1
|
Hanna PA, Al-Abbadi HA, Hashem MA, Mostafa AE, Mahmoud YK, Ahmed EA, Hegab IM, Helal IE, Ahmed MF. Development of a novel intramuscular liposomal injection for advanced meloxicam delivery: Preparation, characterization, in vivo pharmacokinetics, pharmacodynamics, and pain assessment in an orthopedic pain model. Int J Pharm X 2024; 8:100284. [PMID: 39323733 PMCID: PMC11422154 DOI: 10.1016/j.ijpx.2024.100284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
Pain produces several physiological, and degenerative complications. This study aimed to formulate meloxicam (MLX) in liposomes to increase solubility and deliver MLX in a controlled manner to overcome its poor aqueous solubility and relatively short t1/2 problems. Liposomes were prepared by thin film hydration followed by ultrasonication. Tests for characterizing formulations included particle size, span, entrapment efficiency, drug loading, stability, differential scanning calorimetry (DSC), Fourier transformation infrared (FT-IR) spectroscopy, morphology, in vitro release, release kinetics mathematical modeling, and an in vivo pain model in dogs undergoing orthopedic surgeries, followed by in vivo pharmacokinetics, pharmacodynamics, and pain assessment studies in comparison to the reference standard, Mobitil®. Liposomal MLX had a particle size of around 100 nm, 82 % entrapment efficiency, and 4.62 % drug loading. Stability studies, DSC, and FT-IR spectroscopy indicated that liposomes were highly stable. The formulation showed an improved in vitro controlled release pattern and an enhanced in vivo pharmacokinetic behavior as manifested by higher t1/2 and AUC0 - 24 and lower Cl/F in comparison to Mobitil®. The pharmacodynamics study and pain scales demonstrated liposomal MLX managed postoperative pain better than Mobitil®. In conclusion, the incorporation of MLX in liposomes increased its solubility and stability, as well as its pain management properties.
Collapse
Affiliation(s)
- Pierre A. Hanna
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Hatim A. Al-Abbadi
- Faculty of Medicine, University Hospital, King Abdulaziz University, Jeddah 80212, Saudi Arabia
| | - Mohamed A. Hashem
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, 4.5 Ring Road, Ismailia 41522, Egypt
| | - Aziza E. Mostafa
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Yasmina K. Mahmoud
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, 4.5 Ring Road, Ismailia 41522, Egypt
| | - Eman A. Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, 4.5 Ring Road, Ismailia 41522, Egypt
| | - Ibrahim M. Hegab
- Department of Animal, Poultry and Fish Behavior and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ibrahim E. Helal
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, 4.5 Ring Road, Ismailia 41522, Egypt
- Department of Agriculture, Faculty of Environmental Science, King Abdulaziz University, Jeddah 80208, Saudi Arabia
| | - Mahmoud F. Ahmed
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, 4.5 Ring Road, Ismailia 41522, Egypt
| |
Collapse
|
2
|
Miranda-Muñoz K, Midkiff K, Woessner A, Afshar-Mohajer M, Zou M, Pollock E, Gonzalez-Nino D, Prinz G, Hutchinson L, Li R, Kompalage K, Culbertson CT, Tucker RJ, Coetzee H, Tsai T, Powell J, Almodovar J. A Multicomponent Microneedle Patch for the Delivery of Meloxicam for Veterinary Applications. ACS NANO 2024; 18:25716-25739. [PMID: 39225687 DOI: 10.1021/acsnano.4c08072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study evaluates the use of poly(vinyl alcohol), collagen, and chitosan blends for developing a microneedle patch for the delivery of meloxicam (MEL). Results confirm successful MEL encapsulation, structural integrity, and chemical stability even after ethylene oxide sterilization. Mechanical testing indicates the patch has the required properties for effective skin penetration and drug delivery, as demonstrated by load-displacement curves showing successful penetration of pig ear surfaces at 3N of normal load. In vitro imaging confirms the microneedle patch penetrates the pig's ear cadaver skin effectively and uniformly, with histological evaluation revealing the sustained presence and gradual degradation of microneedles within the skin. Additionally, in vitro drug diffusion experiments utilizing ballistic gel suggest that microneedles commence dissolution almost immediately upon insertion into the gel, steadily releasing the drug over 24 h. Furthermore, the microneedle patch demonstrates ideal drug release capabilities, achieving nearly 100% release of meloxicam content from a single patch within 18 h. Finally, in vivo studies using pigs demonstrate the successful dissolution and transdermal drug delivery efficacy of biodegradable microneedle patches delivering meloxicam in a porcine model, with over 70% of microneedles undergoing dissolution after 3 days. While low detectable meloxicam concentrations were observed in the bloodstream, high levels were detected in the ear tissue, confirming the release and diffusion of the drug from microneedles. This work highlights the potential of microneedle patches for controlled drug release in veterinary applications.
Collapse
Affiliation(s)
- Katherine Miranda-Muñoz
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Kirsten Midkiff
- Department of Animal Sciences, University of Arkansas, B110 Agriculture, Food and Life Sciences Building, Fayetteville, Arkansas 72701, United States
| | - Alan Woessner
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Arkansas Integrative Metabolic Research Center, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Mahyar Afshar-Mohajer
- Department of Mechanical Engineering, University of Arkansas, 204 Mechanical Engineering Building, Fayetteville, Arkansas 72701, United States
| | - Min Zou
- Department of Mechanical Engineering, University of Arkansas, 204 Mechanical Engineering Building, Fayetteville, Arkansas 72701, United States
| | - Erik Pollock
- Department of Biological Sciences, University of Arkansas, Fayetteville, Science Engineering Building, Fayetteville, Arkansas 72701, United States
| | - David Gonzalez-Nino
- Department of Civil Engineering, University of Arkansas, 4190 Bell Engineering Center, Fayetteville, Arkansas 72701, United States
| | - Gary Prinz
- Department of Civil Engineering, University of Arkansas, 4190 Bell Engineering Center, Fayetteville, Arkansas 72701, United States
| | - Lillian Hutchinson
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, Arkansas 72701, United States
| | - Ruohan Li
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, Arkansas 72701, United States
| | - Kushan Kompalage
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 213 CBC Building, 1212 Mid-Campus Dr North, Manhattan, Kansas 66506, United States
| | - Christopher T Culbertson
- Department of Chemistry, Kansas State University, 228 Coles Hall, 1710 Denison Ave, Manhattan, Kansas 66506, United States
| | - Ryan Jared Tucker
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 213 CBC Building, 1212 Mid-Campus Dr North, Manhattan, Kansas 66506, United States
| | - Hans Coetzee
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 213 CBC Building, 1212 Mid-Campus Dr North, Manhattan, Kansas 66506, United States
| | - Tsung Tsai
- Department of Animal Sciences, University of Arkansas, B110 Agriculture, Food and Life Sciences Building, Fayetteville, Arkansas 72701, United States
| | - Jeremy Powell
- Department of Animal Sciences, University of Arkansas, B110 Agriculture, Food and Life Sciences Building, Fayetteville, Arkansas 72701, United States
| | - Jorge Almodovar
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
3
|
Möbitz H, Dittrich B, Rodde S, Strang R. Nonclassical Zwitterions as a Design Principle to Reduce Lipophilicity without Impacting Permeability. J Med Chem 2024; 67:9485-9494. [PMID: 38747896 PMCID: PMC11292855 DOI: 10.1021/acs.jmedchem.4c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
The ionization of bioactive molecules impacts many ADME-relevant physicochemical properties, in particular, solubility, lipophilicity, and permeability. Ampholytes contain both acidic and basic groups and are distinguished as ordinary ampholytes and zwitterions. An influential review states that zwitterions only exist if the acidic pKa is significantly lower than the basic pKa. Through concordance of measured and calculated pKa and log P, we show that the zwitterionic behavior of several marketed drugs and natural products occurs despite a low or negative ΔpKa. These nonclassical zwitterions are characterized by a weak acidic and basic pKa and conjugation through an extended aromatic system, often including pseudorings via intramolecular hydrogen bonds. In contrast to most classical zwitterions, nonclassical zwitterions can exhibit excellent permeability. As permeability and lipophilicity are typically correlated, the combination of low lipophilicity and high permeability makes nonclassical zwitterions an attractive design principle in medicinal chemistry.
Collapse
Affiliation(s)
- Henrik Möbitz
- Novartis BioMedical Research, 4002 Basel, Switzerland
| | | | | | - Ross Strang
- Novartis BioMedical Research, 4002 Basel, Switzerland
| |
Collapse
|
4
|
Jadach B, Kowalczyk M, Froelich A. Assessment of Alginate Gel Films as the Orodispersible Dosage Form for Meloxicam. Gels 2024; 10:379. [PMID: 38920926 PMCID: PMC11202906 DOI: 10.3390/gels10060379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of this study was to obtain films based on sodium alginate (SA) for disintegration in the oral cavity. The films were prepared with a solvent-casting method, and meloxicam (MLX) as the active ingredient was suspended in a 3% sodium alginate solution. Two different solid-dosage-form additives containing different disintegrating agents, i.e., VIVAPUR 112® (MCC; JRS Pharma, Rosenberg, Germany) and Prosolve EASYtabs SP® (MIX; JRS Pharma, Rosenberg, Germany), were used, and four different combinations of drying time and temperature were tested. The influence of the used disintegrant on the properties of the ODFs (orodispersible films) was investigated. The obtained films were studied for their appearance, elasticity, mass uniformity, water content, meloxicam content and, finally, disintegration time, which was studied using two different methods. The films obtained with the solvent-casting method were flexible and homogeneous in terms of MLX content. Elasticity was slightly better when MIX was used as a disintegrating agent. However, these samples also revealed worse uniformity and mechanical durability. It was concluded that the best properties of the films were achieved using the mildest drying conditions. The type of the disintegrating agent had no effect on the amount of water remaining in the film after drying. The water content depended on the drying conditions. The disintegration time was not affected by the disintegrant type, but some differences were observed when various drying conditions were applied. However, regardless of the formulation type and manufacturing conditions, the analyzed films could not be classified as fast disintegrating films, as the disintegration time exceeded 30 s in all of the tested formulations.
Collapse
Affiliation(s)
- Barbara Jadach
- Division of Industrial Pharmacy, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland;
| | - Martyna Kowalczyk
- Division of Industrial Pharmacy, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland;
| | - Anna Froelich
- 3D Printing Division, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| |
Collapse
|
5
|
Maggi L, Friuli V, Cerea B, Bruni G, Berbenni V, Bini M. Physicochemical Characterization of Hydroxyapatite Hybrids with Meloxicam for Dissolution Rate Improvement. Molecules 2024; 29:2419. [PMID: 38893294 PMCID: PMC11173451 DOI: 10.3390/molecules29112419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Organic-inorganic hybrids represent a good solution to improve the solubility and dissolution rates of poorly soluble drugs whose number has been increasing in the last few years. One of the most diffused inorganic matrices is hydroxyapatite (HAP), which is a biocompatible and osteoconductive material. However, the understanding of the hybrids' functioning mechanisms is in many cases limited; thus, thorough physicochemical characterizations are needed. In the present paper, we prepared hybrids of pure and Mg-doped hydroxyapatite with meloxicam, a drug pertaining to the Biopharmaceutical Classification System (BCS) class II, i.e., drugs with low solubility and high permeability. The hybrids' formation was demonstrated by FT-IR, which suggested electrostatic interactions between HAP and drug. The substitution of Mg in the HAP structure mainly produced a structural disorder and a reduction in crystallite sizes. The surface area of HAP increased after Mg doping from 82 to 103 m2g-1 as well as the pore volume, justifying the slightly high drug amount adsorbed by the Mg hybrid. Notwithstanding the low drug loading on the hybrids, the solubility, dissolution profiles and wettability markedly improved with respect to the drug alone, particularly for the Mg doped one, which was probably due to the main distribution of the drug on the HAP surface.
Collapse
Affiliation(s)
- Lauretta Maggi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy;
| | - Valeria Friuli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy;
| | - Beatrice Cerea
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy;
| | - Giovanna Bruni
- Department of Chemistry, University of Pavia, Viale Taramelli 16, 27100 Pavia, Italy; (G.B.); (V.B.)
- Consorzio per i Sistemi a Grande Interfase (CSGI), Department of Chemistry, University of Pavia, Viale Taramelli 16, 27100 Pavia, Italy
| | - Vittorio Berbenni
- Department of Chemistry, University of Pavia, Viale Taramelli 16, 27100 Pavia, Italy; (G.B.); (V.B.)
| | - Marcella Bini
- Department of Chemistry, University of Pavia, Viale Taramelli 16, 27100 Pavia, Italy; (G.B.); (V.B.)
- Consorzio per i Sistemi a Grande Interfase (CSGI), Department of Chemistry, University of Pavia, Viale Taramelli 16, 27100 Pavia, Italy
- National Reference Centre for Electrochemical Energy Storage (GISEL), Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
6
|
Macasoi C, Meltzer V, Stanculescu I, Romanitan C, Pincu E. Binary Mixtures of Meloxicam and L-Tartaric Acid for Oral Bioavailability Modulation of Pharmaceutical Dosage Forms. J Funct Biomater 2024; 15:104. [PMID: 38667561 PMCID: PMC11050778 DOI: 10.3390/jfb15040104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Binary mixtures of active pharmaceutical ingredients (API) are researched to improve the oral bioavailability of pharmaceutical dosage forms. The purpose of this study was to obtain mixtures of meloxicam and L-tartaric acid because tartaric acid improves intestinal absorption and meloxicam is more soluble in a weakly basic environment. The mixtures in the 0-1 molar fraction range, obtained from solvent-assisted mechanosynthesis, were investigated by differential scanning calorimetry (DSC), Fourier Transform Infrared (FTIR) spectroscopy, Fourier Transform Raman spectroscopy (FT-Raman), X-ray powder diffraction (XRD) and solubility tests. The physicochemical characteristics of the compounds obtained from DSC data reveal, for the first time, the formation of a co-crystal at meloxicam molar fraction of 0.5. FTIR spectroscopy data show the existence of hydrogen bonds between the co-crystal components meloxicam and L-tartaric acid. FT-Raman spectroscopy was used complementary with FT-IR spectroscopy to analyze the pure APIs and their mixtures, to emphasize the appearance/disappearance and the shifts of the position/intensity of vibrational bands, following the formation of hydrogen-bonded structures or van der Waals interactions, and to especially monitor the crystal lattice vibrations below 400 cm-1. The experimental results obtained by X-ray powder diffraction confirmed the formation of the co-crystal by the loss and, respectively, the apparition of peaks from the single components in the co-crystal diffractogram. The solubility tests showed that the co-crystal product has a lower aqueous solubility due to the acidic character of the other component, tartaric acid. However, when the solubility tests were performed in buffer solution of pH 7.4, the solubility of meloxicam from the co-crystal mixture was increased by 57% compared to that of pure meloxicam. In conclusion, the studied API mixtures may be considered potential biomaterials for improved drug release molecular solids.
Collapse
Affiliation(s)
- Cristina Macasoi
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Bd., 030018 Bucharest, Romania; (C.M.); (V.M.); (I.S.)
| | - Viorica Meltzer
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Bd., 030018 Bucharest, Romania; (C.M.); (V.M.); (I.S.)
| | - Ioana Stanculescu
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Bd., 030018 Bucharest, Romania; (C.M.); (V.M.); (I.S.)
- Horia Hulubei National Institute for Physics and Nuclear Engineering, IRASM Department, 30 Reactorului Str., 077125 Magurele, Romania
| | - Cosmin Romanitan
- National Institute for Research and Development in Microtechnologies (IMT Bucharest), 126A Erou Iancu Nicolae Street, 72996 Bucharest, Romania;
| | - Elena Pincu
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Bd., 030018 Bucharest, Romania; (C.M.); (V.M.); (I.S.)
| |
Collapse
|
7
|
Jyothi VGSS, Veerabomma H, Katta C, Madan J. Computational quality-by-design strategy to validate high-performance liquid chromatography method for the estimation of meloxicam in bulk dosage forms and milk samples. ANAL SCI 2024; 40:249-261. [PMID: 37882956 DOI: 10.1007/s44211-023-00448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
Bovine clinical mastitis has significant repercussions for farmers across the globe. Meloxicam, a COX-2 inhibitor, attenuates mastitis symptoms and is also approved for veterinary use. An RP-HPLC (Reverse Phase-High Performance Liquid Chromatography) method development and validation is essential in the pharmaceutical industry to assess API (Active Pharmaceutical Ingredient) quantity present in the pharmaceutical dosage forms. RP-HPLC method of meloxicam was developed and optimized with the aid of QbD (Quality by Design) using Box-Behnken design (BBD). The pH of the aqueous mobile phase, acetonitrile (ACN) percentage, and column temperature were chosen as influence variables, and retention time (RT) and tailing factor (Tf) were selected as response variables. The optimum experimental conditions were selected as pH ~ 3 of the aqueous mobile phase, 65% v/v ACN, and 30˚C as column temperature. The drug was eluted at 6.02 min RT with 1.18 as Tf. The method was subjected to validation for accuracy, linearity, precision, range, sensitivity, and robustness and was found to comply with ICH Q2 (R1) guidelines. The in vitro bioequivalent studies were performed in hydrochloric acid, pH ~ 1.2; acetate buffer, pH ~ 4.5; and phosphate buffer, pH ~ 6.8 for two veterinary brands of meloxicam tablets, and their release profiles were compared by mathematical models. Both the brands, brand 1 and 2 exhibited significant (Unpaired t-test, P < 0.05) differences in dissolution efficiency (DE) and mean dissolution time (MDT) except DE at pH 1.2. However, brands 1 and 2 showed similarity (f2 > 50) in terms of release of meloxicam except at pH 6.8 (f2 = 47.01). The in vitro release of meloxicam followed Peppas kinetics except for brand 2 at pH 6.8, where it followed the Higuchi model. Moreover, the recovery of meloxicam extracted with ACN in the milk sample was estimated to be 99.67 ± 0.58% significantly (Unpaired t-test, P < 0.05) higher than 90.34 ± 6.77% extracted with methanol. In conclusion, the optimized and validated RP-HPLC method of meloxicam may further be used for the analysis of drug content in pharmaceutical dosage forms in addition to biological fluids.
Collapse
Affiliation(s)
- Vaskuri G S Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Harithasree Veerabomma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Chantibabu Katta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
8
|
Friuli V, Maggi L, Bruni G, Caso F, Bini M. Hydroxyapatite Nanorods Based Drug Delivery Systems for Bumetanide and Meloxicam, Poorly Water Soluble Active Principles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:113. [PMID: 38202568 PMCID: PMC10780568 DOI: 10.3390/nano14010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Poorly water-soluble drugs represent a challenge for the pharmaceutical industry because it is necessary to find properly tuned and efficient systems for their release. In this framework, organic-inorganic hybrid systems could represent a promising strategy. A largely diffused inorganic host is hydroxyapatite (HAP, Ca10(PO4)6(OH)2), which is easily synthesized with different external forms and can adsorb different kinds of molecules, thereby allowing rapid drug release. Hybrid nanocomposites of HAP nanorods, obtained through hydrothermal synthesis, were prepared with two model pharmaceutical molecules characterized by low and pH-dependent solubility: meloxicam, a non-steroidal anti-inflammatory drug, and bumetanide, a diuretic drug. Both hybrids were physically and chemically characterized through the combined use of X-ray powder diffraction, scanning electron microscopy with energy-dispersive spectroscopy, differential scanning calorimetry, and infrared spectroscopy measurements. Then, their dissolution profiles and hydrophilicity (contact angles) in different media as well as their solubility were determined and compared to the pure drugs. This hybrid system seems particularly suitable as a drug carrier for bumetanide, as it shows higher drug loading and good dissolution profiles, while is less suitable for meloxicam, an acid molecule.
Collapse
Affiliation(s)
- Valeria Friuli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy;
| | - Lauretta Maggi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy;
| | - Giovanna Bruni
- Department of Chemistry, University of Pavia, Viale Taramelli 16, 27100 Pavia, Italy; (G.B.); (F.C.); (M.B.)
- CSGI—Department of Chemistry, University of Pavia, Viale Taramelli 16, 27100 Pavia, Italy
| | - Francesca Caso
- Department of Chemistry, University of Pavia, Viale Taramelli 16, 27100 Pavia, Italy; (G.B.); (F.C.); (M.B.)
| | - Marcella Bini
- Department of Chemistry, University of Pavia, Viale Taramelli 16, 27100 Pavia, Italy; (G.B.); (F.C.); (M.B.)
- CSGI—Department of Chemistry, University of Pavia, Viale Taramelli 16, 27100 Pavia, Italy
- National Reference Centre for Electrochemical Energy Storage (GISEL)—INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
9
|
Annaji M, Mita N, Heard J, Kang X, Poudel I, Boddu SHS, Tiwari AK, Babu RJ. Long-Acting Drug Delivery Technologies for Meloxicam as a Pain Medicine. Crit Rev Ther Drug Carrier Syst 2024; 41:111-150. [PMID: 38608134 DOI: 10.1615/critrevtherdrugcarriersyst.2024048988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Meloxicam, a selective COX-2 inhibitor, has demonstrated clinical effectiveness in managing inflammation and acute pain. Although available in oral and parenteral formulations such as capsule, tablet, suspension, and solution, frequent administration is necessary to maintain therapeutic efficacy, which can increase adverse effects and patient non-compliance. To address these issues, several sustained drug delivery strategies such as oral, transdermal, transmucosal, injectable, and implantable drug delivery systems have been developed for meloxicam. These sustained drug delivery strategies have the potential to improve the therapeutic efficacy and safety profile of meloxicam, thereby reducing the frequency of dosing and associated gastrointestinal side effects. The choice of drug delivery system will depend on the desired release profile, the target site of inflammation, and the mode of administration. Overall, meloxicam sustained delivery systems offer better patient compliance, and reduce the side effects, thereby improving the clinical applications of this drug. Herein, we discuss in detail different strategies for sustained delivery of meloxicam.
Collapse
Affiliation(s)
- Manjusha Annaji
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | | | - Jessica Heard
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Ishwor Poudel
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, UAE; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
10
|
Švára D, Filipová B, Jelínek P, Mikeš P, Kluk A, Šoóš M. The impact of polymer mixture composition on the properties of electrospun membranes for drug delivery applications. Int J Pharm 2023; 647:123548. [PMID: 37890644 DOI: 10.1016/j.ijpharm.2023.123548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Orally dispersible films (ODFs) prepared by an electrospinning are a novel type of pharmaceutical formulation. This dosage form has the potential to be beneficial for small children and the elderly, who can have problems with administration of classical tablets due to the increased risk of choking and difficulty with swallowing. Due to the highly porous nanofiber morphology, the ODFs examined in this study achieve rapid disintegration into drug microparticles when in contact with saliva. The suspension is then easier to swallow. In this study, we focus on the impact of film composition (polymer matrix composition) on the properties of electrospun membranes. In particular, we prepared ODFs composed of a mixture of PEG 100 000 with HPMC E5 and PVP k90 with HPMC E5. We found significant differences in the structure of electrospinned membranes, where samples containing PEG 100 000 and HPMC E5 exhibited much narrower distribution of fibers. Furthermore, nanofibers containing PVP k90 exhibit a faster disintegration rate, while dissolution of the drug was faster in the case of PEG 100 000 containing ODFs. The improvement was caused by both the structure and composition of the membranes.
Collapse
Affiliation(s)
- Dominik Švára
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 - Dejvice, Czech Republic
| | - Barbora Filipová
- Department of Physics, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
| | - Petr Jelínek
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 - Dejvice, Czech Republic
| | - Petr Mikeš
- Department of Physics, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
| | - Anna Kluk
- Zentiva, k.s., U Kabelovny 130, 102 00 Prague 10, Czech Republic
| | - Miroslav Šoóš
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 - Dejvice, Czech Republic.
| |
Collapse
|
11
|
Plugariu IA, Gradinaru LM, Avadanei M, Rosca I, Nita LE, Maxim C, Bercea M. Thermosensitive Polyurethane-Based Hydrogels as Potential Vehicles for Meloxicam Delivery. Pharmaceuticals (Basel) 2023; 16:1510. [PMID: 38004376 PMCID: PMC10674489 DOI: 10.3390/ph16111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Meloxicam (MX) is a nonsteroidal anti-inflammatory drug (NSAID) used mainly to reduce pain, inflammation, and fever. In the present study, thermosensitive polyurethane (PU)-based hydrogels with various excipients (PEG, PVP, HPC, and essential oil) were prepared and loaded with MX. Rheological investigations were carried out on the PU-based formulations in various shear regimes, and their viscoelastic characteristics were determined. The average size of the PU micelles was 35.8 nm at 37 °C and slightly increased at 37 nm in the presence of MX. The zeta potential values of the hydrogels were between -10 mV and -11.5 mV. At pH = 6 and temperature of 37 °C, the formulated PU-based hydrogels loaded with MX could deliver significant amounts of the active substance, between 60% and 80% over 24-48 h and more than 90% within 2 weeks. It was found that anomalous transport phenomena dominated MX's release mechanism from the PU-based networks. The results are encouraging for further studies aiming to design alternative carriers to commercial dosage forms of nonsteroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ioana-Alexandra Plugariu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| | - Luiza Madalina Gradinaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| | - Mihaela Avadanei
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| | - Irina Rosca
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| | - Loredana Elena Nita
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| | - Claudia Maxim
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, 73A, D. Mangeron Blvd., 700050 Iasi, Romania;
| | - Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| |
Collapse
|
12
|
Jadach B, Misek M, Ferlak J. Comparison of Hydroxypropyl Methylcellulose and Alginate Gel Films with Meloxicam as Fast Orodispersible Drug Delivery. Gels 2023; 9:687. [PMID: 37754368 PMCID: PMC10528118 DOI: 10.3390/gels9090687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
The aim of the study was the preparation and comparison of two types of orodispersible gel films (ODF) by the solvent casting method. Natural polymers: sodium alginate (ALG) or hydroxypropyl methylcellulose (HPMC) were used as the gel film formers, and Kollidon or microcrystalline cellulose was used as the disintegrant. Meloxicam (MLX), the drug used to treat rheumatic diseases for children and adults, was proposed as the active pharmaceutical ingredient (API). The influence of the polymer and disintegrant on the properties of ODF was investigated. The evaluation of prepared gel films was based on appearance description, mass uniformity measurement, disintegration time, API content, film wettability, and water content. Also, the dissolution test was prepared in a basket apparatus using artificial salvia (pH = 6.8) as the medium. The obtained API release profiles were analyzed for the similarity factors (f2) with the DDSolver software. The results showed that independently of the polymer or disintegrant, using the solvent casting method, gel films have a similar appearance and active substance content close to the theoretical value and water content of less than 10%. Only the type of polymer influences the release profiles of MLX. However, the disintegration time was longer than 30 s, which makes the films non-fast-dissolving drug delivery systems. This means that for the ODF system, further evaluation is required, and some changes in the composition of the film have to be done.
Collapse
Affiliation(s)
- Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (M.M.); (J.F.)
| | | | | |
Collapse
|
13
|
Pei Y, Wang J, Khaliq NU, Meng F, Oucherif KA, Xue J, Horava SD, Cox AL, Richard CA, Swinney MR, Park K, Yeo Y. Development of poly(lactide-co-glycolide) microparticles for sustained delivery of meloxicam. J Control Release 2023; 353:823-831. [PMID: 36521690 DOI: 10.1016/j.jconrel.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Poly(lactide-co-glycolide) (PLGA) polymers have been widely used for drug delivery due to their biodegradability and biocompatibility. One of the objectives of encapsulating a drug in PLGA microparticles (MPs) is to achieve an extended supply of the drug through sustained release, which can range from weeks to months. Focusing on the applications needing a relatively short-term delivery, we investigated formulation strategies to achieve a drug release from PLGA MPs for two weeks, using meloxicam as a model compound. PLGA MPs produced by the traditional oil/water (O/W) single emulsion method showed only an initial burst release with minimal increase in later-phase drug release. Alternatively, encapsulating meloxicam as solid helped reduce the initial burst release. The inclusion of magnesium hydroxide [Mg(OH)2] enhanced later-phase drug release by neutralizing the developing acidity that limited the drug dissolution. The variation of solid meloxicam and Mg(OH)2 quantities allowed for flexible control of meloxicam release, yielding MPs with distinct in vitro release kinetics. When subcutaneously injected into rats, the MPs with relatively slow in vitro drug release kinetics showed in vivo drug absorption profiles consistent with in vitro trend. However, the MPs that rapidly released meloxicam showed an attenuated in vivo absorption, suggesting premature precipitation of fast-released meloxicam. In summary, this study demonstrated the feasibility of controlling drug release from the PLGA MPs over weeks based on the physical state of the encapsulated drug and the inclusion of Mg(OH)2 to neutralize the microenvironmental pH of the MPs.
Collapse
Affiliation(s)
- Yihua Pei
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jianping Wang
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Nisar Ul Khaliq
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Fanfei Meng
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | | | - Jie Xue
- Eli Lilly and Company, 893 Delaware Street, Indianapolis, IN 46225, USA
| | - Sarena D Horava
- Eli Lilly and Company, 450 Kendall Street, Cambridge, MA 02142, USA
| | - Amy L Cox
- Eli Lilly and Company, 893 Delaware Street, Indianapolis, IN 46225, USA
| | - Coralie A Richard
- Eli Lilly and Company, 893 Delaware Street, Indianapolis, IN 46225, USA
| | - Monica R Swinney
- Eli Lilly and Company, 450 Kendall Street, Cambridge, MA 02142, USA
| | - Kinam Park
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
14
|
Novel fluorophenyl tethered thiazole and chalcone analogues as potential anti-tubercular agents: Design, synthesis, biological and in silico evaluations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Huang S, Venables DS, Lawrence SE. Pharmaceutical Salts of Piroxicam and Meloxicam with Organic Counterions. CRYSTAL GROWTH & DESIGN 2022; 22:6504-6520. [PMID: 36817751 PMCID: PMC9933440 DOI: 10.1021/acs.cgd.2c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/13/2022] [Indexed: 06/18/2023]
Abstract
Piroxicam (PRM) and meloxicam (MEL) are two nonsteroidal anti-inflammatory drugs, belonging to the Biopharmaceutics Classification System Class II drugs. In this study, six novel pharmaceutical salts of PRM and MEL with three basic organic counterions, that is, 4-aminopyridine (4AP), 4-dimethylaminopyridine (4DMP), and piperazine (PPZ), were prepared by both slurrying and slow evaporation. These salts were characterized by single-crystal and powder X-ray diffraction, thermal analysis, and Fourier transform infrared spectroscopy. All six salts, especially MEL-4DMP and MEL-4AP, showed a significantly improved apparent solubility and dissolution rate in sodium phosphate solution compared with the pure APIs. Notably, PRM-4AP and PRM-4DMP salts exhibited enhanced fluorescence, and the PRM-PPZ salt showed weaker fluorescence compared with that of pure PRM due to different luminescence mechanisms.
Collapse
Affiliation(s)
- Shan Huang
- School
of Chemistry, Analytical and Biological Chemistry Research Facility,
Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 K8AF, Ireland
| | - Dean S. Venables
- School
of Chemistry and Environmental Research Institute, University College Cork, Cork T12 K8AF, Ireland
| | - Simon E. Lawrence
- School
of Chemistry, Analytical and Biological Chemistry Research Facility,
Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
16
|
Yegireddy M, Nadoor P, Rao S, Hanumanthu PB, Rajashekaraiah R, Ramachandrappa SC, Halemani GM, Mannem S, Prasad TNVKV, Ubaradka S. Chitosan Encapsulated Meloxicam Nanoparticles for Sustained Drug Delivery Applications: Preparation, Characterization, and Pharmacokinetics in Wistar Rats. Molecules 2022; 27:7312. [PMID: 36364138 PMCID: PMC9658985 DOI: 10.3390/molecules27217312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 08/19/2023] Open
Abstract
Meloxicam (MLX) is currently used in the therapeutic management of both acute and chronic inflammatory disorders such as pain, injuries, osteoarthritis, and rheumatoid arthritis in both humans and animals. Gastrointestinal toxicity and occasional renal toxicity were observed in patients taking it for a long-term period. Meloxicam's late attainment of peak plasma concentration results in a slow onset of action. The goal of the current study was to prepare and characterize chitosan encapsulated meloxicam nanoparticles (CEMNPs) with high bioavailability and less gastro intestinal toxicity in order to prevent such issues. The size of the prepared CEMNPs was approximately 110-220 nm with a zetapotential of +39.9 mV and polydispersity index of 0.268, suggesting that they were uniformly dispersed nanoparticles. The FTIR and UV-Vis spectroscopy have confirmed the presence of MLX in the prepared CEMNPs. The pharmacokinetics have been studied with three groups of male Wistar rats receiving either of the treatments, viz., 4 mg·kg-1 of MLX and 1 or 4 mg·kg-1 of CEMNPs. Plasma samples were collected until 48 h post administration, and concentrations of MLX were quantified by using reverse (C18) phase HPLC. Non-compartmental analysis was applied to determine pharmacokinetic variables. Upon oral administration, the maximum concentration (Cmax) was reached in 4 h for CEMNPs and 6 h for MLX. The mean area under the plasma MLX concentration-time curve from 'zero' to infinity (AUC0-∞), half-life (t1/2β), and mean resident time (MRT) of 1 mg·kg-1 of CEMNPs was 1.4-, 2-, and 1.8-fold greater than 4 mg·kg-1 of MLX. The prepared CEMNPs demonstrated quicker absorption and prolonged release along with a significant improvement in the bioavailability of MLX, paving a prospective path for the development of drugs with enhanced bioavailability with less side effects.
Collapse
Affiliation(s)
- Muralidhar Yegireddy
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Hebbal, Bengaluru 560 024, Karnataka, India
- Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar 585 401, Karnataka, India
| | - Prakash Nadoor
- Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar 585 401, Karnataka, India
- Veterinary College, Vinobanagar, Shivamogga 577 204, Karnataka, India
| | - Suguna Rao
- Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar 585 401, Karnataka, India
- Department of Veterinary Pathology, Veterinary College, Hebbal, Bengaluru 560 024, Karnataka, India
| | - Pavithra Balekatte Hanumanthu
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Hebbal, Bengaluru 560 024, Karnataka, India
- Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar 585 401, Karnataka, India
| | - Rashmi Rajashekaraiah
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Hebbal, Bengaluru 560 024, Karnataka, India
- Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar 585 401, Karnataka, India
| | - Santhosh Chickankandahalli Ramachandrappa
- Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar 585 401, Karnataka, India
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Gadag 582 101, Karnataka, India
| | - Girish Mallikarjun Halemani
- Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar 585 401, Karnataka, India
- Department of Veterinary Anatomy, Veterinary College, Hebbal, Bengaluru 560 024, Karnataka, India
| | - Sravanthi Mannem
- State Level Diagnostic Laboratory, Sri Venkateswara Veterinary University, Tirupati 517 502, Andhra Pradesh, India
| | | | - Sunilchandra Ubaradka
- Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar 585 401, Karnataka, India
- Department of Veterinary Pharmacology and Toxicology, Vinobanagar, Shivamogga 577 204, Karnataka, India
| |
Collapse
|
17
|
Tinjacá D, Martínez F, Almanza OA, Jouyban A, Acree WE. Effect of N-Methyl-pyrrolidone (NMP) on the Equilibrium Solubility of Meloxicam in Aqueous Media: Correlation, Dissolution Thermodynamics, and Preferential Solvation. ACS OMEGA 2022; 7:37988-38002. [PMID: 36312332 PMCID: PMC9609070 DOI: 10.1021/acsomega.2c05189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/03/2022] [Indexed: 05/19/2023]
Abstract
Meloxicam is an analgesic and anti-inflammatory drug widely prescribed in current therapeutics that exhibits very low solubility in water. Thus, this physicochemical property has been studied in N-methyl-pyrrolidone (NMP)-aqueous mixtures at several temperatures to expand the solubility database about pharmaceutical compounds in aqueous-mixed solvents. The flask-shake method and UV-vis spectrophotometry were used for meloxicam solubility determination as a function of temperature and mixture composition. Several cosolvency models, including the Jouyban-Acree model, were challenged for equilibrium solubility correlation and/or prediction. The van't Hoff and Gibbs equations were employed here to calculate the apparent standard thermodynamic quantities for the dissolution and mixing processes of this drug in these aqueous mixtures. Inverse Kirkwood-Buff integrals were employed to calculate the preferential solvation parameters of meloxicam by NMP in all mixtures. Meloxicam equilibrium solubility increased with increasing temperature, and maximal solubilities were observed in neat NMP at all temperatures. The mole fraction solubility of meloxicam increased from 1.137 × 10-6 in neat water to 3.639 × 10-3 in neat NMP at 298.15 K. The Jouyban-Acree model correlated the meloxicam solubility in these mixtures very well. Dissolution processes were endothermic and entropy-driven in all cases, except in neat water, where nonenthalpy- nor entropy-driven was observed. Apparent Gibbs energies of dissolution varied from 34.35 kJ·mol-1 in pure water to 7.99 kJ·mol-1 in pure NMP at a mean harmonic temperature of 303.0 K. A nonlinear enthalpy-entropy relationship was observed in the plot of dissolution enthalpy vs dissolution Gibbs energy. Meloxicam is preferentially hydrated in water-rich mixtures but preferentially solvated by NMP in the composition interval of 0.16 < x 1 < 1.00.
Collapse
Affiliation(s)
- Darío
A. Tinjacá
- Facultad
de Ciencias, Universidad El Bosque, Av. Cra. 9 No. 131A-02, Bogotá D.C.111156, Colombia
| | - Fleming Martínez
- Grupo
de Investigaciones Farmacéutico-Fisicoquímicas, Departamento
de Farmacia, Facultad de Ciencias, Universidad
Nacional de Colombia, Sede Bogotá, Cra. 30 No. 45-03, Bogotá
D.C.111156, Colombia
| | - Ovidio A. Almanza
- Grupo
de Física Aplicada, Departamento de Física, Facultad
de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Cra. 30 No.
45-03, Bogotá D.C.111156, Colombia
| | - Abolghasem Jouyban
- Pharmaceutical
Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz51368, Iran
- Faculty
of Pharmacy, Near East University, P.O. Box 99138, Nicosia, North Cyprus, Mersin10, Turkey
| | - William E. Acree
- Department
of Chemistry, University of North Texas, Denton, Texas76203-5070, United States
| |
Collapse
|
18
|
A comparative approach of MIR, NIR and Raman based chemometric strategies for quantification of Form I of Meloxicam in commercial bulk drug. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Film forming topical dermal spray of meloxicam attenuated pain and inflammation in carrageenan-induced paw oedema in Sprague Dawley rats. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Ambrus R, Alshweiat A, Szabó-Révész P, Bartos C, Csóka I. Smartcrystals for Efficient Dissolution of Poorly Water-Soluble Meloxicam. Pharmaceutics 2022; 14:pharmaceutics14020245. [PMID: 35213978 PMCID: PMC8879336 DOI: 10.3390/pharmaceutics14020245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/23/2022] Open
Abstract
Nanocrystal is widely applied to improve the dissolution of poorly water-soluble drugs. We aimed to prepare meloxicam (MLX) nanocrystals using the bead mill method, followed by high-pressure homogenization (HPH). Simple drying at room temperature (RD), vacuum-drying (VD), and freeze-drying (FD) using mannitol or trehalose as a cryoprotectant were applied to obtain dry nanocrystals. The nanocrystals were fully characterized. The MLX nanosuspension containing 5% w/v MLX and 1% w/v of Pluronic F68 showing a mean particle size (MPS) of 242 nm and a polydispersity index (PDI) of 0.36 was prepared after 40 min of premilling and 30 min of HPH. The dried nanocrystals were spherical within the nano range. DSC and XRPD confirmed the absence of MLX amorphization. The smartcrystals showed enhanced MLX release. Approximately 100% release was achieved with phosphate buffer (PB), pH 5.6, and 80% was released with PB, pH 7.4, from the freeze-dried samples. The results revealed the effects of the drying method and cryoprotectant type on the properties of dry nanocrystals. The freeze-dried samples showed the smallest particle size, in particular trehalose-based samples. On the other hand, mannitol-based dried samples showed the highest crystallinity index among all nanocrystals (77.8%), whereas trehalose showed the lowest (59.2%). These factors explained the dissolution differences among the samples.
Collapse
Affiliation(s)
- Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (P.S.-R.); (C.B.); (I.C.)
- Correspondence:
| | - Areen Alshweiat
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Piroska Szabó-Révész
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (P.S.-R.); (C.B.); (I.C.)
| | - Csilla Bartos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (P.S.-R.); (C.B.); (I.C.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (P.S.-R.); (C.B.); (I.C.)
| |
Collapse
|
21
|
Yu Y, Tian Y, Zhang H, Jia Q, Chen X, Kang D, Du Y, Song S, Zheng A. The Evaluation of Meloxicam Nanocrystals by Oral Administration with Different Particle Sizes. Molecules 2022; 27:421. [PMID: 35056734 PMCID: PMC8780752 DOI: 10.3390/molecules27020421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 12/05/2022] Open
Abstract
Meloxicam (MLX) is a non-steroidal anti-inflammatory drug used to treat rheumatoid arthritis and osteoarthritis. However, its poor water solubility limits the dissolution process and influences absorption. In order to solve this problem and improve its bioavailability, we prepared it in nanocrystals with three different particle sizes to improve solubility and compare the differences between various particle sizes. The nanocrystal particle sizes were studied through dynamic light scattering (DLS) and laser scattering (LS). Transmission electron microscopy (TEM) was used to characterize the morphology of nanocrystals. The sizes of meloxicam-nanocrystals-A (MLX-NCs-A), meloxicam-nanocrystals-B (MLX-NCs-B), and meloxicam-nanocrystals-C (MLX-NCs-C) were 3.262 ± 0.016 μm, 460.2 ± 9.5 nm, and 204.9 ± 2.8 nm, respectively. Molecular simulation was used to explore the distribution and interaction energy of MLX molecules and stabilizer molecules in water. The results of differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) proved that the crystalline state did not change in the preparation process. Transport studies of the Caco-2 cell model indicated that the cumulative degree of transport would increase as the particle size decreased. Additionally, plasma concentration-time curves showed that the AUC0-∞ of MLX-NCs-C were 3.58- and 2.92-fold greater than those of MLX-NCs-A and MLX-NCs-B, respectively. These results indicate that preparing MLX in nanocrystals can effectively improve the bioavailability, and the particle size of nanocrystals is an important factor in transmission and absorption.
Collapse
MESH Headings
- Administration, Cutaneous
- Administration, Oral
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics
- Caco-2 Cells
- Calorimetry, Differential Scanning
- Drug Evaluation, Preclinical
- Dynamic Light Scattering
- Humans
- Male
- Meloxicam/administration & dosage
- Meloxicam/chemistry
- Meloxicam/pharmacokinetics
- Microscopy, Electron, Transmission
- Models, Molecular
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Particle Size
- Rats, Sprague-Dawley
- X-Ray Diffraction
- Rats
Collapse
Affiliation(s)
- Yao Yu
- Pharmaceutical Experiment Center, College of Pharmacy, Yanbian University, Yanji 133002, China; (Y.Y.); (Q.J.); (X.C.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (Y.T.); (H.Z.)
| | - Yang Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (Y.T.); (H.Z.)
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (Y.T.); (H.Z.)
| | - Qingxian Jia
- Pharmaceutical Experiment Center, College of Pharmacy, Yanbian University, Yanji 133002, China; (Y.Y.); (Q.J.); (X.C.)
| | - Xuejun Chen
- Pharmaceutical Experiment Center, College of Pharmacy, Yanbian University, Yanji 133002, China; (Y.Y.); (Q.J.); (X.C.)
| | - Dongzhou Kang
- Pharmaceutical Experiment Center, College of Pharmacy, Yanbian University, Yanji 133002, China; (Y.Y.); (Q.J.); (X.C.)
| | - Yimeng Du
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (Y.T.); (H.Z.)
| | - Shenghan Song
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (Y.T.); (H.Z.)
| |
Collapse
|
22
|
Zhang Z, Li L, Dong L, Tian J, Meng T, Zhao Q, Yang J. Molecular mechanisms involved in supersaturation of Emodin ternary solid dispersions based on bonding agents. J Pharm Sci 2022; 111:2000-2010. [DOI: 10.1016/j.xphs.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022]
|
23
|
Li J, Hu X, Luo T, Lu Y, Feng Y, Zhang H, Liu D, Fan X, Wang Y, Jiang L, Wang Y, Hao X, Shi T, Wang Z. N-2-(phenylamino) benzamide derivatives as novel anti-glioblastoma agents: Synthesis and biological evaluation. Eur J Med Chem 2021; 226:113817. [PMID: 34537445 DOI: 10.1016/j.ejmech.2021.113817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022]
Abstract
Glioblastoma is one of the most lethal brain tumors. The crucial chemotherapy is mainly alkylating agents with modest clinical success. Given this desperate need and inspired by the encouraging results of a phase II trial via concomitant Topo I inhibitor plus COX-2 inhibitor, we designed a series of N-2-(phenylamino) benzamide derivatives as novel anti-glioblastoma agents based on structure modification on 1,5-naphthyridine derivatives (Topo I inhibitors). Notably, the target compounds I-1 (33.61 ± 1.15 μM) and I-8 (45.01 ± 2.37 μM) were confirmed to inhibit COX-2, while a previous reported compound (1,5-naphthyridine derivative) resulted nearly inactive towards COX-2 (IC50 > 150 μM). Besides, I-1 and I-8 exhibited higher anti-proliferation, anti-migration, anti-invasion effects than the parent compound 1,5-naphthyridine derivative, suggesting the success of modification based on the parent. Moreover, I-1 obviously repressed tumor growth in the C6 glioma orthotopic model (TGI = 66.7%) and U87MG xenograft model (TGI = 69.4%). Besides, I-1 downregulated PGE2, VEGF, MMP-9, and STAT3 activation, upregulated E-cadherin in the orthotopic model. More importantly, I-1 showed higher safety than temozolomide and different mechanism from temozolomide in the C6 glioma orthotopic model. All the evidence demonstrated that N-2-(phenylamino) benzamide derivatives as novel anti-glioblastoma agents could be promising for the glioma management.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Tian Luo
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yingmei Lu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yiyue Feng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Dan Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaohong Fan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuqing Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Liming Jiang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
24
|
Steel TR, Walsh F, Wieczorek-Błauż A, Hanif M, Hartinger CG. Monodentately-coordinated bioactive moieties in multimodal half-sandwich organoruthenium anticancer agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213890] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Unveiling meloxicam monohydrate process of dehydration by an at-line vibrational multi-spectroscopy approach. J Pharm Biomed Anal 2021; 202:114164. [PMID: 34052549 DOI: 10.1016/j.jpba.2021.114164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/20/2021] [Indexed: 11/22/2022]
Abstract
Meloxicam (MLX) is a non-steroidal anti-inflammatory drug, extensively used for inflammatory diseases and pain treatments, which exhibits five known solids forms. Form IV of MLX, a zwitterionic monohydrate (MH), is an emblematic hydrate case with promissory dissolution properties in a poorly soluble drug. However, the lack of information about MH stability regarding the dehydration process and phase transition impedes the development of further stability studies. A multi-spectroscopic/chemometric approach was implemented coupling middle- (MIR), near-infrared (NIR) and Raman spectroscopies to monitor the heat-mediated dehydration process of MH. The application of multivariate curve resolution-alternating least squares (MCR-ALS) to multi-source spectra by data fusion allow a complete view of the phenomena, improving the selectivity and precision to establish the transition temperatures and to identify involved species. It was revealed a two-step mechanism, where MH changes to Form V at 90 °C obtaining its complete dehydration at 130 °C, Form V remains unchanged during the temperature range 130-190 °C and then the polymorphic conversion to Form I starts, which reaches 100 % at 230 °C before melting MLX (248 °C). The findings of this work allow set targets in the process control of products using MH. Additionally, MCR-ALS detected an event not evidenced by conventional thermal analysis, the transformation of Form V to Form I.
Collapse
|
26
|
Tinjacá DA, Martínez F, Almanza OA, Jouyban A, Acree WE. Solubility, Dissolution Thermodynamics and Preferential Solvation of Meloxicam in (Methanol + Water) Mixtures. J SOLUTION CHEM 2021. [DOI: 10.1007/s10953-021-01084-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Tinjacá DA, Martínez F, Almanza OA, Jouyban A, Acree WE. Solubility of meloxicam in (Carbitol® + water) mixtures: Determination, correlation, dissolution thermodynamics and preferential solvation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
A New Insight into Meloxicam: Assessment of Antioxidant and Anti-Glycating Activity in In Vitro Studies. Pharmaceuticals (Basel) 2020; 13:ph13090240. [PMID: 32927809 PMCID: PMC7558080 DOI: 10.3390/ph13090240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/26/2022] Open
Abstract
Meloxicam is a non-steroidal anti-inflammatory drug, which has a preferential inhibitory effect to cyclooxyganase-2 (COX-2). Although the drug inhibits prostaglandin synthesis, the exact mechanism of meloxicam is still unknown. This is the first study to assess the effect of meloxicam on protein glyco-oxidation as well as antioxidant activity. For this purpose, we used an in vitro model of oxidized bovine serum albumin (BSA). Glucose, fructose, ribose, glyoxal and methylglyoxal were used as glycating agents, while chloramine T was used as an oxidant. We evaluated the antioxidant properties of albumin (2,2-di-phenyl-1-picrylhydrazyl radical scavenging capacity, total antioxidant capacity and ferric reducing antioxidant power), the intensity of protein glycation (Amadori products, advanced glycation end products) and glyco-oxidation (dityrosine, kynurenine, N-formylkynurenine, tryptophan and amyloid-β) as well as the content of protein oxidation products (advanced oxidation protein products, carbonyl groups and thiol groups). We have demonstrated that meloxicam enhances the antioxidant properties of albumin and prevents the protein oxidation and glycation under the influence of various factors such as sugars, aldehydes and oxidants. Importantly, the antioxidant and anti-glycating activity is similar to that of routinely used antioxidants such as captopril, Trolox, reduced glutathione and lipoic acid as well as protein glycation inhibitors (aminoguanidine). Pleiotropic action of meloxicam may increase the effectiveness of anti-inflammatory treatment in diseases with oxidative stress etiology.
Collapse
|
29
|
Taha NF, Emam MF, Emara LH. A novel combination of Soluplus®/Poloxamer for Meloxicam solid dispersions via hot melt extrusion for rapid onset of action. Part 2: comparative bioavailability and IVIVC. Drug Dev Ind Pharm 2020; 46:1362-1372. [DOI: 10.1080/03639045.2020.1791164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Nesrin F. Taha
- Medicinal and Pharmaceutical Chemistry Department, Division of Pharmaceutical and Drug Industries Research, Industrial Pharmacy Laboratory, National Research Centre, Giza, Egypt
| | - Maha F. Emam
- Medicinal and Pharmaceutical Chemistry Department, Division of Pharmaceutical and Drug Industries Research, Industrial Pharmacy Laboratory, National Research Centre, Giza, Egypt
| | - Laila H. Emara
- Medicinal and Pharmaceutical Chemistry Department, Division of Pharmaceutical and Drug Industries Research, Industrial Pharmacy Laboratory, National Research Centre, Giza, Egypt
| |
Collapse
|
30
|
Zhang Z, Michniak-Kohn B. Flavosomes, novel deformable liposomes for the co-delivery of anti-inflammatory compounds to skin. Int J Pharm 2020; 585:119500. [DOI: 10.1016/j.ijpharm.2020.119500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
|
31
|
The role of pH and dose/solubility ratio on cocrystal dissolution, drug supersaturation and precipitation. Eur J Pharm Sci 2020; 152:105422. [PMID: 32531350 DOI: 10.1016/j.ejps.2020.105422] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 01/21/2023]
Abstract
Cocrystals that are more soluble than the constituent drug, generate supersaturation levels during dissolution and are predisposed to conversion to the less soluble drug. Drug release studies during cocrystal dissolution generally compare several cocrystals and their crystal structures. However, the influence of drug dose and solubility in different dissolution media has been scarcely reported. The present study aims to investigate how drug dose/solubility ratio (Do=Cdose/Sdrug), cocrystal solubility advantage over drug (SA=Scocrystal/Sdrug), and dissolution media affect cocrystal dissolution-drug supersaturation and precipitation (DSP) behavior. SA and Ksp values of 1:1 cocrystals of meloxicam-salicylic acid (MLX-SLC) and meloxicam-maleic acid (MLX-MLE) were determined at cocrystal/drug eutectic points. Results demonstrate that both cocrystals enhance SA by orders of magnitude (20 to 100 times for the SLC and over 300 times for the MLE cocrystal) in the pH range of 1.6 to 6.5. It is shown that during dissolution, cocrystals regulate the interfacial pH (pHint) to 1.6 for MLX-MLE and 4.5 for MLX-SLC, therefore diminishing the cocrystal dissolution rate dependence on bulk pH. Do values ranged from 2 (pH 6.5) to 410 (pH 1.6) and were mostly determined by the drug solubility dependence on pH. Drug release profiles show that maximum supersaturation (σmax=Cmax/Sdrug)and AUC increased with increasing Do as pH decreased. When Do>>SA, the cocrystal solubility is not sufficient to dissolve the dose so that a dissolution-precipitation quasi-equilibrium state is able to sustain supersaturation for the extent of the experiment (24 h). When Do<<SA, cocrystal solubility is more than adequate to dissolve the dose. Low σmax values (1.7 and 1.5) near the value of Do (2.3 and 2.4) were observed, where a large fraction of the cocrystal added is dissolved to reach σmax. Two different cocrystal to drug conversion pathways were observed: (1) surface nucleation of the metastable MLX polymorph IV on the dissolving cocrystal preceeded formation of the stable MLX polymorph I in bulk solution (in all conditions without FeSSIF), and (2) bulk nucleation of the stable MLX polymorph (in FeSSIF). The interplay between cocrystal SA, Do, and drug precipitation pathways provide a framework to interpret and understand the DSP behavior of cocrystals.
Collapse
|
32
|
Elkholy NE, Sultan AA, Elosaily GH, El Maghraby GM. Acetone-assisted co-processing of meloxicam with amino acids for enhanced dissolution rate. Pharm Dev Technol 2020; 25:882-891. [DOI: 10.1080/10837450.2020.1755982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nancy E. Elkholy
- Department of Pharmaceutics, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Amal A. Sultan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ghada H. Elosaily
- Department of Pharmaceutics, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Gamal M. El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
33
|
Šelešovská R, Hlobeňová F, Skopalová J, Cankař P, Janíková L, Chýlková J. Electrochemical oxidation of anti-inflammatory drug meloxicam and its determination using boron doped diamond electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Fujita M, Goto S, Chatani H, Otsuka Y, Shimada Y, Terada H, Inoo K. The function of oxybuprocaine: a parachute effect that sustains the supersaturated state of anhydrous piroxicam crystals. RSC Adv 2020; 10:1572-1579. [PMID: 35494714 PMCID: PMC9047611 DOI: 10.1039/c9ra09952b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/17/2019] [Indexed: 11/21/2022] Open
Abstract
Polymers have been recognized to have the function of sustaining the supersaturated state of drugs. This function has been widely studied because it will improve the absorption of poorly water-soluble drugs. However, clarifying the mechanism of this sustaining pharmaceutical effect (parachute effect) on the supersaturated state as a result of polymers is remains a task. We have found that oxybuprocaine, which is a small molecule, has a parachute effect on the supersaturated state (due to an anhydrate-to-hydrate transformation) of piroxicam-anhydrate in the aqueous phase. We consider that oxybuprocaine controls the environment of the solution and the network of polymers is unnecessary. Therefore, oxybuprocaine not only becomes a clue for elucidating the essential mechanism of the parachute effect of polymers but also enables us to rationally propose a new type of solubilizer. A small molecule, oxybuprocaine, has a parachute effect on the supersaturated state of piroxicam anhydrous crystals.![]()
Collapse
Affiliation(s)
- Momoko Fujita
- Faculty of Pharmaceutical Sciences
- Tokyo University of Science
- Chiba
- Japan
| | - Satoru Goto
- Faculty of Pharmaceutical Sciences
- Tokyo University of Science
- Chiba
- Japan
- Research Institute for Science and Technology
| | - Hitoshi Chatani
- Faculty of Pharmaceutical Sciences
- Tokyo University of Science
- Chiba
- Japan
| | - Yuta Otsuka
- Faculty of Pharmaceutical Sciences
- Tokyo University of Science
- Chiba
- Japan
- Research Institute for Science and Technology
| | - Yohsuke Shimada
- Faculty of Pharmaceutical Sciences
- Tokyo University of Science
- Chiba
- Japan
- Research Institute for Science and Technology
| | - Hiroshi Terada
- Faculty of Pharmaceutical Sciences
- Tokyo University of Science
- Chiba
- Japan
- Research Institute for Science and Technology
| | | |
Collapse
|
35
|
Parys W, Bober K, Pyka-Pająk A, Dołowy M. The Application of TLC and Densitometry for Quantitative Determination of Meloxicam in Tablets. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412915666190212155740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Meloxicam is as a non-steroidal anti-inflammatory drug that indicates a strong
anti-inflammatory, analgesic and antipyretic activity. It is used in the treatment of osteoarthritis arthritis,
osteoarthritis and rheumatoid arthritis in the form of various pharmaceutical preparations.
Objective:
The aim of the work was an elaboration of chromatographic conditions enabling the complete
separation of impurities A and B from meloxicam and also its quantitative determination in tablets
with use of TLC combined with densitometry as well as the comparison of the method proposed with
that described in the literature by Starek and Krzek.
Methods:
The mixture of ethyl acetate: toluene: n-butylamine (2:2:1, v/v/v) was used as a mobile phase.
Determination of meloxicam was performed on silica gel and aluminium oxide plates. Chromatographic
conditions presented in this work are better than those described by Starek and Krzek.
Results:
Linearity of the method for both types of plates was in the range from 1.0 to 5.0 µg/spot. Limit
of quantification for silica gel plates was 0.18 µg/spot, while for aluminium oxide plates it was 0.26
µg/spot. Limit of detection has been also specified, 0.06 μg/spot for silica gel plates and 0.08 μg/spot
for aluminium oxide plates. The average amount of meloxicam in tablets obtained on silica gel plates
was 100.4%, and on the aluminium oxide plates it was 100.3%.
Conclusion:
The developed method of determination of meloxicam using thin layer chromatography
combined with densitometry turned out to be accurate, precise and specific. It can be successfully applied
in quality control of meloxicam.
Collapse
Affiliation(s)
- Wioletta Parys
- Department of Analytical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Bober
- Department of Analytical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, Katowice, Poland
| | - Alina Pyka-Pająk
- Department of Analytical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, Katowice, Poland
| | - Małgorzata Dołowy
- Department of Analytical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
36
|
Monteforte F, Bruni G, Quinzeni I, Friuli V, Maggi L, Capsoni D, Bini M. Meloxicam-LDH Hybrid Compound: A Successful Strategy to Improve Solubility. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01230-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Seeking the best model for non-covalent interactions within the crystal structure of meloxicam. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Groppetti D, Di Cesare F, Pecile A, Cagnardi P, Merlanti R, D'Urso ES, Gioeni D, Boracchi P, Ravasio G. Maternal and neonatal wellbeing during elective C-section induced with a combination of propofol and dexmedetomidine: How effective is the placental barrier in dogs? Theriogenology 2019; 129:90-98. [PMID: 30826722 DOI: 10.1016/j.theriogenology.2019.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/14/2019] [Accepted: 02/21/2019] [Indexed: 01/05/2023]
Abstract
Anaesthetics administered during C-section (CS) can cross the placenta and the foetal blood-brain barrier contributing to distress up to neonatal mortality. Therefore, to prevent neonatal risks, sedatives and analgesics are not commonly administered to the bitch until all pups are delivered. This study aims to evaluate the effect of a new anaesthetic and analgesic protocol for elective CS in dogs, focused on both maternal and neonatal wellbeing. General anaesthesia was induced by a combination of propofol (PPF) and dexmedetomidine (DEX) and maintained with isoflurane. DEX was added to PPF in order to provide analgesia and to reduce PPF dose. Propofol and DEX concentrations in maternal blood, amniotic fluid, and placenta were correlated to maternal and neonatal parameters. Maternal pain score was assessed with Glasgow Composite Measure Pain Scale short-form. Nine healthy purebred dogs scheduled for elective CS delivered 54 pups. The 77.8% of pups were vigorous at birth and assigned to the highest Apgar score (AS). The lowest AS was recorded in pups from mothers receiving additional doses of PPF (p < 0.001). Apgar scores improved with the increase in time between induction and pups' extraction, starting from 30 min after induction (p < 0.01). This study could contribute to clarify the controversy about the optimal extraction's time of pups after induction i.e. the best time between PPF administration and birth. No bitch showed post-operative pain or required additional analgesic doses based on their pain score. Maternal blood PPF and DEX, as well as placental PPF concentrations, decreased over time (p < 0.01). Conversely, placental DEX was fair uniformly detected in littermate pups. Both PPF and DEX were not detectable in amniotic fluid. Placenta resulted an effective barrier against foetal DEX exposure, making this protocol safe, analgesic and advisable for elective CS in dogs.
Collapse
Affiliation(s)
- Debora Groppetti
- Department of Veterinary Medicine, Università degli Studi di Milano, via Celoria 10, 20133, Milan, Italy.
| | - Federica Di Cesare
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Celoria 10, 20133, Milan, Italy
| | - Alessandro Pecile
- Department of Veterinary Medicine, Università degli Studi di Milano, via Celoria 10, 20133, Milan, Italy
| | - Petra Cagnardi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Celoria 10, 20133, Milan, Italy
| | - Roberta Merlanti
- Department of Comparative Biomedicine and Food Science, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Elisa S D'Urso
- Department of Veterinary Medicine, Università degli Studi di Milano, via Celoria 10, 20133, Milan, Italy
| | - Daniela Gioeni
- Department of Veterinary Medicine, Università degli Studi di Milano, via Celoria 10, 20133, Milan, Italy
| | - Patrizia Boracchi
- Department of Clinical Sciences and Community Health, Università; degli Studi di Milano, Via Vanzetti 5, 20133, Milan, Italy
| | - Giuliano Ravasio
- Department of Veterinary Medicine, Università degli Studi di Milano, via Celoria 10, 20133, Milan, Italy
| |
Collapse
|
39
|
Investigation of Drug–Polymer Miscibility and Solubilization on Meloxicam Binary Solid Dispersion. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09378-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Ashraf A, Aman F, Movassaghi S, Zafar A, Kubanik M, Siddiqui WA, Reynisson J, Söhnel T, Jamieson SMF, Hanif M, Hartinger CG. Structural Modifications of the Antiinflammatory Oxicam Scaffold and Preparation of Anticancer Organometallic Compounds. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00751] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Adnan Ashraf
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Farhana Aman
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Sanam Movassaghi
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ayesha Zafar
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Mario Kubanik
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - Jóhannes Reynisson
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Stephen M. F. Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G. Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
41
|
da Costa VC, de Souza Pinto GL, Nascimento MVF, de Campos VEB, de Souza Junior FG. Poly (Butylene Succinate)-g-Poly(Hydroxypropyl Methacrylate) as a New Meloxican Delivery System. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/masy.201800109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Vítor C. da Costa
- Instituto de Macromoléculas; Centro de Tecnologia − Cidade Universitária; Universidade Federal do Rio de Janeiro; Av. Horácio Macedo 2030 bloco J. Rio de Janeiro Brazil
| | - Gabriel L. de Souza Pinto
- Instituto de Macromoléculas; Centro de Tecnologia − Cidade Universitária; Universidade Federal do Rio de Janeiro; Av. Horácio Macedo 2030 bloco J. Rio de Janeiro Brazil
| | - Maria V. F. Nascimento
- Instituto de Macromoléculas; Centro de Tecnologia − Cidade Universitária; Universidade Federal do Rio de Janeiro; Av. Horácio Macedo 2030 bloco J. Rio de Janeiro Brazil
| | - Vânia E. B. de Campos
- Instituto de Macromoléculas; Centro de Tecnologia − Cidade Universitária; Universidade Federal do Rio de Janeiro; Av. Horácio Macedo 2030 bloco J. Rio de Janeiro Brazil
| | - Fernando G. de Souza Junior
- Instituto de Macromoléculas; Centro de Tecnologia − Cidade Universitária; Universidade Federal do Rio de Janeiro; Av. Horácio Macedo 2030 bloco J. Rio de Janeiro Brazil
- Junior Programa de Engenharia Civil; COPPE; Centro de Tecnologia − Cidade Universitária; Universidade Federal do Rio de Janeiro; Av. Horácio Macedo 2030 bloco I. Rio de Janeiro Brazil
| |
Collapse
|
42
|
Aytekin YS, Köktürk M, Zaczek A, Korter TM, Heilweil EJ, Esenturk O. Optical Properties of Meloxicam in the Far-Infrared Spectral Region. Chem Phys 2018; 512. [PMID: 30996509 DOI: 10.1016/j.chemphys.2018.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
One of the most commonly used nonsteroidal anti-inflammatory active pharmaceutical ingredient called Meloxicam has been characterized spectroscopically both by Terahertz (THz) time domain spectroscopy (THz-TDS) and by Fourier Transform Infrared (FTIR) spectroscopy in far-IR regions of electromagnetic spectrum; 0.2 THz to 20 THz. While many relatively sharp features are observed in the far-IR range between 2 THz to 20 THz as expected for being an organic substance, very distinct and relatively strong absorption bands are also observed at 1.00, 1.66, 2.07 and 2.57 THz in the THz range. These well separated, defined, and fairly strong spectral features can be used for discrimination and quantification of Meloxicam in drug analysis. Frequency dependent refractive index of the drug was determined in a range of 0.2 THz and 2.7 THz, where an almost constant index was observed with an average index of 1.75. Powder XRD, and solid-state Density Functional Theory (SS-DFT) calculations were utilized to determine the crystalline form of the Meloxicam sample in its enolic crystalline form. Single molecule DFT calculations were also performed in all four possible structures of Meloxicam. In addition, the capability of THz waves transmission through common packaging materials is demonstrated for possibility of future on-site analysis. The results suggest that drug analysis will be possible to perform not only at every stage of manufacturing without destruction but also directly at the shelf of a market after development of portable THz technologies.
Collapse
Affiliation(s)
- Yusuf Samet Aytekin
- Department of Chemistry, Middle East Technical University, Ankara 06100, Turkey
| | - Mustafa Köktürk
- Nobel Pharmaceuticals Research and Development Center, Düzce 81100, Turkey
| | - Adam Zaczek
- Department of Chemistry, Syracuse University, Syracuse, NY 13244-4100, USA
| | - Timothy M Korter
- Department of Chemistry, Syracuse University, Syracuse, NY 13244-4100, USA
| | - Edwin J Heilweil
- Engineering Physics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Okan Esenturk
- Department of Chemistry, Middle East Technical University, Ankara 06100, Turkey
| |
Collapse
|
43
|
Šalandová J, Franc A, Hofmann J, Dumicic A, Kukačková L, Červená T, Beránek J, Srbek J, Repický A, Vladovičová B, Vetchý D. The effect of the composition of a fixed dose combination on bioequivalence results. Int J Pharm 2018; 546:235-246. [PMID: 29758343 DOI: 10.1016/j.ijpharm.2018.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/03/2018] [Accepted: 05/10/2018] [Indexed: 11/19/2022]
Abstract
The purpose of this work was to develop a new supergeneric product Meloxicam/Omeprazole. Such a combination brings a benefit in terms of decreasing side effects for the patients using meloxicam. The new combination is composed of a meloxicam powder blend (MPB) and omeprazole gastro-resistant pellets (OAP) in hard gelatin capsules. The main tasks were to select the excipients to keep the functional layer of OAP active and to prove the bioequivalence to the original products of meloxicam tablets together with omeprazole capsules. Although dissolution profiles similar to the original product were obtained, the unexpected results of omeprazole low bioavailability in the fed bioequivalence study (BES I) showed the necessity to investigate the formulation in greater depth. A modified more complex dissolution method was developed in order to understand the release of omeprazole under gastric conditions. This method revealed the degradation of omeprazole in the formulation when exposed to the fed conditions because of the increase in microenvironmental pH in the capsule caused by trisodium citrate, commonly used for improving solubility of meloxicam. This pH increase dissolved the gastro-resistant layer of OAP and caused the chemical degradation. To prevent this effect, a trisodium citrate-free formulation was developed. Reformulated capsules passed the repeated fed bioequivalence study (BES II).
Collapse
Affiliation(s)
- Jana Šalandová
- Zentiva, k.s. Praha, U Kabelovny 130, Prague 10, Czech Republic.
| | - Aleš Franc
- Department of Pharmaceutics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého třída 1, Brno, Czech Republic.
| | - Jiří Hofmann
- Zentiva, k.s. Praha, U Kabelovny 130, Prague 10, Czech Republic.
| | | | - Lenka Kukačková
- Zentiva, k.s. Praha, U Kabelovny 130, Prague 10, Czech Republic.
| | - Tereza Červená
- Zentiva, k.s. Praha, U Kabelovny 130, Prague 10, Czech Republic.
| | - Josef Beránek
- Zentiva, k.s. Praha, U Kabelovny 130, Prague 10, Czech Republic.
| | - Jan Srbek
- Zentiva, k.s. Praha, U Kabelovny 130, Prague 10, Czech Republic.
| | - Andrej Repický
- Saneca Pharmaceuticals, a.s., Nitrianská 100, Hlohovec, Slovakia
| | | | - David Vetchý
- Department of Pharmaceutics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého třída 1, Brno, Czech Republic.
| |
Collapse
|
44
|
Tantardini C, Arkipov SG, Cherkashina KA, Kil’met’ev AS, Boldyreva EV. Synthesis and crystal structure of a meloxicam co-crystal with benzoic acid. Struct Chem 2018. [DOI: 10.1007/s11224-018-1166-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Cocrystallization as a novel approach to enhance the transdermal administration of meloxicam. Eur J Pharm Sci 2018; 123:184-190. [PMID: 30031860 DOI: 10.1016/j.ejps.2018.07.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 01/23/2023]
Abstract
Despite its large effectiveness, the long-term oral administration of high doses of meloxicam (MLX) may lead to gastrointestinal events such as abdominal pain, diarrhea, dyspepsia, ulceration, hemorrhage, and gastrointestinal perforation. Moreover, the pH-dependent solubility of MLX makes the development of new oral formulations even more challenging. As an alternative to overcome these limitations, the transdermal delivery of this drug has been purposed. Although various physical and chemical approaches to enhance the absorption of MLX may be found in literature, the use of cocrystallization has not been reported so far. Cutaneous permeation of MLX and 1:1 meloxicam-salicylic acid cocrystal (MLX-SLC) were evaluated using Franz diffusion cells. Cocrystal was suspended in an aqueous solution and in a gel to evaluate the vehicle effect on permeation parameters. In aqueous medium, the cocrystallization showed to enhance the drug permeation coefficient from 1.38 to 2.15 × 10-3 cm/h. MLX-SLC generated supersaturation with respect to the drug during dissolution studies simulating the conditions in the Franz cell donor chamber. This greater amount of free drug in the solution could contribute to explain the higher transdermal absorption and shorter lag time of this system. In addition, the acidic coformer ionization led to a pH reduction from 7.4 to 5.8, which, in turn, provided an increase in the unionized species of the drug, enhancing its permeation rate. The gel containing cocrystals reduced MLX permeation rate significantly (P = 0.42 × 10-3 cm/h), which was attributed to its higher viscosity.
Collapse
|
46
|
Zeeb M, Farahani H, Mirza B, Papan MK. Quantification of Meloxicam in Human Plasma Using Ionic Liquid-Based Ultrasound-Assisted In Situ Solvent Formation Microextraction Followed by High-Performance Liquid Chromatography. J Chromatogr Sci 2018; 56:443-451. [PMID: 31986203 DOI: 10.1093/chromsci/bmy012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 11/24/2017] [Accepted: 02/05/2018] [Indexed: 12/17/2022]
Abstract
A robust extraction method against the variations of sample ionic strength viz. ionic liquid-based ultrasound-assisted in situ solvent formation microextraction (IL-UA-ISFME) was coupled for the first time with high-performance liquid chromatography-ultraviolet detection (HPLC-UV), and successfully used as a more sustainable approach for the determination of meloxicam (MEL) in human plasma. Herein, a hydrophobic IL (1-butyl-3-methylimidazolium hexafluorophosphate) was formed by adding a hydrophilic IL (1-butyl-3-methylimidazolium tetrafluoroborate) to aqueous sample solution containing an ion-exchange reagent (sodium hexafluorophosphate). The target analyte was transferred into the IL medium while the extraction solvent was completely dispersed into the sample using ultrasonic irradiation and then, the settled enriched phase was injected to HPLC. Firstly, main factors affecting the microextraction performance were evaluated and optimized. The linearity was in the range of 5-1,500 ng mL-1 with regression coefficient corresponding to 0.997. Limits of detection (LOD; signal-to-noise ratio (S/N) = 3) and quantification (LOQ, S/N = 10) were 1 and 5 ng mL-1, respectively. An acceptable recovery range of 82.1-93.6% and satisfactory intra-assay (3.6-4.8%, n = 6) and inter-assay (3.3-5.1%, n = 9) precision as well as remarkable sample clean up exhibited good efficiency of the method. The freeze-thaw stability study was performed for samples and standard solutions. To study the applicability of the proposed method, it was employed for the determination of MEL in human plasma after oral administration of the drug and some pharmacokinetic data were achieved. The technique proved to be accurate and reliable for the screening intentions.
Collapse
Affiliation(s)
- Mohsen Zeeb
- Department of Applied Chemistry, Faculty of Science, Islamic Azad University, South Tehran Branch, Pirouzi st., Dehhaghi st., PO Box 1777613651, Tehran, Iran
| | - Hadi Farahani
- Research Institute of Petroleum Industry (RIPI), West Blvd. of Azadi Sport Complex, PO Box 1485733111, Iran
| | - Behrooz Mirza
- Department of Chemistry, Karaj Branch, Islamic Azad University, Moazzen Blvd., PO Box 31485-313, Alborz, Iran
| | - Mohammad Kazem Papan
- Department of Chemistry, Payame Noor University, Nakhl st., PO Box 19395-4697, Tehran, Iran
| |
Collapse
|
47
|
Cysewski P. Intermolecular interaction as a direct measure of water solubility advantage of meloxicam cocrystalized with carboxylic acids. J Mol Model 2018; 24:112. [PMID: 29680958 PMCID: PMC5911280 DOI: 10.1007/s00894-018-3649-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 04/06/2018] [Indexed: 11/28/2022]
Abstract
The solubility advantage (SA) of meloxicam cocrystalized with mono- and dicarboxylic acids was expressed in terms of equilibrium constants involving active pharmaceutical ingredient and coformer in aqueous solutions. It is argued that SA can be quantified by concentration of pairs formed in water. The pH and concentration of dissolved components is included explicitly in the model. The alternative behavior of mono- and dicarboxylic acids was emphasized and addressed to different structural motifs. The structural and energetic properties of meloxicam and its complexes with carboxylic acids were characterized, including tautmerism and dissociation in aqueous media. In particular, performed in silico modeling confirmed experimental observation that meloxicam dissolved in water or modest acidic solutions is expected to be a mixture of anionic form in equilibrium with at least five neutral isomers. Tautomer-related diversity of pairs formation and the possibility of salt formation is also discussed. Graphical abstract Two types of motifs found in meloxicam cocrystals reveal two sources of solubility advantage.
Collapse
Affiliation(s)
- Piotr Cysewski
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096, Bydgoszcz, Poland.
| |
Collapse
|
48
|
Haser A, Cao T, Lubach JW, Zhang F. In Situ Salt Formation during Melt Extrusion for Improved Chemical Stability and Dissolution Performance of a Meloxicam–Copovidone Amorphous Solid Dispersion. Mol Pharm 2018; 15:1226-1237. [DOI: 10.1021/acs.molpharmaceut.7b01057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Abbe Haser
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States
| | - Tu Cao
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States
| | - Joseph W. Lubach
- Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Feng Zhang
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States
| |
Collapse
|
49
|
Song Q, Shen C, Shen B, Lian W, Liu X, Dai B, Yuan H. Development of a fast dissolving sublingual film containing meloxicam nanocrystals for enhanced dissolution and earlier absorption. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Romani LFA, Yoshida MI, Gomes ECL, Machado RR, Rodrigues FF, Coelho MM, Oliveira MA, Freitas-Marques MB, San Gil RAS, Mussel WN. Physicochemical characterization, the Hirshfeld surface, and biological evaluation of two meloxicam compounding pharmacy samples. J Pharm Anal 2017; 8:103-108. [PMID: 29736296 PMCID: PMC5934743 DOI: 10.1016/j.jpha.2017.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/27/2023] Open
Abstract
Meloxicam (MLX) is an anti-inflammatory drug susceptible to variations and crystalline transitions. In compounding pharmacies, the complete crystallographic evaluation of the raw material is not a routine procedure. We performed a complete crystallographic characterization of aleatory raw MLX samples from compounding pharmacies. X-ray diffraction indicated the presence of two crystalline forms in one sample. DSC experiments suggested that crystallization, or a crystal transition, occurred differently between samples. The FTIR and 1H NMR spectra showed characteristic assignments. 13C solid-state NMR spectroscopy indicated the presence of more than one phase in a sample from pharmacy B. The Hirshfeld surface analysis, with electrostatic potential projection, allowed complete assignment of the UV spectra in ethanol solution. The polymorph I of meloxicam was more active than polymorph III in an experimental model of acute inflammation in mice. Our results highlighted the need for complete crystallographic characterization and the separation of freely used raw materials in compounding pharmacies, as a routine procedure, to ensure the desired dose/effect. Characterization of meloxicam polymorphs I and III. Biological activity evaluation. Hirshfeld surface analysis explains experimentally observed solubility differences. Meloxicam form I was more effective than form III. Adequate quality control based on crystallographic characterization required for raw materials.
Collapse
Affiliation(s)
- Luciana F A Romani
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, Brazil
| | - Maria I Yoshida
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, Brazil
| | - Elionai C L Gomes
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, Brazil
| | - Renes R Machado
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, Brazil
| | - Felipe F Rodrigues
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, Brazil
| | - Márcio M Coelho
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, Brazil
| | - Marcelo A Oliveira
- Health Science Department, Federal University of Espírito Santo, Campus São Mateus, ES, Brazil
| | - Maria B Freitas-Marques
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, Brazil
| | - Rosane A S San Gil
- Institute of Chemistry, Federal University of Rio de Janeiro, Campus Fundão, RJ, Brazil
| | - Wagner N Mussel
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, Brazil
| |
Collapse
|