1
|
Markworth JF, Mitchell CJ, D'Souza RF, Aasen KMM, Durainayagam BR, Mitchell SM, Chan AHC, Sinclair AJ, Garg M, Cameron-Smith D. Arachidonic acid supplementation modulates blood and skeletal muscle lipid profile with no effect on basal inflammation in resistance exercise trained men. Prostaglandins Leukot Essent Fatty Acids 2018; 128:74-86. [PMID: 29413364 DOI: 10.1016/j.plefa.2017.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/02/2017] [Accepted: 12/07/2017] [Indexed: 12/12/2022]
Abstract
Arachidonic acid (ARA), an omega-6 polyunsaturated fatty acid (PUFA), is the metabolic precursor to the eicosanoid family of lipid mediators. Eicosanoids have potent pro-inflammatory actions, but also act as important autocrine/paracrine signaling molecules in skeletal muscle growth and development. Whether dietary ARA is incorporated into skeletal muscle phospholipids and the resulting impact on intramuscular inflammatory and adaptive processes in-vivo is not known. In the current study, resistance trained men (≥1 year) received dietary supplementation with 1.5g/day ARA (n=9, 24 ± 1.5 years) or placebo (n=10, 26 ± 1.3 years) for 4-weeks while continuing their normal training regimen. Plasma and vastus lateralis muscle biopsies were collected in an overnight fasted state at baseline and week 4. ARA supplementation increased plasma content of ARA and gamma-linolenic acid, while decreasing relative abundance of linoleic acid, eicosapentaenoic acid, and dihomo-gamma-linolenic acid. In skeletal muscle, ARA and dihomo-gamma-linolenic acid content increased, whereas alpha-linolenic-acid was reduced. Compared to placebo, ARA supplementation reduced circulating platelet and monocyte number, and decreased the mRNA expression of the immune cell surface markers; neutrophil elastase/CD66b and interleukin 1-beta, in peripheral blood mononuclear cells. In muscle, ARA supplementation increased mRNA expression of the myogenic regulatory factors; MyoD and myogenin, but had no effect on a range of immune cell markers or inflammatory cytokines. These data show that dietary ARA supplementation can rapidly and safely modulate plasma and muscle fatty acid profile and promote myogenic gene expression in resistance trained men, without a risk of increasing basal systemic or intramuscular inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alex H C Chan
- Liggins Institute, University of Auckland, New Zealand
| | | | - Manohar Garg
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Australia
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, New Zealand; Food & Bio-based Products Group, AgResearch, Palmerston North, New Zealand; Riddet Institute, Palmerston North, New Zealand.
| |
Collapse
|
2
|
Vemuri M, Kelley D. The Effects of Dietary Fatty Acids on Lipid Metabolism. FATTY ACIDS IN FOODS AND THEIR HEALTH IMPLICATIONS,THIRD EDITION 2007. [DOI: 10.1201/9781420006902.ch23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
3
|
Pajari AM, Häkkänen P, Duan RD, Mutanen M. Role of red meat and arachidonic acid in protein kinase C activation in rat colonic mucosa. Nutr Cancer 1999; 32:86-94. [PMID: 9919617 DOI: 10.1080/01635589809514724] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Two studies were conducted to investigate the role of meat and arachidonic acid in colonic signal transduction, particularly protein kinase C (PKC) activation. In Study 1, 26 male Wistar rats were fed a casein- or a beef-based diet for four weeks. PKC activity was measured from the proximal and distal colonic mucosa and diacylglycerol concentration from fecal samples. The beef diet significantly increased membrane PKC activity in the proximal and distal colon and cytosolic PKC in the distal colon. No differences were found in fecal diacylglycerol concentration for the rats maintained on the two diets. In Study 2, 57 male Wistar rats were divided into three dietary treatment groups: a control group, a group supplemented with arachidonic acid at 8 mg/day (an amount equivalent to that available from the beef diet in Study 1), and a group supplemented with fish oil at 166 mg/day. After a four-week supplementation period, 6 rats per group were used for colonic phospholipid fatty acid analysis and 13 rats per group were used for analysis of colonic prostaglandin E2 concentration, sphingomyelinase, and PKC activities. Supplementation of dietary arachidonic acid resulted in incorporation of arachidonic acid into colonic phosphatidylcholine, which was associated with an increase in mucosal prostaglandin E2 concentration compared with the fish oil group. However, arachidonate supplementation had no effect on sphingomyelinase or PKC activities. These data indicate that meat significantly increases colonic PKC activity, but this effect is probably not due to the arachidonic acid content of meat.
Collapse
Affiliation(s)
- A M Pajari
- Department of Applied Chemistry and Microbiology (Nutrition), University of Helsinki, Finland.
| | | | | | | |
Collapse
|
4
|
Abstract
The main method to study platelet function in dietary studies has been the platelet aggregation test in vitro. Even though it is well established that dietary cis-unsaturated fatty acids (FAs) modify platelet aggregation some uncertainty still exists how to interpret the in vitro results in the context of a situation in vivo. The other ways to look at platelet activation are measurements of thromboxane metabolites in urine or the concentration of beta-thromboglobulin (betaTG) released from alpha-granules. Dietary fish oil or long-chain n-3 FAs lower the high basal excretion rate of thromboxane, while only a modest effect is noticed at a low basal excretion rate. Results on the effects of other cis-unsaturated FAs on urinary TXB2 metabolites are almost totally lacking. Furthermore, platelet betaTG release in vivo does not seem to be affected by changes in dietary FAs. The regulatory function of dietary FAs in platelets is extremely complex, and clearly more should be understood about the association between dietary FAs and platelet membrane FAs in connection with platelet responses to physiological stimuli and subsequent signal transduction inside the platelets.
Collapse
Affiliation(s)
- M Mutanen
- Department of Applied Chemistry and Microbiology (Nutrition), University of Helsinki, Finland.
| |
Collapse
|
5
|
Nelson GJ, Kelley DS, Emken EA, Phinney SD, Kyle D, Ferretti A. A human dietary arachidonic acid supplementation study conducted in a metabolic research unit: rationale and design. Lipids 1997; 32:415-20. [PMID: 9113630 DOI: 10.1007/s11745-997-0054-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
While there are many reports of studies that fed arachidonic acid (AA) to animals, there are very few reports of AA feeding to humans under controlled conditions. This 130-d study was conceived as a controlled, symmetrical crossover design with healthy, adult male volunteers. They lived in the metabolic research unit (MRU) of the Western Human Nutrition Research (WHNRC) for the entire study. All food was prepared by the WHNRC kitchen. The basal (low-AA) diet consisted of natural foods (30 en% fat, 15 en% protein, and 55 en% carbohydrate), containing 210 mg/d of AA, and met the recommended daily allowance for all nutrients. The high-AA (intervention) diet was similar except that 1.5 g/d of AA in the form of a triglyceride containing 50% AA replaced an equal amount of high-oleic safflower oil in the basal diet. The subjects (ages 20 to 39) were within -10 to +20% of ideal body weight, nonsmoking, and not allowed alcohol in the MRU. Their exercise level was constant, and their body weights were maintained within 2% of entry level. Subjects were initially fed the low-AA diet for 15 d. On day 16, half of the subjects (group A) wee placed on the high-AA diet, and the other group (B) remained on the low-AA diets. On day 65, the two groups switched diets. On day 115, group B returned to the low-AA diet. This design, assuming no carryover effect, allowed us to merge the data from the two groups, with the data comparison days being 65 (low-AA) and 115 (high-AA) for group B and 130 (low-AA) and 65 (high-AA) for group A. The main indices studied were the fatty acid composition of the plasma, red blood cells, platelets, and adipose tissue; in vitro platelet aggregation, bleeding times, clotting factors; immune response as measured by delayed hypersensitivity skin tests, cellular proliferation of peripheral blood mononuclear cells in response to various mitogens and antigens, natural killer cell activity, and response to measles/mumps/rubella and influenza vaccines; the metabolic conversion of deuterated linoleic acid to AA and the metabolic fate of deuterated AA in the subjects on and off the high-AA diet; and the production of eicosanoids as measured by excretion of 11-DTXB2 and PGI2-M in urine. The results of these studies will be presented in the next five papers from this symposium.
Collapse
Affiliation(s)
- G J Nelson
- Western Human Nutrition Research Center, ARS, USDA, San Francisco, California 94129, USA
| | | | | | | | | | | |
Collapse
|
6
|
Nelson GJ, Schmidt PC, Bartolini G, Kelley DS, Kyle D. The effect of dietary arachidonic acid on platelet function, platelet fatty acid composition, and blood coagulation in humans. Lipids 1997; 32:421-5. [PMID: 9113631 DOI: 10.1007/s11745-997-0055-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Arachidonic acid (AA) is the precursor of thromboxane and prostacyclin, two of the most active compounds related to platelet function. The effect of dietary AA on platelet function in humans is not understood although a previous study suggested dietary AA might have adverse physiological consequences on platelet function. Here normal healthy male volunteers (n = 10) were fed diets containing 1.7 g/d of AA for 50 d. The control diet contained 210 mg/d of AA. Platelet aggregation in the platelet-rich plasma was determined using ADP, collagen, and AA. No statistical differences could be detected between the aggregation before and after consuming the high-AA diet. The prothrombin time, partial thromboplastin time, and the antithrombin III levels in the subjects were determined also. There were no statistically significant differences in these three parameters when the values were compared before and after they consumed the high-AA diet. The in vivo bleeding times also did not show a significant difference before and after the subjects consumed the high-AA diet. Platelets exhibited only small changes in their AA content during the AA feeding period. The results from this study on blood clotting parameters and in vitro platelet aggregation suggest that adding 1.5 g/d of dietary AA for 50 d to a typical Western diet containing about 200 mg of AA produces no observable physiological changes in blood coagulation and thrombotic tendencies in healthy, adult males compared to the unsupplemented diet. Thus, moderate intakes of foods high in AA have few effects on blood coagulation, platelet function, or platelet fatty acid composition.
Collapse
Affiliation(s)
- G J Nelson
- Western Human Nutrition Research Center, ARS, USDA, San Francisco, California 94129, USA
| | | | | | | | | |
Collapse
|
7
|
Sanigorski AJ, Sinclair AJ, Hamazaki T. Platelet and aorta arachidonic and eicosapentaenoic acid levels and in vitro eicosanoid production in rats fed high-fat diets. Lipids 1996; 31:729-35. [PMID: 8827696 DOI: 10.1007/bf02522889] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There is a significant interest in the interrelationship between long-chain n-3 and n-6 fatty acids due to their ability to modulate eicosanoid production. In general, the intake of arachidonic acid (AA) results in enhanced eicosanoid production, whereas n-3 polyunsaturated fatty acids (PUFA) decrease the production of eicosanoids from AA. The purpose of this study was to investigate whether the effects of dietary AA on eicosanoid production in the rat were correlated with the AA and EPA levels in platelets and aorta (eicosanoid-producing tissues). Four groups of male Sprague-Dawley rats were fed a high-fat diet enriched with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (approximately 100 mg/day of EPA + DHA) for 24 d. During the last 10 d, the four groups were orally supplemented with 0, 30, 60, and 90 mg/day of ethyl arachidonate. A further group of rats was fed a control diet (without long-chain n-3 PUFA) for 24 d. In vitro aorta prostacyclin (PGI2) production, serum thromboxane A2 (TxA2) production and plasma, and platelet and aorta phospholipid (PL) fatty acids were measured. Enriching the diet with n-3 PUFA resulted in significant reductions in tissue AA levels and an increase in the n-3 PUFA, particularly EPA. On this diet, the AA to EPA ratio was 1:1 in platelet PL, and it was 2:1 in the aorta PL. There were significant decreases in the in vitro PGI2 and TxA2 production compared with the control animals. The inclusion of AA in the diet resulted in marked increases in AA levels in the platelet and aorta PL with corresponding decreases in EPA. The lowest dose of AA (30 mg/rat) reversed the effects of 100 mg/day of n-3 PUFA on AA levels in platelet and aortic PL and on in vitro aorta PGI2 and serum TxA2 production. The dietary AA caused a differential (twofold) increase in TxA2 relative to PGI2 for all three levels of AA supplementation. There were greater changes in the levels of AA and/or EPA in platelet PL compared with the aorta PL, which might have accounted for the differential effects of these PUFA on thromboxane production compared with PGI2 production in this study.
Collapse
Affiliation(s)
- A J Sanigorski
- School of Human Nutrition and Public Health, Deakin University, Geelong, Victoria, Australia
| | | | | |
Collapse
|
8
|
Sanigorski AJ, O'Dea K, Sinclair AJ. n-3 fatty acids reduce in vitro thromboxane production while having little effect on in vitro prostacyclin production in the rat. Prostaglandins Leukot Essent Fatty Acids 1994; 50:223-8. [PMID: 8066095 DOI: 10.1016/0952-3278(94)90157-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Male Sprague-Dawley rats were fed diets with 50% of the energy from fat over a 20-day period. The fats used were hydrogenated beef-fat (HBF), or HBF supplemented with ethyl arachidonate A, safflower oil (SO), or a mixture of SO and linseed oil (LO). For comparative purposes, another group of animals was fed a diet providing 50% of the energy as butter-fat. In vitro aortic prostacyclin (PGI2) and serum thromboxane (TXA2) levels (from clotting blood) were determined by radioimmunoassay of 6-keto PGF1 alpha and TXB2, respectively. The HBF diet had similar AA levels relative to the butter-fed rats but significantly reduced tissue levels of eicosapentaenoic acid (EPA) and this was associated with an increased production of serum TXB2. Supplementing the HBF diet with AA increased tissue levels of AA while maintaining low levels of n-3 fatty acids. These changes were accompanied by significant increases of both TXB2 and 6-keto-PGF1 alpha. LO supplementation to the HBF diet (with constant SO) led to elevated levels of EPA and relatively constant AA levels and this was associated with reduced production of TXB2. These results highlight the responsiveness of TXA2 to n-3 fatty acids in contrast to PGI2 which was more influenced by the level of AA in the tissue phospholipids in the rat.
Collapse
Affiliation(s)
- A J Sanigorski
- School of Human Nutrition and Public Health, Deakin University, Geelong, Victoria, Australia
| | | | | |
Collapse
|
9
|
Mann NJ, Warrick GE, O'Dea K, Knapp HR, Sinclair AJ. The effect of linoleic, arachidonic and eicosapentaenoic acid supplementation on prostacyclin production in rats. Lipids 1994; 29:157-62. [PMID: 8170284 DOI: 10.1007/bf02536723] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We examined the effect of dietary supplementation of linoleic acid (LA), arachidonic acid (AA) or eicosapentaenoic acid (EPA) to rats fed a diet low in linoleic acid on in vitro and in vivo production of prostacyclin. Male Sprague Dawley rats were fed a high-fat diet (50% energy as fat, 1.5% linoleic acid) for two weeks. Three of the groups were then supplemented orally with either 90 mg/d of LA, AA or EPA, all as the ethyl esters, for a further two weeks while remaining on the high-fat diet. Forty-eight hour urine samples were collected at the end of the second and fourth weeks. In vivo prostacyclin production was determined by a stable isotope dilution, gas chromatography/mass spectrometry assay for the major urinary metabolite of prostacyclins (2,3-dinor-6-keto-PGF1 alpha or PGI2-M and delta 17-2,3-dinor-6-keto-PGF1 alpha or PGI3-M). In vitro prostacyclin production was determined by radioimmunoassay of the stable metabolite (6-keto-PGF 1 alpha) following incubation of arterial tissue. Oral supplementation with AA resulted in a rise in plasma and aorta 20:4n-6, and increased in vitro prostacyclin and urinary PGI2-M production. EPA supplementation resulted in a rise in plasma and aorta 20:5n-3 and 22:5n-3, and a decline in plasma 20:4n-6, but not in the aorta. In the EPA-supplemented group, the in vitro prostacyclin and the urinary PGI3-M increased, but urinary PGI2-M decreased. The increase in in vitro prostacyclin production in the EPA-supplemented rats was unexpected and without obvious explanation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N J Mann
- School of Nutrition and Public Health, Deakin University, Geelong, Victoria, Australia
| | | | | | | | | |
Collapse
|
10
|
SINCLAIR ANDREW, O'DEA KERIN. THE SIGNIFICANCE OF ARACHIDONIC ACID IN HUNTER-GATHERER DIETS: IMPLICATIONS FOR THE CONTEMPORARY WESTERN DIET. ACTA ACUST UNITED AC 1993. [DOI: 10.1111/j.1745-4522.1993.tb00241.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|