1
|
Razvi SS, Richards JB, Malik F, Cromar KR, Price RE, Bell CS, Weng T, Atkins CL, Spencer CY, Cockerill KJ, Alexander AL, Blackburn MR, Alcorn JL, Haque IU, Johnston RA. Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1174-85. [PMID: 26386120 DOI: 10.1152/ajplung.00270.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/14/2015] [Indexed: 01/10/2023] Open
Abstract
Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines-including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)-promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology.
Collapse
Affiliation(s)
- Shehla S Razvi
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Jeremy B Richards
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Farhan Malik
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Kevin R Cromar
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Roger E Price
- Comparative Pathology Laboratory, Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas
| | - Cynthia S Bell
- Division of Nephrology, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas
| | - Constance L Atkins
- Division of Pulmonary Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Chantal Y Spencer
- Pediatric Pulmonary Section, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Katherine J Cockerill
- Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Amy L Alexander
- Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas
| | - Joseph L Alcorn
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas; Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; and
| | - Ikram U Haque
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Richard A Johnston
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, Texas
| |
Collapse
|
2
|
Laskin DL, Sunil VR, Gardner CR, Laskin JD. Macrophages and tissue injury: agents of defense or destruction? Annu Rev Pharmacol Toxicol 2011; 51:267-88. [PMID: 20887196 DOI: 10.1146/annurev.pharmtox.010909.105812] [Citation(s) in RCA: 452] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The past several years have seen the accumulation of evidence demonstrating that tissue injury induced by diverse toxicants is due not only to their direct effects on target tissues but also indirectly to the actions of resident and infiltrating macrophages. These cells release an array of mediators with cytotoxic, pro- and anti-inflammatory, angiogenic, fibrogenic, and mitogenic activity, which function to fight infections, limit tissue injury, and promote wound healing. However, following exposure to toxicants, macrophages can become hyperresponsive, resulting in uncontrolled or dysregulated release of mediators that exacerbate acute tissue injury and/or promote the development of chronic diseases such as fibrosis and cancer. Evidence suggests that the diverse activity of macrophages is mediated by distinct subpopulations that develop in response to signals within their microenvironment. Understanding the precise roles of these different macrophage populations in the pathogenic response to toxicants is key to designing effective treatments for minimizing tissue damage and chronic disease and for facilitating wound repair.
Collapse
Affiliation(s)
- Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | | | | | |
Collapse
|
3
|
Wesselkamper SC, Chen LC, Gordon T. Quantitative trait analysis of the development of pulmonary tolerance to inhaled zinc oxide in mice. Respir Res 2005; 6:73. [PMID: 16026622 PMCID: PMC1180855 DOI: 10.1186/1465-9921-6-73] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 07/18/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Individuals may develop tolerance to the induction of adverse pulmonary effects following repeated exposures to inhaled toxicants. Previously, we demonstrated that genetic background plays an important role in the development of pulmonary tolerance to inhaled zinc oxide (ZnO) in inbred mouse strains, as assessed by polymorphonuclear leukocytes (PMNs), macrophages, and total protein in bronchoalveolar lavage (BAL) phenotypes. The BALB/cByJ (CBy) and DBA/2J (D2) strains were identified as tolerant and non-tolerant, respectively. The present study was designed to identify candidate genes that control the development of pulmonary tolerance to inhaled ZnO. METHODS Genome-wide linkage analyses were performed on a CByD2F2 mouse cohort phenotyped for BAL protein, PMNs, and macrophages following 5 consecutive days of exposure to 1.0 mg/m3 inhaled ZnO for 3 hours/day. A haplotype analysis was carried out to determine the contribution of each quantitative trait locus (QTL) and QTL combination to the overall BAL protein phenotype. Candidate genes were identified within each QTL interval using the positional candidate gene approach. RESULTS A significant quantitative trait locus (QTL) on chromosome 1, as well as suggestive QTLs on chromosomes 4 and 5, for the BAL protein phenotype, was established. Suggestive QTLs for the BAL PMN and macrophage phenotypes were also identified on chromosomes 1 and 5, respectively. Analysis of specific haplotypes supports the combined effect of three QTLs in the overall protein phenotype. Toll-like receptor 5 (Tlr5) was identified as an interesting candidate gene within the significant QTL for BAL protein on chromosome 1. Wild-derived Tlr5-mutant MOLF/Ei mice were tolerant to BAL protein following repeated ZnO exposure. CONCLUSION Genetic background is an important influence in the acquisition of pulmonary tolerance to BAL protein, PMNs, and macrophages following ZnO exposure. Promising candidate genes exist within the identified QTL intervals that would be good targets for additional studies, including Tlr5. The implications of tolerance to health risks in humans are numerous, and this study furthers the understanding of gene-environment interactions that are likely to be important factors from person-to-person in regulating the development of pulmonary tolerance to inhaled toxicants.
Collapse
Affiliation(s)
- Scott C Wesselkamper
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Lung Chi Chen
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Terry Gordon
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| |
Collapse
|
4
|
Fu L, Kaneko T, Ikeda H, Nishiyama H, Suzuki S, Okubo T, Trevisani M, Geppetti P, Ishigatsubo Y. Tachykinins via Tachykinin NK(2) receptor activation mediate ozone-induced increase in the permeability of the tracheal mucosa in guinea-pigs. Br J Pharmacol 2002; 135:1331-5. [PMID: 11877343 PMCID: PMC1573236 DOI: 10.1038/sj.bjp.0704572] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Acute exposure to ozone is known to cause airway hyperresponsiveness, which, at least in part, seems to result from an increase in the permeability of the airway mucosa. Recently, we demonstrated that depletion of sensory neuropeptides inhibits the ozone-induced increase in the permeability of the tracheal mucosa in guinea-pigs. The aim of this study was to determine whether tachykinins mediate ozone-induced increase in the permeability of the tracheal mucosa in guinea-pigs. 2. Anaesthetized guinea-pigs were exposed to either 3 p.p.m. ozone or filtered air for 30 min. Immediately after exposure, a tracheal segment was isolated in vivo and administered with horseradish peroxidase (HRP). The permeability was assessed by monitoring the appearance of HRP in the blood. 3. A low dose of NKA increased the permeability of the tracheal mucosa, whereas a low dose of SP was without effect. Low and high doses of the selective NK(3) receptor agonist, senktide, were also without effect. The effect of a low dose of NKA was abolished by the NK(2) receptor antagonist, SR-48,968. A high dose of SP increased the permeability in a manner reversible by the NK(1) receptor antagonist, CP-96,345. 4. Pretreatment with SR-48,968 completely inhibited the ozone-induced increase in the permeability, whereas CP-96,345 had no effect. 5. It is thus concluded that endogenous tachykinins mediate the ozone-induced increase in the permeability of the tracheal mucosa in guinea-pigs mainly via NK(2) receptor activation.
Collapse
Affiliation(s)
- Li Fu
- The First Department of Internal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Takeshi Kaneko
- The First Department of Internal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
- Author for correspondence:
| | - Hirotada Ikeda
- The First Department of Internal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Harumi Nishiyama
- The First Department of Internal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Shunsuke Suzuki
- The First Department of Internal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Takao Okubo
- The First Department of Internal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Marcello Trevisani
- Department of Experimental and Clinical Medicine, University of Ferrara, Ferrara, Italy
| | - Pierangelo Geppetti
- Department of Experimental and Clinical Medicine, University of Ferrara, Ferrara, Italy
| | - Yoshiaki Ishigatsubo
- The First Department of Internal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|