1
|
Shen K, Johnson DW, Vesey DA, McGuckin MA, Gobe GC. Role of the unfolded protein response in determining the fate of tumor cells and the promise of multi-targeted therapies. Cell Stress Chaperones 2018; 23:317-334. [PMID: 28952072 PMCID: PMC5904077 DOI: 10.1007/s12192-017-0844-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
Although there have been advances in our understanding of carcinogenesis and development of new treatments, cancer remains a common cause of death. Many regulatory pathways are incompletely understood in cancer development and progression, with a prime example being those related to the endoplasmic reticulum (ER). The pathological sequelae that arise from disruption of ER homeostasis are not well defined. The ER is an organelle that is responsible for secretory protein biosynthesis and the quality control of protein folding. The ER triggers an unfolded protein response (UPR) when misfolded proteins accumulate, and while the UPR acts to restore protein folding and ER homeostasis, this response can work as a switch to determine the death or survival of cells. The treatment of cancer with agents that target the UPR has shown promising outcomes. The UPR has wide crosstalk with other signaling pathways. Multi-targeted cancer therapies which target the intersections within signaling networks have shown synergistic tumoricidal effects. In the present review, the basic cellular and signaling pathways of the ER and UPR are introduced; then the crosstalk between the ER and other signaling pathways is summarized; and ultimately, the evidence that the UPR is a potential target for cancer therapy is discussed. Regulation of the UPR downstream signaling is a common therapeutic target for different tumor types. Tumoricidal effects achieved from modulating the UPR downstream signaling could be enhanced by phosphodiesterase 5 (PDE5) inhibitors. Largely untapped by Western medicine for cancer therapies are Chinese herbal medicines. This review explores and discusses the value of some Chinese herbal extracts as PDE5 inhibitors.
Collapse
Affiliation(s)
- Kunyu Shen
- Kidney Disease Research Group, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - David W Johnson
- Kidney Disease Research Group, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
- Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - David A Vesey
- Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Michael A McGuckin
- Mucosal Disease Inflammatory Disease Biology and Therapeutics Group, UQ Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Kidney Disease Research Group, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia.
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
2
|
Sokolova YY, Snigirevskaya ES, Komissarchik YY. The Golgi apparatus in parasitic protists. ACTA ACUST UNITED AC 2007. [DOI: 10.1134/s1990519x07040037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Martin PE, Steggles J, Wilson C, Ahmad S, Evans WH. Targeting motifs and functional parameters governing the assembly of connexins into gap junctions. Biochem J 2000; 349:281-7. [PMID: 10861240 PMCID: PMC1221149 DOI: 10.1042/0264-6021:3490281] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To study the assembly of gap junctions, connexin--green-fluorescent-protein (Cx--GFP) chimeras were expressed in COS-7 and HeLa cells. Cx26-- and Cx32--GFP were targeted to gap junctions where they formed functional channels that transferred Lucifer Yellow. A series of Cx32--GFP chimeras, truncated from the C-terminal cytoplasmic tail, were studied to identify amino acid sequences governing targeting from intracellular assembly sites to the gap junction. Extensive truncation of Cx32 resulted in failure to integrate into membranes. Truncation of Cx32 to residue 207, corresponding to removal of most of the 78 amino acids on the cytoplasmic C-terminal tail, led to arrest in the endoplasmic reticulum and incomplete oligomerization. However, truncation to amino acid 219 did not impair Cx oligomerization and connexon hemichannels were targeted to the plasma membrane. It was concluded that a crucial gap-junction targeting sequence resides between amino acid residues 207 and 219 on the cytoplasmic C-terminal tail of Cx32. Studies of a Cx32E208K mutation identified this as one of the key amino acids dictating targeting to the gap junction, although oligomerization of this site-specific mutation into hexameric hemichannels was relatively unimpaired. The studies show that expression of these Cx--GFP constructs in mammalian cells allowed an analysis of amino acid residues involved in gap-junction assembly.
Collapse
Affiliation(s)
- P E Martin
- Department of Medical Biochemistry, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | | | | | | | | |
Collapse
|
4
|
Popov M, Tam LY, Li J, Reithmeier RA. Mapping the ends of transmembrane segments in a polytopic membrane protein. Scanning N-glycosylation mutagenesis of extracytosolic loops in the anion exchanger, band 3. J Biol Chem 1997; 272:18325-32. [PMID: 9218473 DOI: 10.1074/jbc.272.29.18325] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Band 3, the anion exchanger of human erythrocytes, contains up to 14 transmembrane (TM) segments and has a single endogenous site of N-glycosylation at Asn642 in extracellular (EC) loop 4. The requirements for N-glycosylation of EC loops and the topology of this polytopic membrane protein were determined by scanning N-glycosylation mutagenesis and cell-free translation in a reticulocyte lysate supplemented with microsomal membranes. The endogenous and novel acceptor sites located near the middle of the 35 residue EC loop 4 were efficiently N-glycosylated; however, no N-glycosylation occurred at sites located within sharply defined regions close to the adjacent TM segments. Acceptor sites located in the center of EC loop 3, which contains 25 residues, were poorly N-glycosylated. Expansion of this loop with a 4-residue insert containing an acceptor site increased N-glycosylation. Acceptor sites located in short (<10 residues) loops (putative EC loops 1, 2, 6, and 7) were not N-glycosylated; however, insertion of EC loop 4 into EC loops 1, 2, or 7, but not 6, resulted in efficient N-glycosylation. Acceptor sites in putative intracellular (IC) loop 5 exhibited a similar pattern of N-glycosylation as EC loop 4, indicating a lumenal disposition during biosynthesis. To be efficiently N-glycosylated, EC loops in polytopic membrane proteins must be larger than 25 residues in size, with acceptor sites located greater than 12 residues away from the preceding TM segment and greater than 14 residues away from the following TM segment. Application of this requirement allowed a significant refinement of the topology of Band 3 including a more accurate mapping of the ends of TM segments. The strict distance dependence for N-glycosylation of loops suggests that TM segments in polytopic membrane proteins are held quite precisely within the translocation machinery during the N-glycosylation process.
Collapse
Affiliation(s)
- M Popov
- Medical Research Council of Canada Group in Membrane Biology, Departments of Medicine and Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | |
Collapse
|
5
|
Becker B, Melkonian M. The secretory pathway of protists: spatial and functional organization and evolution. Microbiol Rev 1996; 60:697-721. [PMID: 8987360 PMCID: PMC239460 DOI: 10.1128/mr.60.4.697-721.1996] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
All cells secrete a diversity of macromolecules to modify their environment or to protect themselves. Eukaryotic cells have evolved a complex secretory pathway consisting of several membrane-bound compartments which contain specific sets of proteins. Experimental work on the secretory pathway has focused mainly on mammalian cell lines or on yeasts. Now, some general principles of the secretory pathway have become clear, and most components of the secretory pathway are conserved between yeast cells and mammalian cells. However, the structure and function of the secretory system in protists have been less extensively studied. In this review, we summarize the current knowledge about the secretory pathway of five different groups of protists: Giardia lamblia, one of the earliest lines of eukaryotic evolution, kinetoplastids, the slime mold Dictyostelium discoideum, and two lineages within the "crown" of eukaryotic cell evolution, the alveolates (ciliates and Plasmodium species) and the green algae. Comparison of these systems with the mammalian and yeast system shows that most elements of the secretory pathway were presumably present in the earliest eukaryotic organisms. However, one element of the secretory pathway shows considerable variation: the presence of a Golgi stack and the number of cisternae within a stack. We suggest that the functional separation of the plasma membrane from the nucleus-endoplasmic reticulum system during evolution required a sorting compartment, which became the Golgi apparatus. Once a Golgi apparatus was established, it was adapted to the various needs of the different organisms.
Collapse
Affiliation(s)
- B Becker
- Botanisches Institut, Universität zu Köln, Germany.
| | | |
Collapse
|
6
|
Behrens TW, Kearns GM, Rivard JJ, Bernstein HD, Yewdell JW, Staudt LM. Carboxyl-terminal targeting and novel post-translational processing of JAW1, a lymphoid protein of the endoplasmic reticulum. J Biol Chem 1996; 271:23528-34. [PMID: 8798562 DOI: 10.1074/jbc.271.38.23528] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Jaw1 is a lymphoid-restricted protein localized to the cytoplasmic face of the endoplasmic reticulum (ER) and is a member of a recently recognized class of integral membrane proteins that contain carboxyl-terminal membrane anchors. The carboxyl-terminal 71 amino acids of the Jaw1 protein, which contain a hydrophobic membrane spanning region, are sufficient to target a heterologous protein to the ER. By discontinuous sucrose gradient ultracentrifugation, differential sedimentation was noted for the four major Jaw1 protein isoforms, with two of the forms predominantly soluble and two microsome-bound. Pulse-chase immunoprecipitations suggest a post-translational modification of two major isoforms of the protein resulting in an increase in mobility on SDS-polyacrylamide gel electrophoresis. In vitro translation studies are compatible with a post-translational processing event that results in cleavage of a short 36 amino acid lumenal domain. These findings define a carboxyl-terminal domain of the Jaw1 protein that is both necessary and sufficient for ER localization. In addition, the processing of the small lumenal domain of Jaw1 represents a novel post-translational protein modification performed by the endoplasmic reticulum.
Collapse
Affiliation(s)
- T W Behrens
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
The Aspergillus niger (An) gene srpA, encoding a protein with homology to the signal recognition particle (SRP) 54-kDa protein from Saccharomyces cerevisiae (Sc), has been isolated and the nucleotide sequence determined. The putative An srpA gene is comprised of two exons of 78 and 1527 bp separated by a 49-bp intron, and encodes a protein of 534 amino acids that is 53% identical to Sc SRP54.
Collapse
Affiliation(s)
- S A Thompson
- Department of Molecular Biology, Novo Nordisk Biotech, Davis, CA 95616, USA
| | | | | |
Collapse
|
8
|
Müller SB, Rensing SA, Martin WF, Maier UG. cDNA cloning of a Sec61 homologue from the cryptomonad alga Pyrenomonas salina. Curr Genet 1994; 26:410-4. [PMID: 7874733 DOI: 10.1007/bf00309927] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sec61 is an endoplasmic reticulum transmembrane protein involved in the process of translocation of proteins across this membrane. To-date, the only cloned genes for Sec61 are derived from mammals and yeast. In this paper, we present the first full-length cDNA from a sec61 gene of a plant cell. Comparison of the predicted protein sequence with all known Sec61 proteins, as well as with the bacterial/plastome-encoded homologue SecY, demonstrates a high degree of similarity among the SecY/Sec61 family.
Collapse
Affiliation(s)
- S B Müller
- Institute für Biologie II, Zellbiologie, Universität Freiburg, Germany
| | | | | | | |
Collapse
|
9
|
Trotter PJ, Voelker DR. Lipid transport processes in eukaryotic cells. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1213:241-62. [PMID: 8049239 DOI: 10.1016/0005-2760(94)00073-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- P J Trotter
- Lord and Taylor Laboratory for Lung Biochemistry, National Jewish Center for Immunology and Respiratory Medicine, Denver, CO 80206
| | | |
Collapse
|