1
|
Miteva D, Peshevska-Sekulovska M, Snegarova V, Batselova H, Alexandrova R, Velikova T. Mucosal COVID-19 vaccines: Risks, benefits and control of the pandemic. World J Virol 2022; 11:221-236. [PMID: 36188733 PMCID: PMC9523321 DOI: 10.5501/wjv.v11.i5.221] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/14/2022] [Accepted: 08/10/2022] [Indexed: 02/05/2023] Open
Abstract
Based on mucosal immunization to promote both mucosal and systemic immune responses, next-generation coronavirus disease 2019 (COVID-19) vaccines would be administered intranasally or orally. The goal of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines is to provide adequate immune protection and avoid severe disease and death. Mucosal vaccine candidates for COVID-19 including vector vaccines, recombinant subunit vaccines and live attenuated vaccines are under development. Furthermore, subunit protein vac-cines and virus-vectored vaccines have made substantial progress in preclinical and clinical settings, resulting in SARS-CoV-2 intranasal vaccines based on the previously successfully used nasal vaccines. Additional to their ability to trigger stable, protective immune responses at the sites of pathogenic infection, the development of 'specific' mucosal vaccines targeting coronavirus antigens could be an excellent option for preventing future pandemics. However, their efficacy and safety should be confirmed.
Collapse
Affiliation(s)
- Dimitrina Miteva
- Department of Genetics, Sofia University “St. Kliment Ohridski,” Faculty of Biology, Sofia 1164, Bulgaria
| | - Monika Peshevska-Sekulovska
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Violeta Snegarova
- Clinic of Internal Diseases, Naval Hospital - Varna, Military Medical Academy, Medical Faculty, Medical University, Varna 9000, Bulgaria
| | - Hristiana Batselova
- Department of Epidemiology and Disaster Medicine, Medical University, Plovdiv, University Hospital “St George”, Plovdiv 6000, Bulgaria
| | - Radostina Alexandrova
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia 1000, Bulgaria
| | - Tsvetelina Velikova
- Department of Clinical Immunology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
2
|
Han SS, Lee J, Jung Y, Kang MH, Hong JH, Cha MS, Park YJ, Lee E, Yoon CH, Bae YS. Development of oral CTL vaccine using a CTP-integrated Sabin 1 poliovirus-based vector system. Vaccine 2015; 33:4827-36. [PMID: 26241946 DOI: 10.1016/j.vaccine.2015.07.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 06/24/2015] [Accepted: 07/23/2015] [Indexed: 01/06/2023]
Abstract
We developed a CTL vaccine vector by modification of the RPS-Vax system, a mucosal vaccine vector derived from a poliovirus Sabin 1 strain, and generated an oral CTL vaccine against HIV-1. A DNA fragment encoding a cytoplasmic transduction peptide (CTP) was integrated into the RPS-Vax system to generate RPS-CTP, a CTL vaccine vector. An HIV-1 p24 cDNA fragment was introduced into the RPS-CTP vector system and a recombinant poliovirus (rec-PV) named vRPS-CTP/p24 was produced. vRPS-CTP/p24 was genetically stable and efficiently induced Th1 immunity and p24-specific CTLs in immunized poliovirus receptor-transgenic (PVR-Tg) mice. In challenge experiments, PVR-Tg mice that were pre-immunized orally with vRPS-CTP/p24 were resistant to challenge with a lethal dose of p24-expressing recombinant vaccinia virus (rMVA-p24). These results suggested that the RPS-CTP vector system had potential for developing oral CTL vaccines against infectious diseases.
Collapse
Affiliation(s)
- Seung-Soo Han
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Jinjoo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Yideul Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Myeong-Ho Kang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Jung-Hyub Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Min-Suk Cha
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Yu-Jin Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Ezra Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Cheol-Hee Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
3
|
Hartnett JN, Boisen ML, Oottamasathien D, Jones AB, Millett MM, Nelson DS, Muncy IJ, Goba A, Momoh M, Fullah M, Mire CE, Geisbert JB, Geisbert TW, Holton DL, Rouelle JA, Kannadka CB, Reyna AA, Moses LM, Khan SH, Gevao SM, Grant DS, Robinson JE, Happi C, Pitts KR, Garry RF, Branco LM. Current and emerging strategies for the diagnosis, prevention and treatment of Lassa fever. Future Virol 2015. [DOI: 10.2217/fvl.15.41] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ABSTRACT Lassa fever (LF) is a potentially fatal disease that affects an estimated 300,000–500,000 people in endemic areas of west Africa each year. Though past studies have identified fatality rates of 5–20% in patients suspected to have contracted Lassa virus (LASV), new studies using more precise clinical diagnoses and modern diagnostic assays show fatalities rates above 60% in acutely ill patients from endemic regions. Currently, there are no approved vaccines or therapeutics, and only one Comformité Européenne (CE) marked rapid immunodiagnostic for acute LASV infection. Therefore, preventing LASV transmission is the primary goal in endemic regions. Development of rapid immunodiagnostics and research into the efficacy of current treatment options continues toward saving lives in west Africa as well as creating a line of defense against the nefarious use of LASV in bioterrorism settings.
Collapse
Affiliation(s)
- Jessica N Hartnett
- Department of Microbiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-38, New Orleans, LA 70112, USA
| | - Matthew L Boisen
- Department of Microbiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-38, New Orleans, LA 70112, USA
- Corgenix Medical Corporation, Broomfield, CO 80020, USA
| | | | | | | | | | - Ivana J Muncy
- Corgenix Medical Corporation, Broomfield, CO 80020, USA
| | | | - Mambu Momoh
- Kenema Government Hospital, Kenema, Sierra Leone
- Eastern Polytechnic College, Kenema, Sierra Leone
| | | | - Chad E Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joan B Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Debra L Holton
- Department of Microbiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-38, New Orleans, LA 70112, USA
| | - Julie A Rouelle
- Department of Microbiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-38, New Orleans, LA 70112, USA
| | - Chandrika B Kannadka
- Department of Microbiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-38, New Orleans, LA 70112, USA
| | - Ashley A Reyna
- Department of Microbiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-38, New Orleans, LA 70112, USA
| | - Lina M Moses
- Department of Microbiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-38, New Orleans, LA 70112, USA
| | | | - Sahr M Gevao
- Ministry of Health and Sanitation, Freetown, Sierra Leone
- University of Sierra Leone, Freetown, Sierra Leone
| | - Donald S Grant
- Kenema Government Hospital, Kenema, Sierra Leone
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - James E Robinson
- Department of Pediatric Infectious Diseases, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | - Kelly R Pitts
- Corgenix Medical Corporation, Broomfield, CO 80020, USA
| | - Robert F Garry
- Department of Microbiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-38, New Orleans, LA 70112, USA
- Zalgen Labs, LLC, Germantown, MD 20876, USA
| | | | | |
Collapse
|
4
|
Bermúdez-Humarán LG, Langella P. Utilisation des bactéries lactiques comme vecteurs vaccinaux. REVUE FRANCOPHONE DES LABORATOIRES 2009; 2009:79-89. [PMID: 32518601 PMCID: PMC7270964 DOI: 10.1016/s1773-035x(09)70312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 10/12/2009] [Indexed: 11/26/2022]
Abstract
Aujourd’hui, nous disposons de données suffisantes qui confortent l’intérêt d’utiliser des bactéries lactiques (BL), notamment des souches des lactocoques et lactobacilles, pour le développement de nouvelles stratégies de vaccination mucosale. Les BL sont des bactéries à Gram positif utilisées depuis des millénaires dans la production d’aliments fermentés. Elles sont donc de bonnes candidates pour le développement de nouvelles stratégies de vectorisation orale et constituent des alternatives attractives aux stratégies vaccinales basées sur des bactéries pathogènes atténuées dont l’utilisation présente des risques sanitaires. Ce chapitre passe en revue la recherche et les progrès les plus récents dans l’utilisation des BL comme vecteurs de délivrance de protéines d’intérêt médical pour développer de nouveaux vaccins.
Collapse
|
5
|
Innovative vaccine production technologies: The evolution and value of vaccine production technologies. Arch Pharm Res 2009; 32:465-80. [DOI: 10.1007/s12272-009-1400-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 03/10/2009] [Accepted: 03/13/2009] [Indexed: 11/25/2022]
|
6
|
McCullough KC, Summerfield A. Targeting the porcine immune system--particulate vaccines in the 21st century. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:394-409. [PMID: 18771683 PMCID: PMC7103233 DOI: 10.1016/j.dci.2008.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/11/2008] [Accepted: 07/11/2008] [Indexed: 05/15/2023]
Abstract
During the last decade, the propagation of immunological knowledge describing the critical role of dendritic cells (DC) in the induction of efficacious immune responses has promoted research and development of vaccines systematically targeting DC. Based on the promise for the rational design of vaccine platforms, the current review will provide an update on particle-based vaccines of both viral and synthetic origin, giving examples of recombinant virus carriers such as adenoviruses and biodegradable particulate carriers. The viral carriers carry pathogen-associated molecular patterns (PAMP), used by the original virus for targeting DC, and are particularly efficient and versatile gene delivery vectors. Efforts in the field of synthetic vaccine carriers are focussing on decorating the particle surface with ligands for DC receptors such as heparan sulphate glycosaminoglycan structures, integrins, Siglecs, galectins, C-type lectins and toll-like receptors. The emphasis of this review will be placed on targeting the porcine immune system, but reference will be made to advances with murine and human vaccine delivery systems where information on DC targeting is available.
Collapse
Affiliation(s)
- Kenneth C McCullough
- Institute of Virology and Immunoprophylaxis, Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland.
| | | |
Collapse
|
7
|
Charalampopoulos D, Rastall RA. Development of Mucosal Vaccines Based on Lactic Acid Bacteria. PREBIOTICS AND PROBIOTICS SCIENCE AND TECHNOLOGY 2009. [PMCID: PMC7121035 DOI: 10.1007/978-0-387-79058-9_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Today, sufficient data are available to support the use of lactic acid bacteria (LAB), notably lactococci and lactobacilli, as delivery vehicles for the development of new mucosal vaccines. These non-pathogenic Gram-positive bacteria have been safely consumed by humans for centuries in fermented foods. They thus constitute an attractive alternative to the attenuated pathogens (most popular live vectors actually studied) which could recover their pathogenic potential and are thus not totally safe for use in humans. This chapter reviews the current research and advances in the use of LAB as live delivery vectors of proteins of interest for the development of new safe mucosal vaccines. The use of LAB as DNA vaccine vehicles to deliver DNA directly to antigen-presenting cells of the immune system is also discussed.
Collapse
Affiliation(s)
| | - Robert A. Rastall
- Department of Food Biosciences, University of Reading Whiteknights, Reading, UK
| |
Collapse
|
8
|
Geisbert TW, Jones S, Fritz EA, Shurtleff AC, Geisbert JB, Liebscher R, Grolla A, Ströher U, Fernando L, Daddario KM, Guttieri MC, Mothé BR, Larsen T, Hensley LE, Jahrling PB, Feldmann H. Development of a new vaccine for the prevention of Lassa fever. PLoS Med 2005; 2:e183. [PMID: 15971954 PMCID: PMC1160587 DOI: 10.1371/journal.pmed.0020183] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 05/02/2005] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Recent importation of Lassa fever into Germany, the Netherlands, the United Kingdom, and the United States by travelers on commercial airlines from Africa underscores the public health challenge of emerging viruses. Currently, there are no licensed vaccines for Lassa fever, and no experimental vaccine has completely protected nonhuman primates against a lethal challenge. METHODS AND FINDINGS We developed a replication-competent vaccine against Lassa virus based on attenuated recombinant vesicular stomatitis virus vectors expressing the Lassa viral glycoprotein. A single intramuscular vaccination of the Lassa vaccine elicited a protective immune response in nonhuman primates against a lethal Lassa virus challenge. Vaccine shedding was not detected in the monkeys, and none of the animals developed fever or other symptoms of illness associated with vaccination. The Lassa vaccine induced strong humoral and cellular immune responses in the four vaccinated and challenged monkeys. Despite a transient Lassa viremia in vaccinated animals 7 d after challenge, the vaccinated animals showed no evidence of clinical disease. In contrast, the two control animals developed severe symptoms including rashes, facial edema, and elevated liver enzymes, and ultimately succumbed to the Lassa infection. CONCLUSION Our data suggest that the Lassa vaccine candidate based on recombinant vesicular stomatitis virus is safe and highly efficacious in a relevant animal model that faithfully reproduces human disease.
Collapse
Affiliation(s)
- Thomas W Geisbert
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Liljeqvist S, Ståhl S. Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. J Biotechnol 1999; 73:1-33. [PMID: 10483112 DOI: 10.1016/s0168-1656(99)00107-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first scientific attempts to control an infectious disease can be attributed to Edward Jenner, who, in 1796 inoculated an 8-year-old boy with cowpox (vaccinia), giving the boy protection against subsequent challenge with virulent smallpox. Thanks to the successful development of vaccines, many major diseases, such as diphtheria, poliomyelitis and measles, are nowadays kept under control, and in the case of smallpox, the dream of eradication has been fulfilled. Yet, there is a growing need for improvements of existing vaccines in terms of increased efficacy and improved safety, besides the development of completely new vaccines. Better technological possibilities, combined with increased knowledge in related fields, such as immunology and molecular biology, allow for new vaccination strategies. Besides the classical whole-cell vaccines, consisting of killed or attenuated pathogens, new vaccines based on the subunit principle, have been developed, e.g. the Hepatitis B surface protein vaccine and the Haemophilus influenzae type b vaccine. Recombinant techniques are now dominating in the strive for an ideal vaccine, being safe and cheap, heat-stable and easy to administer, preferably single-dose, and capable of inducing broad immune response with life-long memory both in adults and in infants. This review will describe different recombinant approaches used in the development of novel subunit vaccines, including design and production of protein immunogens, the development of live delivery systems and the state-of-the-art for nucleic acids vaccines.
Collapse
Affiliation(s)
- S Liljeqvist
- Department of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | |
Collapse
|
10
|
Berglund P, Quesada-Rolander M, Putkonen P, Biberfeld G, Thorstensson R, Liljeström P. Outcome of immunization of cynomolgus monkeys with recombinant Semliki Forest virus encoding human immunodeficiency virus type 1 envelope protein and challenge with a high dose of SHIV-4 virus. AIDS Res Hum Retroviruses 1997; 13:1487-95. [PMID: 9390747 DOI: 10.1089/aid.1997.13.1487] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Infection of macaques with chimeric simian-human immunodeficiency viruses (SHIVs) allows evaluation of HIV-1 envelope vaccines. SHIV-4 is based on SIVmac239 but carries the env, tat, and rev genes of HIV-1IIIB. In this study we used Semliki Forest virus (SFV) RNA vectors to express the envelope protein gp160 of HIV-1IIIB in cynomolgus macaques. Monkeys were immunized four times with recombinant suicide SFV. Whereas two of four monkeys showed T cell-proliferative responses, only one monkey had demonstrable levels of antibodies to HIV-1 gp41 and gp120 as shown by enzyme-linked immunosorbent assay (ELISA) and Western blot. The vaccinated monkeys and four control animals were challenged with 10,000 MID100 (100% minimum infectious doses) of cell-free monkey cell-grown SHIV-4 virus. As demonstrated by virus isolation, all macaques became infected after challenge. All vaccinated monkeys showed an HIV-1-specific anamnestic T cell-proliferative response. Three of four vaccines had developed HIV-1-Env-specific antibodies 2 weeks after challenge whereas none of the four controls showed any detectable immune response at this time point. Furthermore, three of four vaccinated monkeys had no demonstrable viral antigenemia and low viral load as opposed to one of the four naive control animals.
Collapse
Affiliation(s)
- P Berglund
- Microbiology and Tumor Biology Center, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|