulated manner.
Collapse
Affiliation(s)
- J Buratini
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Sãao Paulo, Brasil.
| | | | | | | | | | | | | | | |
Collapse
|