Abramov Y, Carmi S, Anteby SO, Ringel I. Characterization of ovarian cancer cell metabolism and response to chemotherapy by (31)p magnetic resonance spectroscopy.
Oncol Res 2013;
20:529-36. [PMID:
24063283 DOI:
10.3727/096504013x13747716581372]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We aimed to characterize the (31)P magnetic resonance spectra of various ovarian cancer cell lines exhibiting differences in cytotoxic drug resistance. We examined the metabolic profile of three different ovarian cancer cell lines, OC238, A2780, and A2780-cisplatin resistant (A2780cisR), including their response to various cytotoxic drugs (paclitaxel, cisplatin, and carboplatin) by (31)P magnetic resonance spectroscopy (MRS) in vitro. In the OC238 cell line, there were higher levels of phosphorylcholine, phosphodiesters, and uridine diphosphosugar (UDPS) + nicotinamide adenine dinucleotide phosphate (NADP). In A2780 and A2780cisR cell lines, phosphocreatine gave a high signal, which was absent in the OC238 cell line. In the OC238 cell line, a significant decrease in the glycerophosphoethanolamine, glycerophosphocholine, NADP, and UDPS signals was detected following cytotoxic drug treatment, mainly in response to paclitaxel. A significant increase in the glycerophosphocholine signal was detected following exposure to paclitaxel in both A2780 and A2780cisR cell lines. NADP and UDPS signals increased in response to all drugs in the A2780 cell line; however, in the cisplatin-resistant cell line A2780cisR, no significant change in those signals was detected following cisplatin treatment. We conclude that different ovarian cancer cell lines show characteristic (31)P MRS fingerprints and specific metabolic changes in response to cytotoxic drug treatment.
Collapse