1
|
Parent SE, Luu O, Bruce AEE, Winklbauer R. Two-phase kinetics and cell cortex elastic behavior in Xenopus gastrula cell-cell adhesion. Dev Cell 2024; 59:141-155.e6. [PMID: 38091998 DOI: 10.1016/j.devcel.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/21/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
Morphogenetic movements during animal development involve repeated making and breaking of cell-cell contacts. Recent biophysical models of cell-cell adhesion integrate adhesion molecule interactions and cortical cytoskeletal tension modulation, describing equilibrium states for established contacts. We extend this emerging unified concept of adhesion to contact formation kinetics, showing that aggregating Xenopus embryonic cells rapidly achieve Ca2+-independent low-contact states. Subsequent transitions to cadherin-dependent high-contact states show rapid decreases in contact cortical F-actin levels but slow contact area growth. We developed a biophysical model that predicted contact growth quantitatively from known cellular and cytoskeletal parameters, revealing that elastic resistance to deformation and cytoskeletal network turnover are essential determinants of adhesion kinetics. Characteristic time scales of contact growth to low and high states differ by an order of magnitude, being at a few minutes and tens of minutes, respectively, thus providing insight into the timescales of cell-rearrangement-dependent tissue movements.
Collapse
Affiliation(s)
- Serge E Parent
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| | - Olivia Luu
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Ashley E E Bruce
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
2
|
Nagel M, Barua D, Damm EW, Kashef J, Hofmann R, Ershov A, Cecilia A, Moosmann J, Baumbach T, Winklbauer R. Capillarity and active cell movement at mesendoderm translocation in the Xenopus gastrula. Development 2021; 148:dev.198960. [PMID: 33674259 DOI: 10.1242/dev.198960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
During Xenopus gastrulation, leading edge mesendoderm (LEM) advances animally as a wedge-shaped cell mass over the vegetally moving blastocoel roof (BCR). We show that close contact across the BCR-LEM interface correlates with attenuated net advance of the LEM, which is pulled forward by tip cells while the remaining LEM frequently separates from the BCR. Nevertheless, lamellipodia persist on the detached LEM surface. They attach to adjacent LEM cells and depend on PDGF-A, cell-surface fibronectin and cadherin. We argue that active cell motility on the LEM surface prevents adverse capillary effects in the liquid LEM tissue as it moves by being pulled. It counters tissue surface-tension effects with oriented cell movement and bulges the LEM surface out to keep it close to the curved BCR without attaching to it. Proximity to the BCR is necessary, in turn, for the maintenance and orientation of lamellipodia that permit mass cell movement with minimal substratum contact. Together with a similar process in epithelial invagination, vertical telescoping, the cell movement at the LEM surface defines a novel type of cell rearrangement: vertical shearing.
Collapse
Affiliation(s)
- Martina Nagel
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3G5, Canada
| | - Debanjan Barua
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3G5, Canada
| | - Erich W Damm
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3G5, Canada
| | - Jubin Kashef
- Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Ralf Hofmann
- Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany.,Institut für Theoretische Physik, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Alexey Ershov
- Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | | | - Julian Moosmann
- Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung, 21502 Geesthacht, Germany
| | - Tilo Baumbach
- Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3G5, Canada
| |
Collapse
|
3
|
|
4
|
Wilson AL, Yu-chi S, Babb-Clendenon SG, Rostedt J, Liu B, Barald KF, Marrs JA, Liu Q. Cadherin-4 plays a role in the development of zebrafish cranial ganglia and lateral line system. Dev Dyn 2007; 236:893-902. [PMID: 17279575 PMCID: PMC2504752 DOI: 10.1002/dvdy.21085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We previously reported that cadherin-4 (also called R-cadherin) was expressed by the majority of the developing zebrafish cranial and lateral line ganglia. Cadherin-4 (Cdh4) function in the formation of these structures in zebrafish was studied using morpholino antisense technology. Differentiation of the cranial and lateral line ganglia and lateral line nerve and neuromasts of the cdh4 morphants was analyzed using multiple neural markers. We found that a subset of the morphant cranial and lateral line ganglia were disorganized, smaller, with reduced staining, and/or with altered shape compared to control embryos. Increased cell death in the morphant ganglia likely contributed to these defects. Moreover, cdh4 morphants had shorter lateral line nerves and a reduced number of neuromasts, which was likely caused by disrupted migration of the lateral line primordia. These results indicate that Cdh4 plays a role in the normal formation of the zebrafish lateral line system and a subset of the cranial ganglia.
Collapse
Affiliation(s)
- Amy L. Wilson
- Department of Biology, University of Akron, Akron, Ohio 44325-3908
| | - Shen Yu-chi
- Department of Cell and Developmental Biology, University of Michigan, Ann
Arbor, Michigan 48109-0616
| | | | - Jason Rostedt
- Department of Biology, University of Akron, Akron, Ohio 44325-3908
| | - Bei Liu
- Department of Biology, University of Akron, Akron, Ohio 44325-3908
| | - Kate F. Barald
- Department of Cell and Developmental Biology, University of Michigan, Ann
Arbor, Michigan 48109-0616
| | - James A. Marrs
- Department of Medicine, Indiana University Medical Center, Indianapolis,
Indiana 46202
| | - Qin Liu
- Department of Biology, University of Akron, Akron, Ohio 44325-3908
- To whom correspondence should be addressed. Phone: 330-972-7558; Fax: 330-972-8445; E-mail:
| |
Collapse
|
5
|
St Amand AL, Klymkowsky MW. Cadherins and catenins, Wnts and SOXs: embryonic patterning in Xenopus. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:291-355. [PMID: 11131519 DOI: 10.1016/s0074-7696(01)03010-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wnt signaling plays a critical role in a wide range of developmental and oncogenic processes. Altered gene regulation by the canonical Wnt signaling pathway involves the cytoplasmic stabilization of beta-catenin, a protein critical to the assembly of cadherin-based cell-cell adherence junctions. In addition to binding to cadherins, beta-catenin also interacts with transcription factors of the TCF-subfamily of HMG box proteins and regulates their activity. The Xenopus embryo has proven to be a particularly powerful experimental system in which to study the role of Wnt signaling components in development and differentiation. We review this literature, focusing on the role of Wnt signaling and interacting components in establishing patterns within the early embryo.
Collapse
Affiliation(s)
- A L St Amand
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309, USA
| | | |
Collapse
|
6
|
Ito Y, Kuhara S, Tashiro K. In synergy with noggin and follistatin, Xenopus nodal-related gene induces sonic hedgehog on notochord and floor plate. Biochem Biophys Res Commun 2001; 281:714-9. [PMID: 11237716 DOI: 10.1006/bbrc.2001.4386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In early development of vertebrates, sonic hedgehog functions in dorsal-ventral patterning of dorsal tissue (nervous system and somites). In Xenopus, sonic hedgehog (Xshh) is first expressed in the Spemann organizer/notochord and floor plate. We report here the mechanism governing Xshh mRNA induction in these regions. In animal cap assays, the antagonizing BMPs signal was not sufficient to induce Xshh mRNA expression; however, it could induce Xshh mRNA expression in the presence of Xnr-1. In whole embryos, when secondary axes were induced by coexpressing noggin and Xnr-1 or follistatin and Xnr-1, Xshh mRNA expression was observed in the notochord and floor plate within the induced axes. It seems apparent that spatially restricted Xshh mRNA expression is determined as intersection of the two signals.
Collapse
Affiliation(s)
- Y Ito
- Laboratory of Molecular Gene Technics, Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581, Japan
| | | | | |
Collapse
|
7
|
Kajita E, Wakiyama M, Miura K, Mizumoto K, Oka T, Komuro I, Miyata T, Yatsuki H, Hori K, Shiokawa K. Isolation and characterization of Xenopus laevis aldolase B cDNA and expression patterns of aldolase A, B and C genes in adult tissues, oocytes and embryos of Xenopus laevis. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1493:101-18. [PMID: 10978512 DOI: 10.1016/s0167-4781(00)00169-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Following previous cloning and expression studies of Xenopus aldolase C (brain-type) and A (muscle-type) cDNAs, we cloned here two Xenopus aldolase B (liver-type) cDNAs (XALDB1 and XALDB2, 2447 and 1490 bp, respectively) using two different liver libraries. These cDNAs had very similar ORF with only one conservative amino acid substitution, but 3'-UTR of XALDB1 contained ca. 1 kb of unrelated reiterated sequence probably ligated during library construction as shown by genomic Southern blot analysis. In adult, aldolase B mRNA (ca. 1.8 kb) was expressed strongly in kidney, liver, stomach, intestine, moderately strongly in skin, and very weakly in all the other tissues including muscles and brain, which strongly express aldolase A and C mRNAs, respectively. In oocytes and early embryos, aldolase A and C mRNAs occurred abundantly as maternal mRNAs, but aldolase B mRNA occurred only at a residual level, and its strong expression started only after the late neurula stage, mainly in liver rudiment, pronephros, epidermis and proctodeum. Thus, active expression of the gene for aldolase B, involved in dietary fructose metabolism, starts only later during development (but before the feeding stage), albeit genes for aldolases A and C, involved in glycolysis, are expressed abundantly from early stages of embryogenesis, during which embryos develop depending on yolk as the only energy source.
Collapse
Affiliation(s)
- E Kajita
- Laboratory of Molecular Embryology, Department of Biological Sciences, Graduate School of Science, The Univeristy of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Cell adhesion molecules in the cadherin family have been implicated in histogenesis and maintenance of cellular structure and function in several organs. Zebrafish have emerged as an important new developmental model, but only three zebrafish cadherin molecules have been identified to date (N-cadherin, paraxial protocadherin, and VN-cadherin). We began a systematic study to identify other zebrafish cadherins by screening zebrafish cDNA libraries using an antibody raised to the cytoplasmic domain of mouse E-cadherin. Here, we report a partial cDNA with extensive sequence homology to R-cadherin. Spatial and temporal expression of this putative zebrafish R-cadherin was examined in embryos and adults by Northern analysis, RNase protection, and in situ hybridization. R-cadherin message increased during embryogenesis up to 80 hours postfertilization (hpf) and persisted in adults. In the embryonic brain, R-cadherin was first expressed in groups of cells in the diencephalon and pretectum. In adult zebrafish brain, R-cadherin continued to be expressed in several specific regions including primary visual targets. In the retina, R-cadherin was first detected at about 33 hours postfertilization in the retinal ganglion cell layer and the inner part of the inner nuclear layer. Expression levels were highest during periods of axon outgrowth and synaptogenesis. Retrograde labeling of the optic nerve with 1,1'-dioctadecyl-3,3,3',3', tetramethylindocarbocyanine perchlorate (DiI) followed by in situ hybridization confirmed that a subset of retinal ganglion cells in the embryo expressed R-cadherin message. In the adult, R-cadherin expression continued in a subpopulation of retinal ganglion cells. These results suggest that R-cadherin-mediated adhesion plays a role in development and maintenance of neuronal connections in zebrafish visual system.
Collapse
Affiliation(s)
- Q Liu
- Department of Anatomy and Cell Biology, 4610 Medical Science II, University of Michigan, Ann Arbor 48109, USA.
| | | | | | | | | |
Collapse
|
9
|
Abstract
The inner ear is a complex sensory organ responsible for balance and sound detection in vertebrates. It originates from a transient embryonic structure, the otic vesicle, that contains all of the information to develop autonomously into the mature inner ear. We review here the development of the otic vesicle, bringing together classical embryological experiments and recent genetic and molecular data. The specification of the prospective ectoderm and its commitment to the otic fate are very early events and can be related to the expression of genes with restricted expression domains. A combinatorial gene expression model for placode specification and diversification, based on classical embryological evidence and gene expression patterns, is discussed. The formation of the otic vesicle is dependent on inducing signals from endoderm, mesoderm and neuroectoderm. Ear induction consists of a sequence of discrete instructions from those tissues that confer its final identity on the otic field, rather than a single all-or-none process. The important role of the neural tube in otic development is highlighted by the abnormalities observed in mouse mutants for the Hoxa1, kreisler and fgf3 genes and those reported in retinoic acid-deficient quails. Still, the nature of the relation between the neural tube and otic development remains unclear. Gene targeting experiments in the mouse have provided evidence for genes potentially involved in regional and cell-fate specification in the inner ear. The disruption of the mouse Brn3.1 gene identifies the first mutation affecting sensory hair-cell specification, and mutants for Pax2 and Nkx5.1 genes show their requirement for the development of specific regions of the otic vesicle. Several growth-factors contribute to the patterned cell proliferation of the otic vesicle. Among these, IGF-I and FGF-2 are expressed in the otic vesicle and may act in an autocrine manner. Finally, little is known about early mechanisms involved in guiding ear innervation. However, targeted disruption of genes coding for neurotrophins and Trk receptors have shown that once synaptic contacts are established, they depend on specific trophic interactions that involve these two gene families. The accessibility of new cellular and molecular approaches are opening new perspectives in vertebrate development and are also starting to be applied to ear development. This will allow this classical and attractive model system to see a rapid progress in the near future.
Collapse
Affiliation(s)
- M Torres
- Departamento de Inmunologiá y Oncologiá, Centro Nacional de Biotecnología CSIC, Cantoblanco, E-28049, Madrid, Spain
| | | |
Collapse
|
10
|
Münchberg FE, Spieker TP, Joos TO, Hausen P. A paired oocyte adhesion assay reveals the homophilic binding properties of the Xenopus maternal cadherins, XB/U- and EP-cadherin. Mech Dev 1997; 64:87-94. [PMID: 9232599 DOI: 10.1016/s0925-4773(97)00048-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The homophilic nature of cadherin-mediated cell-cell adhesion provides an organism with the opportunity of altering the adhesive capabilities of its cells by selectively modulating the expression of different cadherin types. Differential cadherin expression is of major importance in regulating the cell rearrangements involved in the processes which shape tissues and organs during embryogenesis. The pregastrula embryo of Xenopus laevis expresses two maternally supplied cadherins: XB/U-cadherin and EP-cadherin. Since these two proteins are almost 92% identical at the amino acid level, it was unclear whether heterophilic interactions between them were possible. Different functional roles can only be ascribed to the two cadherins if the possibility of heterophilic binding between them can be excluded. We describe a simple and straightforward assay which can be used to assess interactions between adhesion molecules. A combination of antisense oligonucleotide and enzyme treatments eliminates endogenous cadherins in Xenopus oocytes and subsequent injection of a specific mRNA yields oocytes carrying only one or the other cadherin. After removal of the vitelline membranes, two oocytes expressing the appropriate cadherins will adhere to one another when they are placed in close contact. By scoring for adhesion in homotypic and heterotypic pairings, we demonstrate that XB/U-cadherin and EP-cadherin do not interact with one another.
Collapse
Affiliation(s)
- F E Münchberg
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Zellbiologie, Tübingen, Germany
| | | | | | | |
Collapse
|
11
|
Affiliation(s)
- M Kühl
- Department of Biochemistry, University of Ulm, Germany
| | | |
Collapse
|
12
|
Abstract
Cadherins and catenins represent key molecules during development. Recent findings demonstrate the involvement of cadherins and catenins in signaling pathways. In a working hypothesis, signaling via beta-catenin regulates the epithelial-mesenchymal transition in vertebrate development.
Collapse
Affiliation(s)
- O Huber
- Max-Planck Institute for Immunobiology, Department of Molecular Embryolog,y Stübeweg 51, D-79108 Freiburg, Germany.
| | | | | |
Collapse
|