1
|
Frank ME, Lundy RF, Contreras RJ. Cracking taste codes by tapping into sensory neuron impulse traffic. Prog Neurobiol 2008; 86:245-63. [PMID: 18824076 DOI: 10.1016/j.pneurobio.2008.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 07/03/2008] [Accepted: 09/02/2008] [Indexed: 12/25/2022]
Abstract
Insights into the biological basis for mammalian taste quality coding began with electrophysiological recordings from "taste" nerves and this technique continues to produce essential information today. Chorda tympani (geniculate ganglion) neurons, which are particularly involved in taste quality discrimination, are specialists or generalists. Specialists respond to stimuli characterized by a single taste quality as defined by behavioral cross-generalization in conditioned taste tests. Generalists respond to electrolytes that elicit multiple aversive qualities. Na(+)-salt (N) specialists in rodents and sweet-stimulus (S) specialists in multiple orders of mammals are well characterized. Specialists are associated with species' nutritional needs and their activation is known to be malleable by internal physiological conditions and contaminated external caloric sources. S specialists, associated with the heterodimeric G-protein coupled receptor T1R, and N specialists, associated with the epithelial sodium channel ENaC, are consistent with labeled line coding from taste bud to afferent neuron. Yet, S-specialist neurons and behavior are less specific than T1R2-3 in encompassing glutamate and E generalist neurons are much less specific than a candidate, PDK TRP channel, sour receptor in encompassing salts and bitter stimuli. Specialist labeled lines for nutrients and generalist patterns for aversive electrolytes may be transmitting taste information to the brain side by side. However, specific roles of generalists in taste quality coding may be resolved by selecting stimuli and stimulus levels found in natural situations. T2Rs, participating in reflexes via the glossopharynygeal nerve, became highly diversified in mammalian phylogenesis as they evolved to deal with dangerous substances within specific environmental niches. Establishing the information afferent neurons traffic to the brain about natural taste stimuli imbedded in dynamic complex mixtures will ultimately "crack taste codes."
Collapse
Affiliation(s)
- Marion E Frank
- Center for Chemosensory Sciences, Department of Oral Health & Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT 06030-1715, United States.
| | | | | |
Collapse
|
2
|
Grover R, Frank ME. Regional Specificity of Chlorhexidine Effects on Taste Perception. Chem Senses 2008; 33:311-8. [DOI: 10.1093/chemse/bjm095] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
3
|
|
4
|
Cui Z, Lindl KA, Mei B, Zhang S, Tsien JZ. Requirement of NMDA receptor reactivation for consolidation and storage of nondeclarative taste memory revealed by inducible NR1 knockout. Eur J Neurosci 2005; 22:755-63. [PMID: 16101757 DOI: 10.1111/j.1460-9568.2005.04257.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We employed an inducible, reversible and region-specific gene knockout technique to investigate the requirements for cortical NMDA receptors (NMDAR) during the various stages (acquisition, consolidation and storage, and retrieval) of nondeclarative, hippocampal-independent memory in mice using a conditioned taste aversion memory paradigm. Here we show that temporary knockout of the cortical NMDAR during either the learning or postlearning consolidation stage, but not during the retrieval stage, causes severe performance deficits in the 1-month taste memory retention tests. More importantly, we found that the consolidation and storage of the long-term nondeclarative taste memories requires cortical NMDAR reactivation. Thus, the dynamic engagement of the NMDAR during the postlearning stage leads us to postulate that NMDAR reactivation-mediated synaptic re-entry reinforcement is crucial for overcoming the destabilizing effects intrinsic to synaptic protein turnover and for achieving consolidation and storage of nondeclarative memories in the brain.
Collapse
Affiliation(s)
- Zhenzhong Cui
- Center for Systems Neurobiology, Department of Pharmacology, Boston University, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
Because intraoral capsaicin is reported to reduce the perceived intensity of certain taste qualities, we investigated whether it affects the central processing of gustatory information. The responses of gustatory neurons in the nucleus tractus solitarius (NTS) to tastant stimuli were recorded before and after lingual application of capsaicin in anesthetized rats. Thirty-four NTS units were characterized as responding best to sucrose (0.3 m), NaCl (0.1 m), citric acid (0.03 m), monosodium glutamate (0.2 m), or quinine (0.001 m). During lingual application of 330 microm capsaicin for 7 min, the firing rate increased for five units and decreased for four units; the remainder were unaffected. Immediately after capsaicin, responses to each tastant were in nearly all cases depressed (mean, 61.5% of control), followed by recovery in most cases. NTS tastant-evoked unit responses were unaffected by lingual application of vehicle (5% ethanol). Capsaicin elicited an equivalent reduction (to 64.5%) in tastant-evoked responses of nine additional NTS units recorded in rats with bilateral trigeminal ganglionectomy, arguing against a trigeminally mediated central effect. Furthermore, capsaicin elicited a puncate pattern of plasma extravasation in the tongue that matched the distribution of fungiform papillae. These results support a peripheral site of capsaicin suppression of taste possibly via direct or indirect effects on taste transduction or taste receptor cell excitability. The depressant effect of capsaicin on gustatory transmission might underlie its ability to reduce the perceived intensity of some taste qualities.
Collapse
|
6
|
Abstract
In this review we describe an emerging understanding of the roles of the Extracellular-signal regulated kinase/mitogen-activated protein kinase (ERK/MAPK) cascade in learning and memory. We begin by describing several behavioral memory paradigms and review data implicating ERK as an essential component of the signal transduction mechanisms subserving these processes. We then describe evidence implicating ERK as a critical player in synaptic and neuronal plasticity-a cellular role likely to underlie ERK's behavioral role in the animal. We then proceed to parsing the complexities of biochemical regulation of ERK in neurons and to a description of a few likely cellular targets of ERK. This is in order to begin discussing the possible molecular basis of ERK-mediated behavioral change. We close our review with speculations concerning how the complexities and idiosyncrasies of ERK regulation may allow for sophisticated information processing at the biochemical level in neurons-attributes that may make the ERK cascade well-suited for triggering complex and long-lasting behavioral change. Our goal in this review is not so much to portray ERK as unique regarding its role as a signal transducter in memory, but rather to use ERK as one specific example of recent studies beginning to address the molecules and signal transduction pathways subserving cognition.
Collapse
Affiliation(s)
- J Paige Adams
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
7
|
Abstract
Chlorhexidine, a bis-cationic biguanide antiseptic, greatly reduces the perceived intensity of the salty prototype sodium chloride and may prove to be an important probe of mechanisms that underlie the human salty taste quality. Chlorhexidine, which tastes bitter, also reduces quinine hydrochloride taste intensity, but neither sweet sucrose nor sour citric acid is affected. Perceptual intensity rating and quality identification were measured for human subjects before and for 30 min following treatment with 1.34 mM chlorhexidine gluconate. In one experiment, test stimuli were the taste-quality prototypes; in a second experiment, stimuli were series of sodium, halide and sulfate salts. Experiment 1 showed a single 3-min chlorhexidine treatment resulted in reductions in taste intensity that persisted for at least 30 min. Experiment 2 showed a single 2-min chlorhexidine treatment reduced perceptual intensities of halide and sulfate salts except those with divalent cations. Chlorhexidine impaired identification of the salty quality and produced a bitter quality in nonbitter salts and impaired identification of the bitter quality of quinine, but not bitter salts. The specific effect of chlorhexidine on the bitterness of quinine suggests it may bind to the same receptor as quinine. The ability of chlorhexidine to specifically disrupt saltiness of a wide range of salts is consistent with proposed peripheral transduction mechanisms for the salty quality that involve transepithelial ion transport.
Collapse
Affiliation(s)
- M E Frank
- Division of Neurosciences, Department of Oral Diagnosis, School of Dental Medicine, University of Connecticut Health Center, Taste and Smell Center MC 1718, 263 Farmington Avenue, Farmington, CT 06030-1718, USA.
| | | | | |
Collapse
|
8
|
Bryant BP. The roles of carbonic anhydrase in gustation, olfaction and chemical irritation. EXS 2001:365-74. [PMID: 11268524 DOI: 10.1007/978-3-0348-8446-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- B P Bryant
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Abstract
Neurophysiological studies on chorda tympani (CT) single fibers and behavioral studies on generalization of learned aversions in hamsters (Mesocricetus auratus) are reviewed. The work on hamsters is compared to work on other species, including the laboratory rat and several primate species, including humans. This body of data demonstrates associations between response profiles of physiologically defined specialist CT neurons and behavioral stimulus generalizations on one hand, and characteristics of putative taste receptors, on the other. Response profiles of generalist CT neurons are similarly associated with receptor characteristics, but are not associated with specific behavioral discriminations. The associations of peripheral nerve data with both receptor and behavior strongly suggest specific codes for "sucrose-like" and "NaCl-like" taste qualities. Definitive conclusions regarding "patterns" or "labeled lines" requires an understanding of mechanisms of central neural processing of the several specialist and generalist taste-afferent inputs.
Collapse
Affiliation(s)
- M E Frank
- Department of Oral Diagnosis, School of Dental Medicine, University of Connecticut Health Center, Farmington 06030-1605, USA.
| |
Collapse
|
10
|
Abstract
Amiloride at < or = 1 microM may block epithelial Na+ channels without affecting other cellular mechanisms, and attenuates gustatory responses to lingual NaCl from the chorda tympani nerves (CT) of gerbil, hamster, rhesus monkey, and several strains of laboratory rat and mouse, and from glossopharyngeally innervated frog taste-receptor cells; at 5 microM to 50 microM, also from Wistar rat and mongrel dog CT. Affected units responded more to NaCl than to KCl. Suppression of CT responses to KCl, HCl, NH4Cl, or saccharides also occurred in some mammals, but amiloride did not elicit responses. Taste-dependent behaviors towards NaCl or KCl were altered. DBA and 129/J laboratory mice, and mudpuppy, were unaffected by amiloride. In humans, 10 microM amiloride both produced taste reports and reduced total intensity of NaCl and LiCl by 15-20%. NaCl and LiCl sourness, and KCl and QHCl bitterness declined, but saltiness generally did not change. Effects on sweetness were inconsistent. Amiloride-sensitive gustatory mechanisms were prominent in some mammals, were not necessary for responses to NaCl, and were of minor importance for human taste.
Collapse
Affiliation(s)
- B P Halpern
- Department of Psychology, Cornell University, Ithaca, NY 14853-7601, USA
| |
Collapse
|
11
|
Specific and differential activation of mitogen-activated protein kinase cascades by unfamiliar taste in the insular cortex of the behaving rat. J Neurosci 1998. [PMID: 9822758 DOI: 10.1523/jneurosci.18-23-10037.1998] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rats were given to drink an unfamiliar taste solution under conditions that result in long-term memory of that taste. The insular cortex, which contains the taste cortex, was then removed and assayed for activation of mitogen-activated protein kinase (MAPK) cascades by using antibodies to the activated forms of various MAPKs. Extracellular responsive kinase 1-2 (ERK1-2) in the cortical homogenate was significantly activated within <30 min of drinking the taste solution, without alteration in the total level of the ERK1-2 proteins. The activity subsided to basal levels within <60 min. In contrast, ERK1-2 was not activated when the taste was made familiar. The effect of the unfamiliar taste was specific to the insular cortex. Jun N-terminal kinase 1-2 (JNK1-2) was activated by drinking the taste but with a delayed time course, whereas the activity of Akt kinase and p38MAPK remained unchanged. Elk-1, a member of the ternary complex factor and an ERK/JNK downstream substrate, was activated with a time course similar to that of ERK1-2. Microinjection of a reversible inhibitor of MAPK/ERK kinase into the insular cortex shortly before exposure to the novel taste in a conditioned taste aversion training paradigm attenuated long-term taste aversion memory without significantly affecting short-term memory or the sensory, motor, and motivational faculties required to express long-term taste aversion memory. It was concluded that ERK and JNK are specifically and differentially activated in the insular cortex after exposure to a novel taste, and that this activation is required for consolidation of long-term taste memory.
Collapse
|
12
|
Wetherton BM, Leonard NL, Renehan WE, Schweitzer L. Structure and function of gustatory neurons in the nucleus of the solitary tract. III. Classification of terminals using cluster analysis. Biotech Histochem 1998; 73:164-73. [PMID: 9674887 DOI: 10.3109/10520299809140523] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In sensory systems, insight into synaptic arrangements on cells of known physiological response properties has helped our understanding of the structural basis for these properties. To carry out these types of studies, however, synaptic types in the region of interest must be defined. Unfortunately, defining synaptic types in the brainstem has proved to be a challenging enterprise. Our study was done to classify synapses in the gustatory part of the nucleus solitarius using objective quantitative criteria and a cluster analysis procedure. Cluster analysis allows classification of a population of objects, such as synaptic terminals, into groups that exhibit similar characteristics. Six terminal types were identified using cluster analysis and subsequent analyses of variance and post hoc tests. Unlike classification schemes used for the cerebral cortex, where synaptic apposition density thickness and shape of vesicles is useful (Gray's Type I and II synapses), the concentration of vesicles in a terminal was a more useful measurement with which to classify terminals in the nucleus solitarius. To validate that vesicle density (vesicles/microm2) is a useful defining characteristic to classify terminals in the nucleus solitarius, terminals of a known type were used. GABAergic terminals were identified using postembedding immunohistochemical techniques, and their vesicle density was determined. GABAergic terminals fall into the range of two of the terminal types defined by the cluster analysis and, based on vesicle density, two types of GABAergic terminals were identified. We conclude that vesicle density is a helpful means to identify synapses in this brainstem nucleus.
Collapse
Affiliation(s)
- B M Wetherton
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Kentucky 40292, USA
| | | | | | | |
Collapse
|
13
|
NMDA receptor and the tyrosine phosphorylation of its 2B subunit in taste learning in the rat insular cortex. J Neurosci 1997. [PMID: 9185550 DOI: 10.1523/jneurosci.17-13-05129.1997] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We demonstrate that the NMDA receptor is involved in taste learning in the insular cortex of the behaving rat and describe two facets of this involvement. Blockage of the NMDA receptor in the insular cortex by the reversible antagonist APV during training in a conditioned taste aversion (CTA) paradigm impaired CTA memory, whereas blockage of the NMDA receptor in an adjacent cortex or before a retrieval test had no effect. When rats sampled an unfamiliar taste and hence learned about it, either incidentally or in the context of CTA training, the tyrosine phosphorylation of the NMDA receptor subunit 2B (NR2B) in the insular cortex was specifically increased. The level of tyrosine phosphorylation on NR2B was a function of the novelty of the taste stimulus and the quantity of the taste substance consumed, properties that also determined the efficacy of the taste stimulus as a conditioned stimulus in CTA; however, blockage of the NMDA receptor by APV during training did not prevent tyrosine phosphorylation of NR2B. We suggest that tyrosine phosphorylation of NR2B subserves encoding of saliency in the insular cortex during the first hours after an unfamiliar taste is sampled and that this encoding is independent of another, necessary role of NMDA receptors in triggering experience-dependent modifications in the insular cortex during taste learning. Because a substantial fraction of the NR2B protein in the insular cortex seems to be expressed in interneurons, saliency and the tyrosine phosphorylation of NR2B correlated with it may modulate inhibition in cortex.
Collapse
|
14
|
Finger TE, Bryant BP, Kalinoski DL, Teeter JH, Böttger B, Grosvenor W, Cagan RH, Brand JG. Differential localization of putative amino acid receptors in taste buds of the channel catfish, Ictalurus punctatus. J Comp Neurol 1996; 373:129-38. [PMID: 8876468 DOI: 10.1002/(sici)1096-9861(19960909)373:1<129::aid-cne11>3.0.co;2-f] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The taste system of catfish, having distinct taste receptor sites for L-alanine and L-arginine, is highly sensitive to amino acids. A previously described monoclonal antibody (G-10), which inhibits L-alanine binding to a partial membrane fraction (P2) derived from catfish (Ictalurus punctatus) taste epithelium, was found in Western blots to recognize a single band, at apparent MW of 113,000 D. This MW differs from the apparent MW for the presumed arginine receptor identified previously by PHA-E lectin affinity. In order to test whether PHA-E lectin actually reacts with the arginine-receptor, reconstituted membrane proteins partially purified by PHA-E affinity were used in artificial lipid bilayers. These reconstituted channels exhibited L-arginine-activated activity similar to that found in taste cell membranes. Accordingly, we utilized the PHA-E lectin and G-10 antibody as probes to differentially localize the L-alanine and L-arginine binding sites on the apical surface of catfish taste buds. Each probe labels numerous, small (0.5-1.0 micron) patches within the taste pore of each taste bud. This observation suggests that each bud is not tuned to a single taste substance, but contains putative receptor sites for both L-arginine and L-alanine. Further, analysis of double-labeled tissue reveals that the PHA-E and G-10 sites tend to be separate within each taste pore. These findings imply that in catfish, individual taste cells preferentially express receptors to either L-arginine or L-alanine. In addition, PHA-E binds to the apices of solitary chemoreceptor cells in the epithelium, indicating that this independent chemoreceptor system may utilize some receptor sites similar to those in taste buds.
Collapse
Affiliation(s)
- T E Finger
- Department of Cellular and Structural Biology, Rocky Mountain Taste and Small Center, University Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Formaker BK, Frank ME. Responses of the hamster chorda tympani nerve to binary component taste stimuli: evidence for peripheral gustatory mixture interactions. Brain Res 1996; 727:79-90. [PMID: 8842385 DOI: 10.1016/0006-8993(96)00356-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Studies of taste mixtures suggest that stimuli which elicit different perceptual taste qualities physiologically interact in the gustatory system and thus, are not independently processed. The present study addressed the role of the peripheral gustatory system in these physiological interactions by measuring the effects of three heterogeneous taste mixtures on responses of the chorda tympani (CT) nerve in the hamster (Mesocricetus auratus). Binary taste stimuli were presented to the anterior tongue and multi-fiber neural responses were recorded from the whole CT. Stimuli consisted of a concentration series of quinine.HCl (QHCl: 1-30 mM), sodium chloride (NaCl: 10-250 mM), sucrose (50-500 mM) and binary combinations of the three different chemicals. Each mixture produced a unique pattern of results on CT response magnitudes measured 10 s into the response. Sucrose responses were inhibited by quinine in QHCl-sucrose mixtures. Neural activity did not increase when quinine was added to 50-250 mM NaCl in QHCl-NaCl mixtures. However, the neural activity elicited by sucrose-NaCl mixtures was greater than the activity elicited by either component stimulus presented alone. The results demonstrate that gustatory mixture interactions are initiated at the level of the taste bud or peripheral nerve. Mechanisms for these interactions are unknown. The results are consistent with one component stimulus modifying the interaction of the other component stimulus with its respective transduction mechanism. Alternatively, peripheral inhibitory mechanisms may come into play when appetitive and aversive stimuli are simultaneously presented to the taste receptors.
Collapse
Affiliation(s)
- B K Formaker
- Department of Biostructure and Function, University of Connecticut, Farmington 06030, USA
| | | |
Collapse
|
16
|
Renehan WE, Jin Z, Zhang X, Schweitzer L. Structure and function of gustatory neurons in the nucleus of the solitary tract: II. Relationships between neuronal morphology and physiology. J Comp Neurol 1996; 367:205-21. [PMID: 8708005 DOI: 10.1002/(sici)1096-9861(19960401)367:2<205::aid-cne4>3.0.co;2-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study employed intracellular recording and labeling techniques to examine potential relationships between the physiology and morphology of brainstem gustatory neurons. When we considered the neuronal response to the four "prototypic" tastants, we were able to demonstrate a positive correlation between breadth of responsiveness and the number of dendritic branch points. An analysis of the response to eight tastants also revealed an association between dendritic spine density and the breadth of responsiveness, with more narrowly tuned neurons exhibiting more spines. Interestingly, a neuron's "best response" was a relatively poor predictor of neuronal morphology. When we focused on those neurons that responded to only one tastant, however, a number of potentially important relationships became apparent. We found that the cells that only responded to quinine were smaller than the neurons that only responded to NaCl, HCl, or sucrose. The HCl-only neurons, however, were more widespread in the rostrocaudal dimension that the neurons that only responded to NaCl. A number of additional structure-function relationships were identified when we examined the neuronal response to selected tastants. We found that neurons that responded to sucrose but not quinine, as well as neurons that responded to quinine but not sucrose, were more widespread in the mediolateral dimension than neurons that responded to both sucrose and quinine. We also discovered that the neurons that responded to NaCl, but not to NH4Cl or KCl, were larger than neurons that responded to all three salts. We believe that these results support the hypothesis that there are relationships between the structure and function of gustatory neurons in the nucleus of the solitary tract, with the data highlighting the importance of three themes: 1) the relationship between dendritic specializations and tuning, 2) the relationship between dendritic arbor orientation and response properties, and 3) the potential importance of stimulus-specific neurons.
Collapse
Affiliation(s)
- W E Renehan
- Laboratory of Gastrointestinal, Gustatory and Somatic Sensation, Henry Ford Health Sciences Center, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
17
|
Rehnberg BG, MacKinnon BI, Hettinger TP, Frank ME. Analysis of polysaccharide taste in hamsters: behavioral and neural studies. Physiol Behav 1996; 59:505-16. [PMID: 8700954 DOI: 10.1016/0031-9384(95)02092-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A series of studies was carried out in hamsters (Mesocricetus auratus) to determine whether polysaccharides have behavioral and neurophysiological characteristics that distinguish them from simple sugars. Behavioral studies utilized solutions of glucose, maltose, sucrose, Polycose, and glycogen in two-bottle preference tests and in tests of generalization of conditioned taste aversions. Multiunit and single-unit responses of the chorda tympani nerve were studied with the same stimuli. Neural responses to Polycose and glycogen were found to be generated primarily by ionic contaminants. Dialysis or deionization dramatically reduced electrophysiological responses, a result consistent with occurrence of Polycose and glycogen sensitivity in electrolyte-sensitive nerve fibers. Effects of treatment with the Na + -channel blocker amiloride and cross-adaptation were also consistent with neural responses generated by ionic contaminants. Hamsters showed strong preferences for the sugars and Polycose, a mixture of glucose polymers with alpha-1,4 linkages, and even stronger preferences for a glycogen preparation. Conditioned flavor aversions were established to glycogen, sucrose, and maltose, but no aversion was learned to 3.2% Polycose. The learned aversion to maltose partly generalized to glycogen and sucrose, but sucrose and glycogen did not cross-generalize. Deionization did not affect the preferences for Polycose and glycogen but removal of contaminants of mol.wt. < or = 7000 Da greatly reduced preference for glycogen. In conclusion, glycogen itself, after removal of low molecular weight contaminants, is a poor taste stimulus in hamsters, both behaviorally and neurophysiologically. However, Polycose is highly preferred by hamsters but gives little chorda tympani response after removal of ionic contaminants. In alert animals, the action of salivary amylase on polysaccharides may produce simpler, detectable taste stimuli.
Collapse
Affiliation(s)
- B G Rehnberg
- Department of BioStructure & Function, School of Dental Medicine, University of Connecticut Health Center, Farmington 06030-3705, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Chlorhexidine gluconate at a dose used to control bacteria in the mouth has a reversible effect on taste perception. Taste-intensity ratings and taste-quality identification for concentration series of sucrose, sodium chloride, citric acid and quinine hydrochloride were obtained from 15 healthy humans. The participants rinsed with 0.12% chlorhexidine for 3 min twice a day. Each individual was tested 3 times: before the 4-day rinse period, 30 min after the final rinse, and 4 days after the rinse period. Chlorhexidine rinses reduced the perceptual intensity of sodium chloride and quinine hydrochloride, not sucrose or citric acid. No effects on taste perception were detected 4 days after the rinse period. The identification of sodium chloride as salty was seriously impaired by chlorhexidine but the identification of quinine hydrochloride as bitter was not affected. Specific sites of action of chlorhexidine on the taste epithelium are not known but its effects on salty taste may be related to its strong positive charge and its effect on bitter taste may be related to its amphiphilicity. Chlorhexidine has promise as a probe of taste transduction, as well as for the management of salty/bitter dysgeusias in humans.
Collapse
Affiliation(s)
- J A Helms
- Center for Neurological Sciences, University of Connecticut Health Center, Farmington, USA
| | | | | | | |
Collapse
|
19
|
Renehan WE, Jin Z, Zhang X, Schweitzer L. Structure and function of gustatory neurons in the nucleus of the solitary tract. I. A classification of neurons based on morphological features. J Comp Neurol 1994; 347:531-44. [PMID: 7814673 DOI: 10.1002/cne.903470405] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Prior investigations in other laboratories have provided convincing evidence that the neurons of the rostral nucleus of the solitary tract (rNST) can be grouped according to their physiological response properties or morphologic features. The present study is based on the premise that the response properties of gustatory neurons are related to, and perhaps governed by, their morphology and connectivity. In this first phase of our ongoing investigation of structure-function relationships in the rNST of the rat, we have used intracellular injection of neurobiotin to label individual physiologically characterized gustatory neurons. A total of 63 taste-sensitive neurons were successfully labeled and subjected to three-dimensional quantitative and qualitative analysis. A cluster analysis using six morphologic features (total cell volume, soma area, mean segment length, swelling density, spine density, and number of primary dendrites) was used to identify six cell groups. Subsequent analyses of variance and posthoc comparisons verified that each of these six groups differed from all others with respect to at least one variable, so each group was "typified" by at least one of the six morphologic features. Neurons in group A were found to be the smallest neurons in the sample. The cells in group B had small somata and exhibited the highest swelling density of any group. Group C neurons were distinguished by dendrites with long, spine-free branches. These dendrites were significantly longer than those of any other group except Group F. The neurons in group D had more primary dendrites than any other group. Group E neurons possessed dendrities with the lowest swelling density but the most spines of any group. The cells in group F were the largest neurons in our sample and possessed the largest somata of any group. Thus overall cell size and density of dendritic spines and swellings were found to be particularly important variables in this classification scheme. Our preliminary results suggest that the number and density of dendritic spines (as well as other morphologic features) may be related to a given neuron's most effective stimulus, indicating that it will indeed be possible to use the criteria established in the present investigation to derive structure-function relationships for gustatory neurons in the rNST.
Collapse
Affiliation(s)
- W E Renehan
- Laboratory of Gastrointestinal, Gustatory and Somatic Sensation, Henry Ford Health Sciences Center, Detroit, Michigan 48202
| | | | | | | |
Collapse
|